Source file build_inductive.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
open Fmlib
open Common
open Alba_core
open Ast
module Result =
Fmlib.Result.Make (Build_problem)
module Interval_monadic =
Interval.Monadic (Result)
module List_monadic =
List.Monadic (Result)
module Algo =
Gamma_algo.Make (Gamma)
type 'a result2 = ('a, Build_problem.t) result
type params_located = (string Located.t * Term.typ) array
module Data =
struct
type t = {
cnt0: int;
params: Inductive.params;
headers: Inductive.Header.t array;
positives: Int_set.t;
}
let make cnt0 params =
let positives =
Array.foldi_left
(fun set i (_, typ) ->
let open Term in
match typ with
| Sort Sort.Any _ | Sort Sort.Proposition ->
Int_set.add i set
| _ ->
set
)
Int_set.empty
params
in
{cnt0; params; headers; positives}
let (i: int) (d: t): Inductive.Header.t =
d.headers.(i)
let params (d: t): Inductive.params =
d.params
let (d: t): Inductive.Header.t array =
d.headers
let constructor_base_count (d: t): int =
d.cnt0 + Array.length d.headers + Array.length d.params
let is_inductive (level: int) (d: t): bool =
d.cnt0 <= level
&&
level < d.cnt0 + Array.length d.headers
let is_parameter (level: int) (d: t): bool =
let ntypes = Array.length d.headers in
d.cnt0 + ntypes <= level
&&
level < d.cnt0 + ntypes + Array.length d.params
let positives (d: t): Int_set.t =
d.positives
let remove_positive (iparam) (level: int) (d: t): t =
let param0 = d.cnt0 + Array.length d.headers
and nparams = Array.length d.params
in
if
param0 <= level
&& level < param0 + nparams
&& param0 + iparam <> level
then(
{d with
positives =
Int_set.remove (level - param0) d.positives
}
)
else
d
end
let (>>=) = Result.(>>=)
let build_type_or_any
(name: string Located.t)
(typ: Expression.t option)
(c: Context.t)
: Term.typ result2
=
match typ with
| None ->
Ok Term.any
| Some typ ->
Build_expression.build_named_type name typ c
let check_params
(params0: Inductive.params)
(name: string Located.t)
(params: params_located)
(context: Context.t)
: unit result2
=
let nparams = Array.length params0 in
if nparams <> Array.length params then
Error (
Located.range name,
Build_problem.Wrong_parameter_count nparams
)
else
Interval_monadic.(
fold
(fun i context ->
let name, typ = params.(i)
and name0, typ0 = params0.(i)
in
if Located.value name <> name0 then
Error (
Located.range name,
Build_problem.Wrong_parameter_name name0
)
else if Typecheck.equivalent
typ0
typ
(Context.gamma context)
then
Ok (
Context.push_local
(Located.value name)
typ
context
)
else
Error (
Located.range name
,
Build_problem.Wrong_parameter_type (
typ0, Context.gamma context
)
)
)
0 nparams
context
)
>>= fun _ ->
Ok ()
let
(i: int)
(inds: Source_entry.inductive array)
(c0: Context.t)
: (string Located.t * params_located * Inductive.Header.t) result2
=
assert (i < Array.length inds);
let (name, (params, kind_exp)), _ = inds.(i) in
List_monadic.(
fold_left
(fun (name, param_typ) (lst,c1) ->
build_type_or_any name param_typ c1
>>=
fun param_typ ->
Ok (
(name, param_typ) :: lst,
Context.push_local
(Located.value name)
param_typ
c1
)
)
params
([],c0)
)
>>= fun (params, c1) ->
build_type_or_any name kind_exp c1
>>= fun kind ->
match
Algo.split_kind kind (Context.gamma c1)
with
| None ->
assert (kind_exp <> None);
let range =
Located.range (Option.value kind_exp)
in
Error (range, Build_problem.No_inductive_type)
| Some (args, sort) ->
let name_str = Located.value name
in
let params = Array.of_list (List.rev params)
and =
Inductive.Header.make name_str kind args sort
in
let params1 =
Array.map (fun (name,typ) -> Located.value name, typ) params
in
if
Context.can_add_global
name_str
(Inductive.Header.kind params1 header)
c0
then
Ok (name, params, header)
else
Error (Located.range name, Build_problem.Ambiguous_definition)
let
(inds: Source_entry.inductive array)
(context: Context.t)
: (Inductive.params * Inductive.Header.t array) result2
=
assert (0 < Array.length inds);
class_header 0 inds context
>>=
fun (name0, params0, ) ->
let params0 =
Array.map (fun (name, typ) -> Located.value name, typ) params0
in
Interval_monadic.fold
(fun i (set, lst) ->
class_header i inds context
>>=
fun (name, params, ) ->
check_params params0 name params context
>>= fun _ ->
let name_str = Located.value name in
if String_set.mem name_str set then
Error(Located.range name, Build_problem.Duplicate_inductive)
else
Ok (String_set.add name_str set, header :: lst)
)
1
(Array.length inds)
(String_set.singleton (Located.value name0), [])
>>= fun (_, lst) ->
Ok (params0, Array.of_list (header0 :: List.rev lst))
let push_params
(ntypes: int)
(params: Inductive.params)
(context: Context.t)
: Context.t
=
Array.foldi_left
(fun context iparam (name,typ) ->
Context.push_local
name
(Term.up_from iparam ntypes typ)
context)
context
params
let push_types
(params: Inductive.params)
(: Inductive.Header.t array)
(context: Context.t)
: Context.t
=
let _, context =
Array.fold_left
(fun (i,context) ->
let open Inductive.Header in
i + 1,
Context.add_axiom
(name header)
(Term.up i (kind params header))
context
)
(0,context)
headers
in
context
let fold_type
(argf: 'a -> Term.typ -> Gamma.t -> 'a result2)
(resf: 'a -> Term.typ -> Gamma.t -> 'b result2)
(a: 'a)
(typ: Term.typ)
(gamma: Gamma.t) :
'b result2
=
let rec fold a typ gamma =
let open Term
in
match Algo.key_normal typ gamma with
| Pi (arg, res, info) ->
argf a arg gamma
>>=
fun a ->
fold a res (Gamma.push_local (Pi_info.name info) arg gamma)
| res ->
resf a res gamma
in
fold a typ gamma
let check_non_occurrence
(error: unit -> Data.t result2)
(iparam: int)
(term: Term.t)
(gamma: Gamma.t)
(data: Data.t):
Data.t result2
=
let module TermM = Term.Monadic (Result) in
TermM.fold_free
(fun idx data ->
let level = Gamma.level_of_index idx gamma
in
if Data.is_inductive level data then
error ()
else
Ok (Data.remove_positive iparam level data)
)
term
data
let check_constructor_argument_result_type
(range: range)
(data: Data.t)
(typ: Term.typ)
(gamma: Gamma.t):
Data.t result2
=
let open Build_problem in
let not_positive _ =
Error (range, Not_positive (typ,gamma))
in
let rec check term =
let key, args = Algo.key_split term gamma in
match key with
| Variable idx ->
let level = Gamma.level_of_index idx gamma in
if Data.is_inductive level data then
non_occurrence true args not_positive
else if Data.is_parameter level data && args = [] then
Ok data
else begin
match Gamma.inductive_at_level level gamma with
| None ->
non_occurrence false args not_positive
| Some ind ->
if Inductive.count_types ind = 1 then
positive_occurrence ind args
else
non_occurrence false args not_positive
end
| _ ->
check_non_occurrence not_positive (-1) term gamma data
and non_occurrence might_occur args error =
List_monadic.foldi_left
(fun iparam (arg, _) data ->
let iparam =
if might_occur then
iparam
else
- 1
in
check_non_occurrence error iparam arg gamma data
)
args
data
and positive_occurrence ind args =
List_monadic.foldi_left
(fun iparam (arg, _) data ->
if Inductive.is_param_positive iparam ind then
check arg
else
check_non_occurrence
(fun _ -> Error (
range,
Nested_negative (ind, iparam, gamma)
))
(-1)
arg
gamma
data
)
args
data
in
check typ
let check_constructor_argument_type
(range: range)
(data: Data.t)
(arg_typ: Term.typ)
(gamma: Gamma.t) :
Data.t result2
=
fold_type
(fun data typ gamma ->
check_non_occurrence
(fun _ -> Error (range, Build_problem.Negative))
(-1)
typ
gamma
data
)
(check_constructor_argument_result_type range)
data
arg_typ
gamma
let check_constructor_result_type
(i: int)
(range: range)
(data: Data.t)
(res: Term.typ)
(gamma: Gamma.t) :
Data.t result2
=
if
Inductive.Header.is_well_constructed
i
(Data.params data)
(Data.headers data)
Gamma.(count gamma - Data.constructor_base_count data)
res
then
Ok data
else
Error (
range,
Build_problem.Wrong_type_constructed (res, gamma)
)
let check_constructor_type
(i: int)
(data: Data.t)
(name: string Located.t)
(typ: Term.typ)
(c: Context.t)
: (Data.t * Inductive.Constructor.t) result2
=
let range = Located.range name
in
fold_type
(check_constructor_argument_type range)
(check_constructor_result_type i range)
data
typ
(Context.gamma c)
>>= fun data ->
Ok (data, Inductive.Constructor.make (Located.value name) typ)
let one_constructor
(i: int)
(data: Data.t)
((name, (fargs, typ))
: Source_entry.named_signature)
(c: Context.t)
: (Data.t * Inductive.Constructor.t) result2
=
let module Lst = List.Monadic (Result) in
Lst.fold_left
(fun (name, typ) (fargs, c) ->
match typ with
| None ->
assert false
| Some typ ->
Build_expression.build_named_type name typ c
>>= fun typ ->
let name = Located.value name in
Ok (
(name, typ) :: fargs
,
Context.push_local name typ c
)
)
fargs
([], c)
>>= fun (fargs, c1) ->
(
match typ with
| None ->
if
Inductive.Header.has_index (Data.header i data)
then
Error (
Located.range name,
Build_problem.Missing_inductive_type
)
else
Ok (
Inductive.Header.default_type
i
(Data.params data)
(Data.headers data)
)
| Some typ ->
Build_expression.build_named_type name typ c1
)
>>= fun typ ->
let typ =
List.fold_left
(fun res (name, typ) ->
Term.(Pi (typ, res, Pi_info.typed name)))
typ
fargs
in
check_constructor_type i data name typ c
let one_constructor_set
(i: int)
(data: Data.t)
(inds: Source_entry.inductive array)
(c: Context.t)
: (Data.t * Inductive.Constructor.t array) result2
=
let module Arr = Array.Monadic (Result) in
Arr.fold_left
(fun constructor (set, data, lst) ->
one_constructor i data constructor c
>>= fun (data, co) ->
let name, _ = constructor in
let name_str = Located.value name in
if String_set.mem name_str set then
Error (Located.range name, Build_problem.Duplicate_constructor)
else
Ok (String_set.add name_str set, data, co :: lst)
)
(snd inds.(i))
(String_set.empty, data, [])
>>= fun (_, data, lst) ->
Ok (data, Array.of_list (List.rev lst))
let constructors
(params: Inductive.params)
(: Inductive.Header.t array)
(inds: Source_entry.inductive array)
(context: Context.t)
: Inductive.t result2
=
let context1 =
push_types params headers context
|>
push_params (Array.length headers) params
and data =
Data.make (Context.count context) headers params
in
let module Arr = Array.Monadic (Result) in
Arr.foldi_left
(fun i (n, data, constructors) ->
one_constructor_set
i
data
inds
context1
>>= fun (data, constructor_set) ->
Ok (
n + Array.length constructor_set
,
data
,
Inductive.Type.make n header constructor_set :: constructors
)
)
headers
(0, data, [])
>>=
fun (_, data, types) ->
Ok Inductive.(make
params
(Data.positives data)
(Array.of_list (List.rev types)))
let build
(inds: Source_entry.inductive array)
(context: Context.t)
: Inductive.t result2
=
class_headers inds context
>>= fun (params,) ->
constructors params headers inds context