Source file parser_lang.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
open Fmlib
open Module_types
open Common
open Alba_core
open Ast
module Located = Character_parser.Located
type 'a located = 'a Located.t
module Position = Position
module Indent = Character_parser.Indent
type indent = Character_parser.Indent.t
type position = Position.t
type range = Position.t * Position.t
module Command =
struct
type t =
| Evaluate of Expression.t
| Type_check of Expression.t
| Define of Expression.definition
| Clear
| Load of string Located.t
| Reload
| Exit
| Do_nothing
end
module Source_file =
struct
type entry =
| Expression of (bool * Expression.t)
| Entry of Source_entry.t
type t = {
entries: entry list;
n: int;
}
let count (src: t): int =
src.n
let empty: t =
{
n = 0;
entries = [];
}
let top (src: t): entry =
assert (0 < count src);
fst (List.split_head_tail src.entries)
let push_entry
(entry: Source_entry.t) (src: t): t =
{
entries = Entry entry :: src.entries;
n = src.n + 1;
}
let push_expression
(evaluate_flag: bool) (exp: Expression.t) (src: t): t
=
{
entries =
Expression (evaluate_flag, exp) :: src.entries;
n = src.n + 1;
}
end
module Problem =
struct
type t =
| Operator_precedence of
string * string
| Illegal_name of string
| Illegal_command of string list
| Ambiguous_command of string list
| Duplicate_argument
| Unused_definition of string
| No_result_type
| No_argument_type
end
module type ERROR =
Generic_parser.ERROR
with type expect = string * Character_parser.Indent.t
and type semantic = range * Problem.t
module Print (Error: ERROR) (P: Pretty_printer.SIG) =
struct
let problem (problem: Problem.t): P.t =
let open Problem in
let open P
in
match problem with
| Operator_precedence (op1, op2) ->
let source_text op1 op2 =
string "_ "
<+> string op1
<+> string " _ "
<+> string op2
<+> string " _"
and left op1 op2 =
string "( _ "
<+> string op1
<+> string " _ ) "
<+> string op2
<+> string " _"
and right op1 op2 =
string "_ "
<+> string op1
<+> string " ( _ "
<+> string op2
<+> string " _ )"
in
wrap_words "I am no able to group your operator expression"
<+> cut <+> cut
<+> nest 4 (source_text op1 op2) <+> cut <+> cut
<+> wrap_words "I can either group the first two"
<+> cut <+> cut
<+> nest 4 (left op1 op2) <+> cut <+> cut
<+> wrap_words "or group the second two"
<+> cut <+> cut
<+> nest 4 (right op1 op2) <+> cut <+> cut
<+> wrap_words
"However the precedence and associativity of these operators \
don't give me enough information. Please put parentheses to \
indicate your intention."
<+> cut <+> cut
| Illegal_name expect ->
wrap_words "I was expecting"
<+> group space
<+> string expect
<+> cut
| Illegal_command _ ->
string "Illegal commmand" <+> cut
| Ambiguous_command _ ->
string "Ambiguous commmand" <+> cut
| Duplicate_argument ->
wrap_words "I found a duplicate argument name. All names \
of formal arguments must be different."
<+> cut <+> cut
| Unused_definition _ ->
wrap_words "This local definition is not used. \
Sorry, this is not allowed."
<+> cut <+> cut
| No_result_type ->
wrap_words
"Top level definitions must have an explicit result type."
<+> cut <+> cut
| No_argument_type ->
wrap_words
"In top level definitions all formal arguments \
must be explicitly typed."
<+> cut <+> cut
let expectations
(col: int)
(exps: (string * indent) list)
(tab_positions: int list)
: P.t
=
let open P in
let find_tab_number ind =
let rec find number tabs =
match tabs with
| [] ->
assert false
| pos :: tabs ->
if pos = Indent.lower_bound ind then
number
else
find (number + 1) tabs
in
find 0 tab_positions
in
let expectation e ind =
if Indent.is_offside col ind then
string e
<+>
(if Indent.has_only_one_position ind then
string " at tab marker "
else
string " starting at tab marker ")
<+>
string (string_of_int (find_tab_number ind))
else
string e
in
match exps with
| [] ->
assert false
| [e, ind] ->
string "I was expecting the following"
<+> cut <+> cut
<+> nest 4 (expectation e ind)
<+> cut <+> cut
| lst ->
string "I was expecting one of the following"
<+> cut <+> cut
<+> nest
4
(list_separated
cut
(List.map
(fun (e,ind) ->
string "- "
<+>
expectation e ind)
lst))
<+> cut <+> cut
end
module type SIG =
sig
type parser
type state
type final
type _ t
module Error: ERROR
val needs_more: parser -> bool
val has_ended: parser -> bool
val has_succeeded: parser -> bool
val has_failed: parser -> bool
val state: parser -> Source_file.t
val put_character: parser -> char -> parser
val put_end: parser -> parser
val result: parser -> final option
val error: parser -> Error.t
val line: parser -> int
val column: parser -> int
val position: parser -> position
val error_tabs: parser -> int list
val expression: unit -> Expression.t t
val command: Command.t t
val global_definition: _ -> Expression.definition t
val global_definitions: _ -> Expression.definition array t
val inductive_type: _ -> Source_entry.inductive t
val inductive_family: _ -> Source_entry.inductive array t
val source_file: bool -> unit t
val make: final t -> parser
val run: final t -> string -> parser
module Error_printer (PP: Pretty_printer.SIG):
sig
val print_with_source: string -> parser -> PP.t
val print_with_source_lines:
string Sequence.t -> parser -> PP.t
end
end
let keywords: String_set.t =
let open String_set in
empty
|> add "all"
|> add "case"
|> add "class"
|> add "inspect"
|> add "mutual"
|> add "where"
module Make (Final: ANY) =
struct
module P =
Character_parser.Normal
(Source_file)
(Final)
(struct type t = range * Problem.t end)
(String)
include P
let make_where
(e: Expression.t)
(defs: Expression.definition list)
(end_pos: position)
: Expression.t t
=
match Expression.find_unused_local e defs with
| None ->
return (
Located.make
(Located.start e)
(Expression.Where (e, defs))
end_pos)
| Some name ->
fail (
Located.range name,
Problem.Unused_definition (Located.value name)
)
let : unit t =
backtrackable (string "--") "\"--\""
>>= fun _ ->
skip_zero_or_more
(expect
(fun c -> c <> '\n')
"any char except newline")
>>= fun _ ->
return ()
let : unit t =
let rec to_end (): unit t =
(char '-' >>= fun _ ->
(char '}'
<|> to_end ()))
<|> (expect (fun _ -> true) "any char"
>>= fun _ ->
to_end ())
in
backtrackable
(string "{-")
"\"{-\""
>>= fun _ ->
to_end ()
let whitespace_char: char t =
expect
(fun c -> c = ' ' || c = '\n' || c = '\t')
"space, newline or tab"
let whitespace: int t =
detached
(skip_zero_or_more
(
(map (fun _ -> ()) whitespace_char)
<|> line_comment
<|> multiline_comment
<?> "whitespace"
)
>>= succeed
)
let command_argument: string Located.t t =
located (
map
String.of_list
(
one_or_more
(expect
(fun c -> c <> ' ' && c <> '\n' && c <> '\r')
"normal character")
)
)
let raw_name: string t =
word
Char.is_letter
(fun c -> Char.is_letter c || Char.is_digit c || c = '_')
"identifier"
let name: string located t =
located raw_name
let name_ws: string located t =
name |. whitespace
let identifier (with_any_prop: bool): string located t =
backtrackable
(
name
>>= fun s ->
let str = Located.value s
in
if
String_set.mem str keywords
|| Operator.is_keyword_operator str
|| (
not with_any_prop
&& (str = "Proposition" || str = "Any"))
then
unexpected "identifier"
else
return s
)
"identifier"
|. whitespace
let number: string located t =
located
(word Char.is_digit Char.is_digit "digit")
|. not_followed_by letter "not a letter"
|. whitespace
let identifier_expression: Expression.t t =
map
(Located.map
(fun s ->
if s = "Proposition" then
Expression.Proposition
else if s = "Any" then
Expression.Any
else
Expression.Identifier s
))
(identifier true)
let number_expression: Expression.t t =
map
(Located.map (fun s -> Expression.Number s))
number
let literal_string: Expression.t t =
located (
return
(fun chars ->
let chars = Array.of_list chars in
let len = Array.length chars in
Expression.String (String.init len (fun i -> chars.(i))))
|. char '"'
|= zero_or_more
(expect
(fun c ->
let i = Char.code c in
Char.code ' ' <= i && i < 128 && c <> '"')
"string character")
|. char '"')
|. whitespace
let literal_char: Expression.t t =
located (
return
(fun c -> Expression.Char (Char.code c))
|. char '\''
|= expect
(fun c -> c <> '\'' && c <> '\n')
"character"
|. char '\'')
|. whitespace
let left_bracket: unit t =
backtrackable
(
char '['
|. not_followed_by (char ']') "not ']'"
)
"'['"
|. whitespace
let right_bracket: unit t =
char ']'
|. whitespace
let empty_list_string: string t =
map
(fun _ -> "[]")
(backtrackable (string "[]") "[]")
let empty_list_expression: Expression.t t =
map
(Located.map (fun _ -> Expression.Identifier "[]"))
(
located (
backtrackable
(string "[]")
"[]"
)
|. whitespace
)
let colon: unit t =
backtrackable
(char ':'
|. not_followed_by (char '=') "not '='")
"':'"
let assign: unit t =
backtrackable
(string ":=")
"':='"
let operator_character: char t =
one_of_chars "+-^*|/=~<>" "operator character"
let operator_string
(with_comma: bool)
: string Located.t t
=
located (
(
map
String.of_list
(one_or_more operator_character)
>>= fun str ->
optional (char ':')
>>= fun oc ->
match oc with
| None ->
return str
| Some _ ->
return (str ^ ":")
)
<|>
(
let colon = map (fun _ -> ":") colon
and comma = map (fun _ -> ",") (char ',')
in
if with_comma then
colon <|> comma
else
colon
)
<|>
backtrackable
(
raw_name
>>=
fun str ->
if Operator.is_keyword_operator str then
return str
else
unexpected "keyword operator"
)
"'and' or 'or'"
)
<?>
"operator"
|. whitespace
let operator
(with_comma: bool)
: Expression.operator Located.t t
=
map
(Located.map
(fun op_str -> op_str, Operator.of_string op_str))
(operator_string with_comma)
let unary_operator: Expression.operator Located.t t =
backtrackable
(
operator false
>>= fun op ->
let op_str, _ = Located.value op in
if Operator.is_unary op_str then
return op
else
unexpected "unary operator"
)
"unary operator"
let lonely_operator: Expression.t t =
map
(fun op_located ->
Located.map (fun op -> Expression.Operator op) op_located)
(operator true)
let char_ws (c:char): unit t =
char c |. whitespace
let zero_or_more_reversed (p: 'a t): 'a list t =
let rec many l =
(p >>= fun a -> many (a :: l))
<|>
return l
in
many []
let parenthesized
(p: unit -> 'a Located.t t)
: 'a Located.t t
=
located (char '(') |. whitespace
>>= fun loc1 ->
p ()
>>= fun a ->
located (char ')') |. whitespace
>>= fun loc2 ->
return
(Located.make
(Located.start loc1)
(Located.value a)
(Located.end_ loc2))
let name_for_definition (with_operators: bool): string Located.t t =
if with_operators then
identifier false
<|>
located empty_list_string
<|>
parenthesized
(fun _ -> operator_string true)
else
identifier false
let rec find_duplicate_argument
(arg_lst: (string located * Expression.t option) list)
: string located option
=
match arg_lst with
| [] ->
None
| arg :: args ->
let arg_name (nme,_) =
Located.value nme
in
let name = arg_name arg
in
match List.find (fun arg2 -> name = arg_name arg2) args with
| None ->
find_duplicate_argument args
| Some (duplicate, _) ->
Some duplicate
let rec expression0 (with_comma: bool) (): Expression.t t =
let primary (what: string): Expression.t t =
backtrackable identifier_expression "identifier"
<|>
number_expression
<|>
literal_char
<|>
literal_string
<|>
empty_list_expression
<|>
parenthesized (
fun _ ->
indented (
expression0 true ()
<|>
lonely_operator
)
)
<|>
located (
map
Expression.to_list
(
left_bracket
>>= fun _ ->
(indented (expression0 true ()))
|. right_bracket
)
)
<|>
(
return
(fun pos1 args rt exp ->
Located.make
pos1
(Expression.Function (args, rt, exp))
(Located.end_ exp))
|= get_position
|. char_ws '\\'
|= formal_arguments false false
|= optional_result_type ()
|= assign_defining_expression ()
)
<|>
(
return
(fun pos1 args rt ->
Located.make
pos1
(
match Located.value rt with
| Expression.Product (args_inner, rt) ->
Expression.Product (args @ args_inner, rt)
| _ ->
Expression.Product (args, rt)
)
(Located.end_ rt)
)
|= get_position
|. backtrackable (string "all") "all"
|. whitespace
|= formal_arguments false false
|= result_type ()
)
<?>
what
in
let application: Expression.t t =
primary "expression" >>= fun f ->
(
match Located.value f with
| Proposition | Any
| Number _ | Char _ | String _
| Product _ ->
return []
| _ ->
indented (
zero_or_more_reversed
(primary "function argument"))
)
>>= fun args_rev ->
match args_rev with
| [] ->
return f
| last :: _ ->
let arg_lst =
List.rev_map
(fun arg -> arg, Expression.Normal)
args_rev
in
let f0, arg_lst =
match Located.value f with
| Expression.Application (f0, arg_lst0) ->
f0, arg_lst0 @ arg_lst
| _ ->
f, arg_lst
in
let pos1 = Located.start f
and pos2 = Located.end_ last
in
return (
Located.make
pos1
(Expression.Application (f0, arg_lst))
pos2
)
in
let where_block: Expression.definition list t =
(
backtrackable
(string "where")
"where <local definitions>"
|. whitespace
)
>>= fun _ ->
indented (one_or_more_aligned (definition false))
in
let operand: Expression.operand t =
map
(fun exp -> [], exp)
application
<|>
(
one_or_more unary_operator
>>= fun op_lst ->
application
>>= fun exp ->
return (op_lst, exp)
)
in
let operator_and_operand (with_comma: bool) =
return (fun op exp -> (op,exp))
|= operator with_comma
|= operand
in
let operator_expression (with_comma: bool): Expression.t t =
operand
>>= fun e1 ->
zero_or_more (operator_and_operand with_comma)
>>= fun lst ->
(
match Operator_expression.make e1 lst with
| Ok e ->
return e
| Error (range, op1, op2) ->
fail (range, Problem.Operator_precedence (op1, op2))
)
in
absolute (
operator_expression with_comma
>>= fun e ->
located (optional where_block)
>>= fun def ->
match Located.value def with
| None ->
return e
| Some definitions ->
assert (definitions <> []);
let definitions = List.rev definitions in
let pos_end = Located.end_ (List.head_strict definitions) in
make_where
e
definitions
pos_end
)
and indented_expression (kind: string) () =
indented (expression0 false () <?> kind)
and subexpression (kind: string) () =
maybe_indented (expression0 false () <?> kind)
and result_type _ : Expression.t t =
(colon |. whitespace >>= subexpression "type")
<?> ": <result type>"
and optional_result_type _ : Expression.t option t =
optional (result_type ())
and typed_formal_argument
_
: Expression.formal_argument t
=
char_ws '(' >>= fun _ ->
identifier false
>>= fun name ->
colon |. whitespace
>>= subexpression "type"
>>= fun typ ->
char_ws ')'
>>= fun _ ->
return (name, Some typ)
and formal_argument
(typed: bool)
: Expression.formal_argument t
=
(
if typed then
typed_formal_argument ()
else
typed_formal_argument ()
<|>
map
(fun name -> name, None)
(identifier false)
)
<?>
"formal argument"
and formal_arguments
(zero: bool)
(typed: bool)
: Expression.formal_argument list t
=
(
if zero then
zero_or_more (formal_argument typed)
else
one_or_more (formal_argument typed)
)
>>= fun lst ->
match find_duplicate_argument lst with
| None ->
return lst
| Some name ->
fail (Located.range name, Problem.Duplicate_argument)
and signature
(typed: bool)
: Expression.signature t
=
return
(fun fargs res -> fargs, res)
|= formal_arguments true typed
|= optional_result_type ()
and assign_defining_expression _: Expression.t t =
assign
|. whitespace
>>= indented_expression "defining expression"
<?>
":= <defining expression>"
and definition (with_operators: bool): Expression.definition t =
return
(fun name args res_tp e ->
let p1 = Located.start name
and p2 = Located.end_ e
in
Located.make p1 (name, args, res_tp, e) p2)
|= name_for_definition with_operators
|= formal_arguments true false
|= optional_result_type ()
|= assign_defining_expression ()
<?>
"definition"
let expression (): Expression.t t =
expression0 true ()
let global_definition _ : Expression.definition t =
definition true >>= fun def ->
let name, fargs, res, _ =
Located.value def
in
match
List.find
(fun (_, tp) -> tp = None)
fargs
with
| Some (name, _) ->
fail (Located.range name, Problem.No_argument_type)
| None ->
if res = None then
fail (Located.range name, Problem.No_result_type)
else
return def
let global_definitions _: Expression.definition array t =
map
Array.of_list
(one_or_more_aligned (global_definition ()))
let named_signature
(with_operators: bool)
(typed: bool)
: Expression.named_signature t
=
name_for_definition with_operators
>>= fun name ->
signature typed
>>= fun sign ->
return (name, sign)
let inductive_type _: Source_entry.inductive t =
return (
fun constructors ->
header,
Array.of_list
(List.join constructors)
)
|. backtrackable (string "class") "class"
|. whitespace
|= indented (
named_signature true false
)
|. assign |. whitespace
|= indented (
zero_or_more_aligned
(
one_or_more_separated
(named_signature true true)
(char ';' |. whitespace)
)
)
let inductive_family _: Source_entry.inductive array t =
map
Array.of_list
(one_or_more_aligned (inductive_type ()))
let source_entry _: unit t =
(
map
(fun ind -> Source_entry.Inductive [|ind|])
(inductive_type ())
<|>
map
(fun def -> Source_entry.Normal def)
(global_definition ())
)
<|>
(
string "mutual" |. whitespace
>>= fun _ ->
indented (
map
(fun inds -> Source_entry.Inductive inds)
(inductive_family ())
)
)
>>= fun entry ->
update
(Source_file.push_entry entry)
let commands: (string * Command.t t) list =
["evaluate",
map (fun e -> Command.Evaluate e) (expression ());
"typecheck",
map (fun e -> Command.Type_check e) (expression ());
"clear", return Command.Clear;
"load",
map (fun file_name -> Command.Load file_name) command_argument;
"define",
map (fun def -> Command.Define def) (global_definition ());
"exit", return Command.Exit;
]
let find_command (cmd: string): (string * Command.t t) list =
List.filter
(fun (str, _) ->
String.is_prefix cmd str)
commands
let command_names (cs: (string * Command.t t) list): string list =
List.map fst cs
let command: Command.t t =
(char ':' >>= fun _ ->
(name_ws <?> "command")
>>= fun cmd ->
match find_command (Located.value cmd) with
| [] ->
fail
(Located.range cmd,
Problem.Illegal_command (command_names commands))
| [_, arg_parser] ->
indented arg_parser
| lst ->
fail
(Located.range cmd,
Problem.Ambiguous_command (command_names lst))
)
<|> (return
(fun exp ->
match exp with
| None ->
Command.Do_nothing
| Some exp ->
Command.Evaluate exp)
|. whitespace
|= optional (expression ()))
let source_file_command: unit t =
backtrackable
(
char ':'
>>= fun _ ->
name_ws
>>= fun str ->
let str = Located.value str in
if str = "evaluate" then
return true
else if str = "typecheck" then
return false
else
unexpected "command"
)
"':evaluate <expression>' or ':typecheck <expression>'"
>>= fun evaluate_flag ->
indented (expression ())
>>= fun exp ->
update (Source_file.push_expression evaluate_flag exp)
let declaration (with_expressions: bool): unit t =
if with_expressions then
source_file_command
<|>
source_entry ()
else
source_entry ()
let declarations (with_expressions: bool): unit t =
map (fun _ -> ())
(
skip_zero_or_more
(absolute (declaration with_expressions))
)
let source_file (with_expressions: bool) : unit t =
whitespace
>>= fun _ ->
absolute_at 0 (declarations with_expressions)
let make (p: final t): parser =
P.make (p |. expect_end) (Source_file.empty)
let run (p: final t) (input: string): parser =
run (p |. expect_end) (Source_file.empty) input
module Error_printer (PP: Pretty_printer.SIG) =
struct
module PP0 = Printer.Make (PP)
module PPr = Print (Error) (PP)
open PP
let print0 (lines: range -> int list -> PP.t) (p: parser): PP.t =
assert (has_ended p);
assert (not (has_succeeded p));
if Error.is_semantic (error p) then
let range, error = Error.semantic (error p) in
PP0.print_error_header "SYNTAX"
<+>
lines range []
<+>
PPr.problem error
else
let pos = position p
and tabs = error_tabs p
in
PP0.print_error_header "SYNTAX"
<+>
lines (pos,pos) tabs
<+>
PPr.expectations
(column p)
(Error.expectations (error p))
tabs
let print_with_source
(source: string)
(p: parser)
: PP.t
=
assert (has_ended p);
assert (not (has_succeeded p));
print0
(PP0.print_source source)
p
let print_with_source_lines
(lines: string Sequence.t)
(p: parser)
: PP.t
=
print0
(PP0.print_source_lines lines)
p
end
end