package alba

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file term.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
open Fmlib
open Module_types


let bruijn_convert (i:int) (n:int): int =
  assert (i < n);
  n - i - 1



module Lambda_info =
  struct
    type t = {
        name:  string;    (* name of the argument *)
        typed: bool;      (* false: user has not given type information for
                             the argument '\ x: RT := exp' *)
      }
    let name (i:t): string =
      i.name

    let is_anonymous (i:t): bool =
      i.name = "_"

    let is_typed (i:t): bool =
      i.typed

    let typed (name: string): t =
      {name; typed = true}

    let untyped (name: string): t =
      {name; typed = false}
  end






module Pi_info =
struct
    type t = {
        name:  string; (* name of the argument *)
        typed: bool;   (* false, if user has given no type information 'all x:
                          R' *)
        arrow: bool;   (* user has written 'A -> B' instead of 'all (nme:A):
                          R' or name does not occur in [R] *)
        kind: bool;    (* Argument type is a kind *)
      }


    let make name typed arrow kind = {name; typed; arrow; kind}

    let name (info: t): string =
        info.name

    let is_anonymous (i:t): bool =
      i.name = "_"

    let is_arrow (i:t): bool =
      i.arrow

    let is_typed (i:t): bool =
      i.typed

    let is_implicit (info: t): bool =
        info.kind && not info.arrow


    let arrow: t =
        {name = "_"; arrow = true; typed = true; kind = false}

    let typed (name: string) : t =
        {name; arrow = false; typed = true; kind = false}

    let untyped (name: string) : t =
        {name; arrow = false; typed = false; kind = false}
end





module Application_info =
struct
    type t =
      | Normal
      | Implicit
      | Binary
      | Unary
end








(* ----------------------------------------------------------- *)
(* Term                                                        *)
(* ----------------------------------------------------------- *)


type t =
  | Sort of Sort.t

  | Value of Value.t

  | Variable of int

  | Typed of t * typ

  | Appl of t * t * Application_info.t

  | Lambda of typ * t * Lambda_info.t

  | Pi of typ * typ * Pi_info.t

  | Where of string * typ * t * t

and typ = t

and formal_argument = string * typ

and inductive = {
    base_count: int;
    n_up: int;
    parameters: formal_argument list;
    types: (formal_argument * formal_argument array) array}


type t_n   = t * int
type typ_n = typ * int

let proposition: t =
    Sort Sort.Proposition

let any: t =
    Sort (Sort.Any 0)

let any_uni (uni: int): t =
    Sort (Sort.Any uni)

let char (code:int): t =
    Value (Value.Char code)


let string (s:string): t =
    Value (Value.String s)


let number_values (s:string): t list =
  List.map (fun v -> Value v) (Value.number_values s)


let variable i: t =
    Variable i



let application (f: t) (a: t): t =
    Appl (f, a, Application_info.Normal)


let implicit_application (f: t) (a: t): t =
    Appl (f, a, Application_info.Implicit)


let binary (a: t) (op: t) (b: t): t =
    let mode = Application_info.Binary
    in
    Appl ( Appl (op, a, mode), b, mode)


let rec applications (f: t) (args: t list): t =
    match args with
    | [] ->
        f
    | arg :: args ->
        applications
            (Appl (f, arg, Application_info.Normal))
            args



let lambda0 (name: string) (typed: bool) (tp: typ) (exp: t): t =
    assert (name <> "");
    let info =
        if typed then
            Lambda_info.typed name
        else
            Lambda_info.untyped name
    in
    Lambda (tp, exp, info)


let lambda (name: string) (tp: typ) (exp: t): t =
    lambda0 name true tp exp


let lambda_untyped (name: string) (tp: typ) (exp: t): t =
    lambda0 name false tp exp



let product0 (name: string) (typed: bool) (arg_tp: typ) (result_tp: typ): t =
    assert (name <> "");
    let info =
        if name = "_" then
            Pi_info.arrow
        else if typed then
            Pi_info.typed name
        else
            Pi_info.untyped name
    in
    Pi (arg_tp, result_tp, info)


let product (name: string) (arg_tp: typ) (result_tp: typ): t =
    assert (name <> "");
    let info =
        if name = "_" then
            Pi_info.arrow
        else
            Pi_info.typed name
    in
    Pi (arg_tp, result_tp, info)


let product_untyped (name: string) (arg_tp: typ) (result_tp: typ): t =
    assert (name <> "");
    assert (name <> "_");
    Pi (arg_tp, result_tp, Pi_info.untyped name)


let arrow (arg_tp: typ) (result_tp: typ): t =
    product "_" arg_tp result_tp


let lambda_in (fargs: formal_argument list) (exp: t): t =
    List.fold_right
        (fun (name, arg_tp) ->
            lambda name arg_tp)
        fargs
        exp


let product_in (fargs: formal_argument list) (result_tp: t): t =
    List.fold_right
        (fun (name, arg_tp) ->
            product name arg_tp)
        fargs
        result_tp


let expand_where (name: string) (tp: typ) (exp: t) (def: t): t =
    Appl (
        Lambda (tp, exp, Lambda_info.typed name),
        def,
        Application_info.Normal
    )


let type_of_sort (s: Sort.t): typ =
    Sort (Sort.type_of s)


let is_sort (typ: typ): bool =
    match typ with
    | Sort _ ->
        true
    | _ ->
        false

let pi_sort (arg: typ) (res: typ): typ =
    match arg, res with
    | Sort argsort, Sort ressort ->
        Sort (Sort.pi_sort argsort ressort)
    | _ ->
        assert false (* Illegal call! *)




module Monadic (M: MONAD) =
struct
    let fold_free
        (f: int -> 'a -> 'a M.t)
        (term: t)
        (start: 'a)
        : 'a M.t
    =
        let rec fold term nb start =
            match term with

            | Value _ | Sort _ ->
                M.return start

            | Variable i when i < nb ->
                M.return start

            | Variable i ->
                f (i - nb) start

            | Typed (e, tp) ->
                M.(fold e nb start >>= fold tp nb)

            | Appl (f, a, _) ->
                M.(fold f nb start >>= fold a nb)

            | Lambda (tp, exp, _) ->
                M.(fold tp nb start >>= fold exp (nb + 1))

            | Pi (tp, rt, _) ->
                M.(fold tp nb start >>= fold rt (nb + 1))

            | Where (_, tp, exp, def) ->
                let open M in
                fold tp nb start
                >>= fold exp (nb + 1)
                >>= fold def nb
        in
        fold term 0 start


    let map_free
        (f: int -> int M.t)
        (term: t):
        t M.t
    =
        let open M in
        let rec map nb term =
            match term with
            | Sort _ | Value _ ->
                return term

            | Variable i when i < nb ->
                return (Variable i)

            | Variable i ->
                f (i - nb) >>= fun j ->
                return (Variable (j + nb))

            | Typed (exp, tp) ->
                map nb exp >>= fun exp ->
                map nb tp  >>= fun tp ->
                return (Typed (exp, tp))

            | Appl (f, a, info) ->
                map nb f >>= fun f ->
                map nb a >>= fun a ->
                return (Appl (f, a, info))

            | Lambda (tp, exp, info) ->
                map nb tp >>= fun tp ->
                map (nb + 1) exp >>= fun exp ->
                return (Lambda (tp, exp, info))

            | Pi (tp, res, info) ->
                map nb tp >>= fun tp ->
                map (nb + 1) res >>= fun res ->
                return (Pi (tp, res, info))

            | Where (name, tp, exp, value) ->
                map nb tp >>= fun tp ->
                map (nb + 1) exp >>= fun exp ->
                map nb value >>= fun value ->
                return (Where (name, tp, exp, value))
        in
        map 0 term
end (* Monadic *)


let split_application
    (t: t)
    : t * (t * Application_info.t) list
=
    let rec split t args =
        match t with
        | Appl (f, a, info) ->
            split f ((a,info) :: args)
        | _ ->
            t, args
    in
    split t []




let map (f: int -> int) (t: t): t =
    let module Mon = Monadic (Monad.Identity) in
    Monad.Identity.eval
        (Mon.map_free
            (fun i -> Monad.Identity.return (f i))
            t)




let up_from (start: int) (delta: int) (t:t): t =
    assert (0 <= delta);
    map
        (fun i ->
            if start <= i then
                i + delta
            else
                i)
        t


let up (delta: int) (t: t): t =
    if delta = 0 then
        t
    else
        up_from 0 delta t


let up1 (t: t): t =
    up 1 t




let down_from (start: int) (delta: int) (t: t): t option =
    assert (0 <= delta);
    let module Mon = Monadic (Option) in
    Mon.map_free
        (fun i ->
            if i < start then
                Some i
            else if start + delta <= i then
                Some (i - delta)
            else
                None
        )
        t


let down (delta:int) (t:t): t option =
  down_from 0 delta t





let rec substitute0 (f:int -> t) (beta_reduce: bool) (t:t): t =
    let rec sub t nb =
        match t with
        | Sort _ | Value _ ->
            t

        | Variable i when i < nb ->
            t

        | Variable i ->
            up nb (f @@ i - nb)

        | Typed (e, tp) ->
            Typed (sub e nb, sub tp nb)

        | Appl (f, a, mode) ->
            begin match f with
            | Lambda _ ->
                (* Old lambdas are not modified. *)
                Appl (sub f nb, sub a nb, mode)
            | _ ->
                let fnew = sub f nb in
                begin match fnew with
                | Lambda (_, exp, _ ) when beta_reduce ->
                    (* Substitution introduced a new lambda term as the function
                    term. Therefore we beta reduce. *)
                    apply exp (sub a nb)
                | _ ->
                    (* No new lambda term introduced. *)
                    Appl (fnew, sub a nb, mode)
                end
            end

        | Lambda (tp, exp, info) ->
           Lambda (sub tp nb, sub exp (nb + 1), info)

        | Pi (tp, rt, info) ->
           Pi (sub tp nb, sub rt (nb + 1), info)

        | Where (name, tp, exp, def) ->
            Where (name, sub tp nb, sub exp (nb + 1), sub def nb)
    in
    sub t 0


and apply (f: t) (a: t): t =
    substitute0
        (fun i ->
            if i = 0 then
                a
            else
                Variable (i - 1))
        false
        f


let substitute_with_beta (f: int -> t) (t: t): t =
    substitute0 f true t


let substitute (f:int -> t) (t:t): t =
    substitute0 f false t






let rec apply_nargs (f:t) (nargs:int) (mode: Application_info.t): t =
    if nargs = 0 then
        f
    else
        apply_nargs
            (Appl (f, Variable (nargs - 1), mode))
            (nargs - 1)
            mode









let has (p: int -> bool) (term: t): bool =
    let module Mon = Monadic (Option) in
    None
    = Mon.fold_free
        (fun j () ->
            if p j then
                None
            else
                Some ())
        term
        ()



let forall (p: int -> bool) (term: t): bool =
    not (has (fun i -> not (p i)) term)



let has_variable (i: int) (term: t): bool =
    has (fun j -> i = j) term




let fold_free (f: int -> 'a -> 'a) (term: t) (start: 'a): 'a =
    let module Mon = Monadic (Monad.Identity) in
    Monad.Identity.eval
        (Mon.fold_free
            (fun i start -> Monad.Identity.return (f i start))
            term
            start)




let make_product
        (name: string)
        (typed: bool)
        (kind: bool)
        (arg_typ: typ)
        (res_typ: typ)
    : t
    =
    assert (name <> "");
    let arrow = not (has_variable 0 res_typ) in
    let info = Pi_info.make name typed arrow kind in
    Pi (arg_typ, res_typ, info)




(* ----------------------------------------------------------- *)
(* Index to level conversion                                   *)
(* ----------------------------------------------------------- *)


let rec to_index (n: int) (term: t): t =
    match term with
    | Value _ | Sort _ ->
        term

    | Variable i ->
        Variable (bruijn_convert i n)

    | Appl (f, arg, info) ->
        Appl (to_index n f,
              to_index n arg,
              info)

    | Typed (term, typ) ->
        Typed (to_index n term,
               to_index n typ)

    | Lambda (typ, exp, info) ->
        Lambda (to_index n typ,
                to_index (n + 1) exp,
                info)

    | Pi (typ, rtyp, info) ->
        Pi (to_index n typ,
            to_index (n + 1) rtyp,
            info)

    | Where (name, tp, exp, def) ->
        Where (
            name,
            to_index n tp,
            to_index (n + 1) exp,
            to_index n def
        )


let to_level = to_index



(* ----------------------------------------------------------- *)
(* Inductive                                                   *)
(* ----------------------------------------------------------- *)

  module Inductive =
  struct
    let make_simple_inductive
        (base_count: int)
        (parameters: formal_argument list)
        (typ: formal_argument)
        (constructors: formal_argument list)
        : inductive
        =
        {base_count;
         n_up = 0;
         parameters;
         types = [| typ, Array.of_list constructors|]}

    type term = t

    type t =
        | Type of int * inductive
        | Constructor of int * int * inductive


    let is_simple (ind: inductive): bool =
        Array.length ind.types = 1

    module Type =
    struct
        type t = int * inductive

        let simple (ind: inductive): t =
            assert (is_simple ind);
            0, ind
        let _ = simple
    end

    let typ (ind: inductive): t =
        Type (0, ind)
    let _ = typ


    let constructor (i: int) (ind: inductive): t =
        assert (is_simple ind);
        Constructor (0, i, ind)
    let _ = constructor
  end
OCaml

Innovation. Community. Security.