package alba

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file inductive.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
(* A pure representation of inductive types. *)

open Fmlib
open Common


type params = (string * Term.typ) array (* Valid in the initial context. *)


let push_params (n: int) (params: params) (res: Term.typ): Term.typ =
    (* Push parameters in front of a type. For an inductive kind [n] must be
    zero. For a constructor type [n] must be the number of types. *)
    Array.foldi_right
        (fun iparam (name, typ) res ->
            Term.(Pi (up_from iparam n typ, res, Pi_info.typed name)))
        params
        res



module Header =
struct
    type t = {
        name: string;
        kind:  Term.typ; (* only indices, valid in a context with parameters *)
        indices: (Term.Pi_info.t * Term.typ) array; (* kind arguments *)
        sort:  Sort.t;
    }
    (* [indices] and [sort] represent the normalized version of [kind]*)


    let make name kind indices sort =
        {name; kind; indices = Array.of_list indices; sort}


    let name header = header.name


    let count_indices (header: t): int =
        Array.length header.indices

    let has_index (header: t): bool =
        0 <> count_indices header


    let kind (params: params) (header: t): Term.typ =
        push_params 0 params header.kind


    let default_type
        (i:int) (params: params) (headers: t array)
        : Term.typ
    =
        (* Valid in a context with the types and the parameters. *)
        let nparams = Array.length params
        and ntypes  = Array.length headers
        in
        let rec make k typ =
            if k = nparams then
                typ
            else
                make
                    (k + 1)
                    Term.(
                        application
                            typ
                            (Variable (bruijn_convert k nparams))
                    )
        in
        make 0 Term.(Variable (bruijn_convert i ntypes + nparams))



    let is_well_constructed
        (i: int)
        (params: params)
        (headers: t array)
        (nargs: int)
        (typ: Term.typ)
        : bool
    =
        (* Check that [typ] has the form [I p1 p2 ... i1 i2 ...] where [I]
        corresponds to the [i]th inductive type, [p1 p2 ...] are the parameters
        and [i1 i2 ... ] are the indices. *)
        let open Term in
        let nparams = Array.length params
        and ntypes  = Array.length headers
        and f, params_index = split_application typ in
        let params_index = Array.of_list params_index
        in
        let inductive_variable =
            Variable (bruijn_convert i (ntypes + nparams + nargs))
        and param_variable k =
            Variable (bruijn_convert k (nparams + nargs))
        in
        f = inductive_variable
        &&
        Common.Interval.forall
            (fun k ->
                assert (k < Array.length params_index);
                param_variable k = fst params_index.(k)
            )
            0 nparams
end (* Header *)





module Constructor =
struct
    type t = {
        name: string;
        typ:  Term.typ; (* Valid in context with all types of the family and the
        parameters. *)
    }

    let make name typ =
        {name; typ}

    let get co =
        co.name, co.typ
end




module Type =
struct
    type t = {
        nprevious: int; (* number of previous constructors *)
        header: Header.t;
        constructors: Constructor.t array;
    }

    let make nprevious header constructors =
        {nprevious; header; constructors}
end (* Type *)




type t = {
    n_up: int;

    params: params;

    positive_params: Int_set.t;

    types: Type.t array;
}


let make params positive_params types =
    {n_up = 0; params; positive_params; types}


let up (n: int) (ind: t): t =
    {ind with n_up = n + ind.n_up}



let count_types (ind: t): int =
    Array.length ind.types


let count_params (ind: t): int =
    Array.length ind.params


let is_param_positive (iparam: int) (ind: t): bool =
    iparam < count_params ind
    &&
    Common.Int_set.mem iparam ind.positive_params


let parameter_name (iparam: int) (ind: t): string =
    assert (iparam < count_params ind);
    fst ind.params.(iparam)


let parameters (ind: t): params =
    let n = ind.n_up + count_types ind
    in
    Array.map (fun (name, typ) -> name, Term.up n typ) ind.params


let ith_type (i: int) (ind: t): string * Term.typ =
    assert (i < count_types ind);
    let header = ind.types.(i).header
    in
    Header.name header
    ,
    Term.up
        ind.n_up
        (Header.kind ind.params header)


let count_constructors (i: int) (ind: t): int =
    assert (i < count_types ind);
    Array.length ind.types.(i).constructors



let count_previous_constructors (i: int) (ind: t): int =
    assert (i < count_types ind);
    ind.types.(i).nprevious



let raw_constructor (i: int) (j: int) (ind: t): string * Term.typ =
    assert (i < count_types ind);
    assert (j < count_constructors i ind);
    let name, typ =
        Constructor.get ind.types.(i).constructors.(j)
    in
    name,
    Term.up_from (count_params ind + count_types ind) ind.n_up typ



let constructor (i: int) (j: int) (ind: t): string * Term.typ =
    let ntypes = count_types ind
    in
    assert (i < ntypes);
    assert (j < count_constructors i ind);
    let name, typ =
        Constructor.get ind.types.(i).constructors.(j)
    in
    let typ = push_params ntypes ind.params typ in
    name,
    Term.up_from
        ntypes
        ind.n_up
        typ
OCaml

Innovation. Community. Security.