package alba

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file gamma.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
open Fmlib
open Common


module Pi_info = Term.Pi_info

module Lambda_info = Term.Lambda_info

let builtin_types: String_set.t =
    let open String_set in
    empty
    |> add "int_type"
    |> add "char_type"
    |> add "string_type"
let _ = builtin_types


let builtin_functions: Value.t String_map.t =
    let open String_map in
    empty
    |> add "int_plus"      Value.int_plus
    |> add "int_minus"     Value.int_minus
    |> add "int_times"     Value.int_times
    |> add "int_negate"    Value.int_negate
    |> add "string_concat" Value.string_concat

let _ =
    String_map.mem "int_plus" builtin_functions


type definition =
  | Axiom
  | Assumption
  | Builtin_type of string
  | Builtin of string * Value.t
  | Definition of Term.t
  | Inductive_type of int * int
  | Constructor of int * int * int


type entry = {
    name: string;
    typ: Term.typ;
    definition: definition
  }


type t = {
        entries: entry Sequence.t;
        inductives: (int * Inductive.t) Sequence.t;
        builtin_types: int String_map.t;
}


let empty: t =
    {
        entries = Sequence.empty;
        inductives = Sequence.empty;
        builtin_types = String_map.empty;
    }



let bruijn_convert (i:int) (n:int): int =
  n - i - 1



let count (c:t): int =
    Sequence.length c.entries


let count_inductive (c: t): int =
    Sequence.length c.inductives


let is_valid_index (i:int) (c:t): bool =
  0 <= i && i < count c


let index_of_level (i:int) (c:t): int =
  bruijn_convert i (count c)


let level_of_index (i:int) (c:t): int =
  bruijn_convert i (count c)


let level_forall (p: int -> bool) (term: Term.t) (c: t): bool =
    Term.forall
        (fun level -> p (index_of_level level c))
        term


let level_has (p: int -> bool) (term: Term.t) (c: t): bool =
    Term.has
        (fun level -> p (index_of_level level c))
        term



let entry (level: int) (c: t): entry =
  assert (level < count c);
  Sequence.elem level c.entries


let raw_type_at_level (i:int) (c:t): Term.typ =
  (entry i c).typ


let type_at_level (i:int) (c:t): Term.typ =
  let cnt = count c in
  Term.up (cnt - i) (entry i c).typ



let variable_at_level (i:int) (c:t): Term.t =
    Term.Variable (index_of_level i c)



let name_at_level (level: int) (gamma: t): string =
    (entry level gamma).name


let name_of_index (i: int) (gamma: t): string =
    (entry (bruijn_convert i (count gamma)) gamma).name



let push (name: string) (typ: Term.typ) (definition: definition) (c: t): t =
    {c with
        entries =
            Sequence.push
                {name; typ; definition}
                c.entries;
    }


let push_local (nme: string) (typ: Term.typ) (c:t): t =
    push nme typ Assumption c


let add_definition
    (name: string) (typ: Term.typ) (def: Term.t) (c: t)
    : t
=
    push name typ (Definition def) c





let add_axiom (name: string) (typ: Term.typ) (c: t): t =
    push
        name
        typ
        Axiom
        c



let add_builtin_type (descr: string) (name: string) (typ: Term.typ) (c: t): t =
    let cnt = count c in
    push
        name
        typ
        (Builtin_type descr)
        {c with
            builtin_types =
                String_map.add descr cnt c.builtin_types}



let add_builtin_function
    (descr: string) (name: string) (typ: Term.typ) (c: t): t
=
    let value = String_map.find descr builtin_functions
    in
    push
        name
        typ
        (Builtin (descr, value))
        c



let add_inductive (ind: Inductive.t) (c: t): t =
    let cnti0 = count_inductive c
    and cnt0  = count c
    and ntypes = Inductive.count_types ind
    in
    let open Common.Interval in
    let c1 =
        fold
            c
            (fun i ->
                let name, typ = Inductive.ith_type i ind in
                push
                    name
                    (Term.up i typ)
                    (Inductive_type (cnti0, i))
            )
            0 ntypes
    in
    let c2 =
        fold
            c1
            (fun i c ->
                let nprevious =
                    Inductive.count_previous_constructors i ind
                in
                fold
                    c
                    (fun j ->
                        let name, typ =
                            Inductive.constructor i j ind
                        in
                        push
                            name
                            (Term.up (nprevious + j) typ)
                            (Constructor (cnti0, i, j))
                    )
                    0 (Inductive.count_constructors i ind)
            )
            0 ntypes
    in
    { c2 with
        inductives =
            Sequence.push (cnt0, ind) c.inductives;
    }


let inductive_at_level (level: int) (c: t): Inductive.t option =
    match (Sequence.elem level c.entries).definition with
    | Inductive_type (i, _) ->
       let cnt0, ind = Sequence.elem i c.inductives in
        Some (Inductive.up (count c - cnt0) ind)

    | _ ->
        None





let int_type (c:t) =
    Term.Variable (
        index_of_level
            (String_map.find "int_type" c.builtin_types)
            c
    )


let char_type (c:t) =
    Term.Variable (
        index_of_level
            (String_map.find "character_type" c.builtin_types)
            c
    )


let string_type (c:t) =
    Term.Variable (
        index_of_level
            (String_map.find "string_type" c.builtin_types)
            c
    )


let type_of_literal (v: Value.t) (c: t): Term.typ =
  match v with
  | Value.Int _ ->
      int_type c

  | Value.Char _ ->
      char_type c

  | Value.String _ ->
      string_type c

  | Value.Unary _ | Value.Binary _ ->
      assert false (* Illegal call! *)




let type_of_variable (i: int) (c: t): Term.typ =
  type_at_level (level_of_index i c) c




let definition_term (idx: int) (c: t): Term.t option =
    let level = level_of_index idx c
    in
    match
      (entry level c).definition
    with
    | Definition def ->
       Some (Term.up (count c - level) def)

    | _ ->
       None



let compute (t:Term.t) (c:t): Term.t =
  let open Term in
  let rec compute term steps c =
    match term with
    | Sort _ | Value _ ->
        term, steps

    | Variable i ->
        let level = level_of_index i c in
        (
            match (entry level c).definition with
            | Axiom | Assumption | Builtin_type _ ->
                term, steps

            | Builtin (_, v) ->
               Term.Value v, steps + 1

            | Definition def ->
               Term.up (count c - level) def,
               steps + 1

            | Inductive_type _ | Constructor _ ->
                term, steps
        )

    | Typed (e, _ ) ->
       compute e (steps + 1) c

    | Appl (Value f, Value arg, _) ->
        Value (Value.apply f arg), steps + 1

    | Appl (Value f, arg, mode) ->
        let arg, new_steps = compute arg steps c in
        if steps < new_steps then
          compute (Appl (Value f, arg, mode)) new_steps c
        else
          Appl (Value f, arg, mode), steps

    | Appl (Lambda (_, exp, _), arg, _) ->
        compute (apply exp arg) (steps + 1) c

    | Appl (Variable i, arg, mode) ->
      let f, new_steps = compute (Variable i) steps c in
      if steps < new_steps then
        compute (Appl (f, arg, mode)) new_steps c
      else
        term, new_steps

    | Appl (f, arg, mode) ->
        let f, new_steps = compute f steps c in
        if steps < new_steps then
          compute (Appl (f, arg, mode)) new_steps c
        else
          term, new_steps

    | Lambda _ ->
        term, steps

    | Pi (arg_tp, res_tp, info) ->
        let c_inner = push_local (Pi_info.name info) arg_tp c in
        let res_tp, new_steps = compute res_tp steps c_inner in
        if steps < new_steps then
            compute (Pi (arg_tp, res_tp, info)) new_steps c
        else
            term, steps

    | Where (_, _, exp, def) ->
        compute (apply exp def) (steps + 1) c
  in
  fst (compute t 0 c)
OCaml

Innovation. Community. Security.