Source file term_printer.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
open Fmlib
open Common
open Term
module type GAMMA =
sig
type t
val is_valid_index: int -> t -> bool
val name_of_index: int -> t -> string
val push_local: string -> Term.typ -> t -> t
end
module Pretty (Gamma: GAMMA) (P: Pretty_printer.SIG) =
struct
open Gamma
type pr_result =
Operator.t option * P.t
type print0 = Term.t -> Gamma.t -> P.t
type print = Term.t -> Gamma.t -> pr_result
let pi_info (info: Pi_info.t): string * bool =
Pi_info.name info,
Pi_info.is_typed info
let rec split_pi
(t:Term.t)
(c:t)
: (string * bool * Term.typ * t) list * Term.t * t =
match t with
| Pi (tp, t, info) when not (Pi_info.is_arrow info) ->
let name, is_typed = pi_info info
in
let lst, t_inner, c_inner =
split_pi t (push_local name tp c)
in
(name, is_typed, tp, c) :: lst, t_inner, c_inner
| _ ->
[], t, c
let print_sort: Sort.t -> pr_result = function
| Proposition ->
None, P.string "Proposition"
| Any i ->
let str =
if i = 0 then
"Any"
else
"Any(" ^ string_of_int i ^ ")"
in
None,
P.string str
let print_value: Value.t -> pr_result = function
| Value.Int i ->
None,
P.string (string_of_int i)
| Value.Char i ->
None,
P.(char '\'' <+> char (Char.chr i) <+> char '\'')
| Value.String str ->
None,
P.(char '"' <+> string str <+> char '"')
| Value.Unary _ | Value.Binary _ ->
None,
P.(string "<function>")
let parenthesize
((lower,pr): Operator.t option * P.t)
(is_left: bool)
(upper: Operator.t)
: P.t
=
if Operator.needs_parens lower is_left upper then
P.(chain [char '('; pr; char ')'])
else
pr
let two_operands
(a: Term.t) (b:Term.t) (upper: Operator.t)
(print: print)
(c:t)
: P.t * P.t =
parenthesize (print a c) true upper,
parenthesize (print b c) false upper
let formal_argument
(name: string)
(typed: bool)
(tp: Term.typ)
(print: print0)
(c: Gamma.t)
: P.t
=
let open P in
if typed then
char '(' <+> string name <+> string ": " <+> print tp c <+> char ')'
else
string name
let print_definition
(name: string)
(exp: Term.t)
(raw_print: print0)
(c: Gamma.t)
: P.t
=
let open P in
let rec print exp c =
match exp with
| Lambda (tp, exp, info) ->
let name = Lambda_info.name info in
group space
<+> formal_argument
name
(Lambda_info.is_typed info)
tp
raw_print
c
<+> print exp (push_local name tp c)
| _ ->
(
match exp with
| Typed (exp, tp) ->
char ':'
<+> group space <+> raw_print tp c
<+> group space <+> string ":="
<+> group (
nest 4 (space <+> raw_print exp c)
)
| _ ->
group space <+> string ":="
<+> group (
nest 4 (space <+> raw_print exp c)
)
)
in
string name <+> print exp c
let rec print (t:Term.t) (c:Gamma.t): pr_result =
let raw_print t c =
snd (print t c)
in
let print_name_type name is_typed tp c =
let name = if name = "" then P.char '_' else P.string name
in
if is_typed then
P.(char '('
<+> name
<+> string ": "
<+> snd (print tp c)
<+> char ')')
else
name
in
match t with
| Sort s ->
print_sort s
| Value v ->
print_value v
| Variable i ->
None,
P.string
(if is_valid_index i c then
let name = name_of_index i c in
let len = String.length name in
assert (1 <= len);
let c0 = name.[0] in
if Operator.is_keyword_operator name then
"(" ^ name ^ ")"
else if Char.is_letter c0
|| c0 = '_'
|| (2 <= len && Char.is_digit name.[1])
|| name = "[]"
|| name = "()"
then
name
else
"(" ^ name ^ ")"
else
"<invalid " ^ string_of_int i ^ ">")
| Typed (e, tp) ->
let e_pr, tp_pr = two_operands e tp Operator.colon print c in
Some Operator.colon,
P.( group (
e_pr <+> char ':'
<+> nest 4
(space <+> tp_pr)
)
)
| Appl (f, operand2, Binary) ->
let rec find_operand1 f =
match f with
| Appl (f, operand1, Binary) ->
Some (f, operand1)
| Appl (f, _, Implicit ) ->
find_operand1 f
| _ ->
None
in
let rec find_operator f =
match f with
| Appl (f, _, Implicit) ->
find_operator f
| Variable i when is_valid_index i c ->
Some i
| _ ->
None
in
let res =
Option.(
find_operand1 f >>= fun (f, operand1) ->
find_operator f >>= fun operator ->
Some (operator, operand1))
in
(match res with
| None ->
print (Appl (f, operand2, Normal)) c
| Some (op_idx, operand1) ->
let op_string = name_of_index op_idx c in
let op_data = Operator.of_string op_string in
let a_pr, b_pr =
two_operands operand1 operand2 op_data print c
in
Some op_data,
P.(chain [a_pr;
group space;
string op_string;
char ' ';
b_pr])
)
| Appl (Variable i, arg, Unary) ->
let op_str = name_of_index i c in
assert (Operator.is_unary op_str);
let op_data = Operator.of_string op_str
in
Some op_data,
P.(
string op_str
<+> char ' '
<+>
parenthesize (print arg c) false op_data
)
| Appl (f, _, Implicit) ->
print f c
| Appl (f, a, _) ->
Some Operator.application,
P.( parenthesize (print f c) true Operator.application
<+> char ' '
<+> parenthesize (print a c) false Operator.application )
| Lambda _ as term ->
Some Operator.assign,
print_definition "\\" term raw_print c
| Pi (tp, rt, info)
when
Pi_info.is_arrow info
|| not (Term.has_variable 0 rt)
->
let c_inner = push_local "_" tp c
and op_data = Operator.of_string "->"
in
let tp_pr =
parenthesize (print tp c) true op_data
and rt_pr =
parenthesize (print rt c_inner) false op_data
in
Some op_data,
P.(chain [tp_pr;
group space;
string "->";
char ' ';
rt_pr])
| Pi (tp, t, info) ->
let nme, is_typed = pi_info info in
let lst, t_inner, c_inner =
split_pi t (push_local nme tp c) in
let lst = (nme, is_typed, tp, c) :: lst in
Some Operator.colon,
P.(
group (
string "all "
<+> nest_relative 0 (
list_separated
space
(List.map
(fun (nme, is_typed, tp, c) ->
print_name_type nme is_typed tp c
)
lst
)
<+> cut <+> string ": "
<+> raw_print t_inner c_inner
)
)
)
| Where (name, tp, exp, value) ->
let open P in
let rec print_where name tp exp defs c =
let c = push_local name tp c in
match exp with
| Where (name, tp, exp, value) ->
print_where
name
tp
exp
(print_definition name value raw_print c :: defs)
c
| _ ->
raw_print exp c, defs
in
let exp, defs =
print_where
name
tp
exp
[print_definition name value raw_print c] c
in
Some Operator.where,
exp <+> group space <+> string "where"
<+> group (
nest 4 (space <+> list_separated (line "; ") defs)
)
let print (t:Term.t) (c: Gamma.t): P.t =
snd (print t c)
end
module String_print (Gamma:GAMMA) =
struct
let string_of_term (t:Term.t) (c: Gamma.t): string =
let module PP = Pretty_printer.Pretty (String_printer) in
let module P = Pretty (Gamma) (PP) in
String_printer.run
(PP.run 0 70 70 (P.print t c))
end
let string_of_term (t:Term.t) (c: Gamma.t): string =
let module SP = String_print (Gamma) in
SP.string_of_term t c