Source file unifier.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
open Fmlib
open Common
module type HOLES =
sig
include Gamma_algo.GAMMA
val context: t -> Gamma.t
val expand: Term.t -> t -> Term.t
val is_hole: int -> t -> bool
val value: int -> t -> Term.t option
val fill_hole0: int -> Term.t -> bool -> t -> t
val fold_entries:
(int -> int -> string -> Term.typ -> bool -> Term.t option -> 'a -> 'a)
-> t
-> 'a
-> 'a
end
module Unification_context (Gh: HOLES) =
struct
type t = {
gh: Gh.t;
gamma_top: Gamma.t;
stack: Gamma.t list;
}
let base (uc: t): Gh.t =
uc.gh
let gamma (uc: t): Gamma.t =
uc.gamma_top
let nlocals (uc: t): int =
Gamma.count uc.gamma_top - Gh.count uc.gh
let count (uc: t): int =
Gamma.count uc.gamma_top
let is_valid_index (idx: int) (uc: t): bool =
idx < count uc
let name_of_index (idx: int) (uc: t): string =
assert (is_valid_index idx uc);
Gamma.name_of_index idx uc.gamma_top
let definition_term (idx: int) (uc: t): Term.t option =
assert (is_valid_index idx uc);
Gamma.definition_term idx uc.gamma_top
let type_of_literal (lit: Value.t) (uc: t): Term.typ =
Gamma.type_of_literal lit uc.gamma_top
let is_hole (idx: int) (uc: t): bool =
let nlocs = nlocals uc in
if idx < nlocs then
false
else
Gh.is_hole (idx - nlocs) uc.gh
let is_empty_hole (idx: int) (uc: t): bool =
let nlocs = nlocals uc
in
if idx < nlocs then
false
else
Gh.value (idx - nlocs) uc.gh = None
let fill_hole
(idx: int)
(typ: Term.typ)
(uc: t)
: t option
=
assert (is_hole idx uc);
let nlocs = nlocals uc
in
Option.map
(fun typ0 ->
{uc with
gh =
Gh.fill_hole0
(idx - nlocs)
typ0
true
uc.gh})
(Term.down nlocs typ)
let expand (term: Term.t) (uc: t): Term.t =
let nlocs = nlocals uc in
Term.substitute_with_beta
(fun i ->
if i < nlocs then
Variable i
else
match Gh.value (i - nlocs) uc.gh with
| None ->
Variable i
| Some term ->
Term.up nlocs term)
term
let type_of_variable (idx: int) (uc: t): Term.typ =
assert (is_valid_index idx uc);
let nlocs = nlocals uc
in
if idx < nlocs then
Gamma.type_of_variable idx uc.gamma_top
else
Term.up
nlocs
(Gh.type_of_variable (idx - nlocs) uc.gh)
let string_of_term (term: Term.t) (uc: t): string =
Term_printer.string_of_term term uc.gamma_top
let _ = string_of_term
let make (gh: Gh.t): t =
{ gh; gamma_top = Gh.context gh; stack = [] }
let push (name: string) (typ: Term.typ) (uc: t): t =
{ uc with
gamma_top =
Gamma.push_local name typ uc.gamma_top;
stack =
uc.gamma_top :: uc.stack;
}
let push_local = push
let pop (uc: t): t =
match uc.stack with
| [] ->
assert false
| gamma_top :: stack ->
{uc with gamma_top; stack}
end
module Make (Gh: HOLES) =
struct
module Uc = Unification_context (Gh)
module Algo = Gamma_algo.Make (Uc)
type path_step = Term.t * Term.t * bool * Gamma.t
type path = path_step list
type args = (Term.t * Term.Application_info.t) array
type 'a result2 = ('a, path * Gh.t) result
module Result2 = Result.Make (struct type t = path * Gh.t end)
let key_split
(term: Term.typ) (uc: Uc.t):
Term.t * args
=
let key, args = Algo.key_split (Uc.expand term uc) uc
in
key, Array.of_list args
let unify_sorts
(act_sort: Sort.t)
(req_sort: Sort.t)
(is_super: bool)
(path: path) (uc: Uc.t):
Uc.t result2
=
if
(is_super && Sort.is_super req_sort act_sort)
||
(not is_super && req_sort = act_sort)
then
Ok uc
else
Error (path, Uc.base uc)
let make_lambda
(idx_hole: int)
(args: args)
(term: Term.t)
(path: path)
(uc: Uc.t):
Term.t result2
=
let nlocs = Uc.nlocals uc
and nargs = Array.length args
and error _ = Error (path, Uc.base uc)
and idx_map = ref Int_map.empty
in
let module TMon = Term.Monadic (Result2) in
let transform iarg =
TMon.map_free
(fun i ->
if i = idx_hole then
error ()
else
match Int_map.maybe_find i !idx_map with
| None ->
if i < nlocs then
error ()
else
Ok (i + iarg)
| Some i_new ->
Ok i_new
)
in
let rec make iarg =
let open Term in
if iarg = nargs then
transform nargs term
else
let open Result in
match args.(iarg) with
| Variable i, _ when not (Int_map.mem i !idx_map) ->
idx_map :=
Int_map.add
i
(bruijn_convert iarg nargs)
!idx_map;
make (iarg + 1) >>= fun exp ->
transform iarg (Uc.type_of_variable i uc)
>>= fun arg_typ ->
Ok (lambda (Uc.name_of_index i uc) arg_typ exp)
| arg, _ ->
make (iarg + 1) >>= fun exp ->
transform iarg (Algo.type_of_term arg uc)
>>= fun arg_typ ->
Ok (lambda "_" arg_typ exp)
in
make 0
let rec unify0
(act: Term.t) (req: Term.t) (is_super: bool)
(path: path)
(uc: Uc.t):
Uc.t result2
=
let act_key, act_args = key_split act uc
and path = (act, req, is_super, (Uc.gamma uc)) :: path
in
let open Term
in
match act_key with
| Typed _ | Appl _ | Where (_, _, _, _) ->
assert false
| Sort act_sort ->
assert (Array.is_empty act_args);
let req_key, req_args = key_split req uc in
begin match req_key with
| Typed _ | Appl _ | Where (_, _, _, _) ->
assert false
| Value _ | Lambda _ | Pi _ ->
Error (path, Uc.base uc)
| Variable j when not (Uc.is_hole j uc) ->
Error (path, Uc.base uc)
| Sort req_sort ->
assert (Array.is_empty req_args);
unify_sorts act_sort req_sort is_super path uc
| Variable j ->
assert (Uc.is_hole j uc);
fill_hole j req_args act path uc
end
| Value act_value ->
assert (Array.is_empty act_args);
let req_key, req_args = key_split req uc in
(
match req_key with
| Typed _ | Appl _ | Where (_, _, _, _) ->
assert false
| Value req_value when act_value = req_value ->
assert (Array.is_empty req_args);
Ok uc
| Variable j when Uc.is_hole j uc ->
assert (Uc.is_empty_hole j uc);
fill_hole j req_args act path uc
| _ ->
Error (path, Uc.base uc)
)
| Variable i ->
let req_key, req_args = key_split req uc in
(
match req_key with
| Typed _ | Appl _ | Where (_, _, _, _) ->
assert false
| Variable j ->
unify_variable_variable
i act_args act
j req_args req
path uc
| _ ->
if Uc.is_hole i uc then
fill_hole i act_args req path uc
else
Error (path, Uc.base uc)
)
| Lambda (_, _, _) ->
assert (Array.is_empty act_args);
assert false
| Pi (act_arg, act_res, info) ->
assert (Array.is_empty act_args);
(
let req_key, req_args = key_split req uc in
match req_key with
| Variable j when Uc.is_hole j uc ->
assert (Uc.is_empty_hole j uc);
fill_hole j req_args act path uc
| Pi (req_arg, req_res, _) ->
let open Result in
unify0 act_arg req_arg false path uc
>>=
unify_pushed
(Pi_info.name info)
act_arg
act_res
req_res
true
path
| _ ->
Error (path, Uc.base uc)
)
and unify_variable_variable
(i: int) (iargs: args) (iterm: Term.t)
(j: int) (jargs: args) (jterm: Term.t)
(path: path) (uc: Uc.t):
Uc.t result2
=
if i = j then
begin
let nargs = Array.length iargs in
assert (nargs = Array.length jargs);
let module IntMon = Interval.Monadic (Result2) in
IntMon.fold
(fun k ->
unify0
(fst iargs.(k))
(fst jargs.(k))
false
path
)
0 nargs
uc
end
else
let ihole = Uc.is_hole i uc
and jhole = Uc.is_hole j uc
in
if ihole && jhole then
Result2.catch
(fill_hole i iargs jterm path uc)
(fun _ -> fill_hole j jargs iterm path uc)
else if ihole then
fill_hole i iargs jterm path uc
else if jhole then
fill_hole j jargs iterm path uc
else
Error (path, Uc.base uc)
and unify_pushed
(name: string) (typ: Term.typ)
(act: Term.t) (req: Term.t) (is_super: bool)
(path: path) (uc: Uc.t):
Uc.t result2
=
Result.map
Uc.pop
(unify0 act req is_super path (Uc.push name typ uc))
and fill_hole
(idx: int)
(args: args)
(term: Term.t)
(path: path)
(uc: Uc.t):
Uc.t result2
=
assert (Uc.is_empty_hole idx uc);
let open Result2 in
make_lambda idx args term path uc
>>= fun lambda ->
fill_simple_hole idx lambda path uc
and fill_simple_hole
(idx: int) (term: Term.t)
(path: path) (uc: Uc.t):
Uc.t result2
=
assert (Uc.is_empty_hole idx uc);
let typ_hole = Uc.type_of_variable idx uc
and typ_term = Algo.type_of_term term uc
in
Result.(
unify0 typ_term typ_hole true path uc
>>= fun uc ->
match
Uc.fill_hole idx term uc
with
| None ->
Printf.printf " shall never happen\n";
Error (path, Uc.base uc)
| Some uc ->
Ok uc
)
let print_holes (gh: Gh.t): unit =
let string_of term =
Term_printer.string_of_term term (Gh.context gh)
in
Gh.fold_entries
(fun _ _ name typ is_hole value () ->
let open Printf
in
if is_hole then
match value with
| None ->
printf " %s: %s\n"
name (string_of typ)
| Some value ->
printf " %s: %s := %s\n"
name (string_of typ) (string_of value)
else
printf " %s: %s\n"
name (string_of typ)
)
gh
()
let _ = print_holes
let unify
(act: Term.typ) (req: Term.typ) (is_super: bool) (gh: Gh.t):
Gh.t option
=
match unify0 act req is_super [] (Uc.make gh) with
| Ok uc ->
Some (Uc.base uc)
| Error (_, _) ->
None
end