package alba

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file test_inductive.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
open Alba_core
open Ast


module Inductive_parser =
    Parser_lang.Make (
        struct
            type t = Source_entry.inductive array
        end)


module Expression_parser =
    Parser_lang.Make (Expression)


let add_inductive
    (src: string)
    (c: Context.t)
    : (Context.t, Build_problem.t) result
=
    let open Inductive_parser in
    let p = run (inductive_family ()) src
    in
    assert (has_ended p);
    assert (has_succeeded p);
    match result p with
    | None ->
        assert false
    | Some inds ->
        Builder.add_inductive inds c


let build_expression
    (src: string)
    (c: Context.t):
    (Term.t * Term.typ, Build_problem.t) result
=
    let open Expression_parser in
    let p = run (expression ()) src in
    assert (has_ended p);
    assert (has_succeeded p);
    match result p with
    | None ->
        assert false (* Syntax error *)
    | Some exp ->
        Build_expression.build exp c



(*  Test the inductive types
    ------------------------

    - same number of parameters
    - same parameter names
    - same parameter types
    - inductive type must be a type (i.e. its type a kind)
*)


let%test _ =
    let src = "class I0 A :=\n\
               class I1 A B :="
    in
    match
        add_inductive src Context.empty
    with
    | Error (_, Build_problem.Wrong_parameter_count _) ->
        true
    | _ ->
        false


let%test _ =
    let src = "class I0 A :=\n\
               class I1 B :="
    in
    match
        add_inductive src Context.empty
    with
    | Error (_, Build_problem.Wrong_parameter_name _) ->
        true
    | _ ->
        false



let%test _ =
    let src = "class I0 (A: Any -> Any) :=\n\
               class I1 A :="
    in
    match
        add_inductive src Context.empty
    with
    | Error (_, Build_problem.Wrong_parameter_type _) ->
        true
    | _ ->
        false


let%test _ =
    let src = "class i A: Int :="
    and context =
        Context.(
            empty
            |>
            add_builtin_type
                "int_type"
                "Int"
                Term.any
        )
    in
    match
        add_inductive src context
    with
    | Error (_, Build_problem.No_inductive_type) ->
        true
    | _ ->
        false


let%test _ =
    let src = "class I :=\n\
               class I :="
    in
    match
        add_inductive src Context.empty
    with
    | Error (_, Build_problem.Duplicate_inductive) ->
        true
    | _ ->
        false



(*  Test the constructors
    ------------------------

    - no duplicate constructor names
    - if there are indices, then type must be explicit
    - construct a object of the corresponding inductive type
    - positivity
    - positivity in family
    - positivity with other inductive type
*)

let%test _ =
    let src = "class I := c; c"
    in
    match
        add_inductive src Context.empty
    with
    | Error (_, Build_problem.Duplicate_constructor) ->
        true
    | _ ->
        false



let%test _ =
    let src = "class I A: A -> Any := constr"
    in
    match
        add_inductive src Context.empty
    with
    | Error (_, Build_problem.Missing_inductive_type) ->
        true
    | _ ->
        false



let%test _ =
    let src = "class I A := Constr: Any"
    in
    match
        add_inductive src Context.empty
    with
    | Error (_, Build_problem.Wrong_type_constructed _) ->
        true
    | _ ->
        false



let%test _ =
    let src = "class I A := constr: I Proposition"
    in
    match
        add_inductive src Context.empty
    with
    | Error (_, Build_problem.Wrong_type_constructed _) ->
        true
    | _ ->
        false



let%test _ =
    let src = "class I := constr: (I -> Proposition) -> I"
    in
    match
        add_inductive src Context.empty
    with
    | Error (_, Build_problem.Negative) ->
        true
    | _ ->
        false



let%test _ =
    let src = "class I A := constr: I (I A) -> I A"
    in
    match
        add_inductive src Context.empty
    with
    | Error (_, Build_problem.Not_positive _) ->
        true
    | _ ->
        false


let%test _ =
    let src1 = "class I1 A := co1: (A -> A) -> I1 A"
    and src2 = "class I := co : I1 I -> I"
    in
    match
        add_inductive src1 Context.empty
    with
    | Error _ ->
        false
    | Ok c ->
        match
            add_inductive src2 c
        with
        | Error (_, Build_problem.Nested_negative _) ->
            true
        | _ ->
            false


let%test _ =
    let open Fmlib.Result in
    let src1 = "Any -> Any"
    and src2 = "class II := co : TC II -> II"
    in
    match
        (
            build_expression src1 Context.empty
            >>= fun (typ, _) ->
            add_inductive src2 (Context.(add_builtin_type "TC" "TC" typ empty))
        )
    with
    | Error (_, Not_positive _) ->
        true
    | _ ->
        false
OCaml

Innovation. Community. Security.