package alba

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file build_inductive.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
(*

General form of an inductive definition

    mutual
        class
            I0 (p0: P0) ... : K0
        :=
            co00: CT00
            co01: CT01
            ...

        class
            I1 (p0: P0) ... : K1
        :=
            co10: CT10
            co11: CT11
            ...
        ...

Kinds

    K0, K1, ... are the kinds of the inductive types. Each kind must have the
    normal form

        Ki = all (a0: A0) (a1: A1) ... : s

    where s is either Any or Proposition.

    a0, a1, ... are the indices of the type.

Headers

    The headers of an inductive definition are

        I0 (p0: P0) ... : K0
        I1 (p0: P0) ... : K1
        ...

    We store the paramaters, which are common to all types of the family and the
    pairs (Ii, Ki) separately. In this module the headers are just the pairs.

Checks

    - The parameters are the same (same number, same names and same types) in a
      inductive definitions of the family.

    - Names of inductive classes and all constructors different.

    - Each constructor type CTij has the form

        all (b0: B0) (b1: B1) ... : R

    - Each constructor constructs an object of its corresponding type, i.e. the
      final type R of each constructor type CTij has the form

        R = Ii p0 p1 ... a0 a1 ...

      where p0 p1 ... are exactly the parameters of the inductive definition and
      the indices are arbitrary but do not contain any Ij of the family.

    - Each constructor argument Bk has the form

        Bk = all (c0: C0) (c1: C1) ... : RBk

      where none of the Ii occurs in any of C0, C1, ... and any Ii can occur
      only positively in RBk. C0, C1, ... are the negative positions and RBk is
      the positive position of the constructor argument type Bk.


Positive occurrence

    A variable x occurs positively in a type T, if

    - T = x a0 a1 ...

      where x does not occur in a0 a1 ...

    - T = I a0 a1 ...

      where I is an external inductive type which is not mutually defined and
      has some positive parameters and x occurs positively in ai which
      correspond to a positive parameter and does not occur in other arguments.


Positive parameters

    A parameter p is positive, if

    - p: Any or p: Proposition

    - p occurs only positively in argument types of constructors.


*)


open Fmlib
open Common

open Alba_core
open Ast



module Result =
    Fmlib.Result.Make (Build_problem)

module Interval_monadic =
    Interval.Monadic (Result)

module List_monadic =
    List.Monadic (Result)

module Algo =
    Gamma_algo.Make (Gamma)


type 'a result2 = ('a, Build_problem.t) result

type params_located = (string Located.t * Term.typ) array




(* Needed data to analyze constructors. *)
module Data =
struct
    type t = {
        cnt0: int;  (* Size of the context without headers and parameters. *)

        params:  Inductive.params;
        headers: Inductive.Header.t array;

        positives: Int_set.t; (* Candidate set for positive parameters. At the
                                 end of the analysis, the set contains all
                                 positive parameters. *)
    }

    let make cnt0 headers params =
        let positives =
            Array.foldi_left
                (fun set i (_, typ) ->
                    let open Term in
                    match typ with
                    | Sort Sort.Any _ | Sort Sort.Proposition ->
                        Int_set.add i set

                    | _ ->
                        set
                )
                Int_set.empty
                params
        in
        {cnt0; params; headers; positives}


    let header (i: int) (d: t): Inductive.Header.t =
        d.headers.(i)


    let params (d: t): Inductive.params =
        d.params



    let headers (d: t): Inductive.Header.t array =
        d.headers


    let constructor_base_count (d: t): int =
        d.cnt0 + Array.length d.headers + Array.length d.params


    let is_inductive (level: int) (d: t): bool =
        d.cnt0 <= level
        &&
        level < d.cnt0 + Array.length d.headers


    let is_parameter (level: int) (d: t): bool =
        let ntypes = Array.length d.headers in
        d.cnt0 + ntypes <= level
        &&
        level < d.cnt0 + ntypes + Array.length d.params


    let positives (d: t): Int_set.t =
        d.positives


    let remove_positive (iparam) (level: int) (d: t): t =
        let param0 = d.cnt0 + Array.length d.headers
        and nparams = Array.length d.params
        in
        if
            param0 <= level
            && level < param0 + nparams
            && param0 + iparam <> level (* level is not iparam *)
        then(
            {d with
                positives =
                    Int_set.remove (level - param0) d.positives
            }
        )
        else
            d
end (* Data *)





let (>>=) = Result.(>>=)



let build_type_or_any
    (name: string Located.t)
    (typ: Expression.t option)
    (c: Context.t)
    : Term.typ result2
=
    match typ with
    | None ->
        Ok Term.any
    | Some typ ->
        Build_expression.build_named_type name typ c






let check_params
    (params0: Inductive.params)
    (name: string Located.t)
    (params: params_located)
    (context: Context.t)
    : unit result2
=
    (* [params0] are the paramters of the first type in the family.

        Check that a subsequent type [name,params] has the same set of
        parameters, i.e. same number, same names and same types.
    *)
    let nparams = Array.length params0 in
    if nparams <> Array.length params then
        Error (
            Located.range name,
            Build_problem.Wrong_parameter_count nparams
        )
    else
        Interval_monadic.(
            fold
                (fun i context ->
                    let name,  typ  = params.(i)
                    and name0, typ0 = params0.(i)
                    in
                    if Located.value name <> name0 then
                        Error (
                            Located.range name,
                            Build_problem.Wrong_parameter_name name0
                        )

                    else if Typecheck.equivalent
                        typ0
                        typ
                        (Context.gamma context)
                    then
                        Ok (
                            Context.push_local
                                (Located.value name)
                                typ
                                context
                        )

                    else
                        Error (
                            Located.range name
                            ,
                            Build_problem.Wrong_parameter_type (
                                typ0, Context.gamma context
                            )
                        )
                )
                0 nparams
                context
        )
        >>= fun _ ->
        Ok ()





let class_header
    (i: int)
    (inds: Source_entry.inductive array)
    (c0: Context.t)
    : (string Located.t * params_located * Inductive.Header.t) result2
=
    (* Analyze the [i]ith class header of the inductive family [inds].

         class Name (P0: PT0) (P1: PT1) ... : TP

    *)
    assert (i < Array.length inds);
    let (name, (params, kind_exp)), _ = inds.(i) in
    List_monadic.(
        fold_left
            (fun (name, param_typ) (lst,c1) ->
                build_type_or_any name param_typ c1
                >>=
                fun param_typ ->
                Ok (
                    (name, param_typ) :: lst,
                    Context.push_local
                        (Located.value name)
                        param_typ
                        c1
                )
            )
            params
            ([],c0)
    )
    >>= fun (params, c1) ->
    build_type_or_any name kind_exp c1
    >>= fun kind ->
    match
        Algo.split_kind kind (Context.gamma c1)
    with
    | None ->
        assert (kind_exp <> None);
        let range =
            Located.range (Option.value kind_exp)
        in
        Error (range, Build_problem.No_inductive_type)
    | Some (args, sort) ->
        let name_str = Located.value name
        in
        let params = Array.of_list (List.rev params)
        and header =
            Inductive.Header.make name_str kind args sort
        in
        let params1 =
            Array.map (fun (name,typ) -> Located.value name, typ) params
        in
        if
            Context.can_add_global
                name_str
                (Inductive.Header.kind params1 header)
                c0
        then
            Ok (name, params, header)
        else
            Error (Located.range name, Build_problem.Ambiguous_definition)






let class_headers
    (inds: Source_entry.inductive array)
    (context: Context.t)
    : (Inductive.params * Inductive.Header.t array) result2
=
    assert (0 < Array.length inds);
    class_header 0 inds context
    >>=
    fun (name0, params0, header0) ->
    let params0 =
        Array.map (fun (name, typ) -> Located.value name, typ) params0
    in
    Interval_monadic.fold
        (fun i (set, lst) ->
            class_header i inds context
            >>=
            fun (name, params, header) ->
            check_params params0 name params context
            >>= fun _ ->
            let name_str = Located.value name in
            if String_set.mem name_str set then
                Error(Located.range name, Build_problem.Duplicate_inductive)
            else
                Ok (String_set.add name_str set, header :: lst)
        )
        1
        (Array.length inds)
        (String_set.singleton (Located.value name0), [])
    >>= fun (_, lst) ->
    Ok (params0, Array.of_list (header0 :: List.rev lst))





let push_params
    (ntypes: int)
    (params: Inductive.params)
    (context: Context.t)
    : Context.t
=
    Array.foldi_left
        (fun context iparam (name,typ) ->
            Context.push_local
                name
                (Term.up_from iparam ntypes typ)
                context)
        context
        params





let push_types
    (params: Inductive.params)
    (headers: Inductive.Header.t array)
    (context: Context.t)
    : Context.t
=
    let _, context =
        Array.fold_left
            (fun (i,context) header ->
                let open Inductive.Header in
                i + 1,
                Context.add_axiom
                    (name header)
                    (Term.up i (kind params header))
                    context
            )
            (0,context)
            headers
    in
    context










let fold_type
    (argf: 'a -> Term.typ -> Gamma.t -> 'a result2)
    (resf: 'a -> Term.typ -> Gamma.t -> 'b result2)
    (a: 'a)
    (typ: Term.typ)
    (gamma: Gamma.t) :
    'b result2
=
    let rec fold a typ gamma =
        let open Term
        in
        match Algo.key_normal typ gamma with
        | Pi (arg, res, info) ->
            argf a arg gamma
            >>=
            fun a ->
            fold a res (Gamma.push_local (Pi_info.name info) arg gamma)

        | res ->
            resf a res gamma
    in
    fold a typ gamma











let check_non_occurrence
    (error: unit -> Data.t result2)
    (iparam: int) (* param allowed to occur. *)
    (term: Term.t)
    (gamma: Gamma.t)
    (data: Data.t):
    Data.t result2
=
    let module TermM = Term.Monadic (Result) in
    TermM.fold_free
        (fun idx data ->
            let level = Gamma.level_of_index idx gamma
            in
            if Data.is_inductive level data then
                error ()
            else
                Ok (Data.remove_positive iparam level data)
        )
        term
        data




let check_constructor_argument_result_type
    (range: range)
    (data: Data.t)
    (typ: Term.typ)
    (gamma: Gamma.t):
    Data.t result2
=
    let open Build_problem in
    let not_positive _ =
        Error (range, Not_positive (typ,gamma))
    in
    let rec check term =
        let key, args = Algo.key_split term gamma in
        match key with
        | Variable idx ->
            let level = Gamma.level_of_index idx gamma in
            if Data.is_inductive level data then
                (* Positive parameters can occur at proper place! *)
                non_occurrence true args not_positive
            else if Data.is_parameter level data && args = [] then
                Ok data
            else begin
                match Gamma.inductive_at_level level gamma with
                | None ->
                    non_occurrence false args not_positive
                        (* Positive parameters cannot occur! *)
                | Some ind ->
                    if Inductive.count_types ind = 1 then
                        positive_occurrence ind args
                    else
                        non_occurrence false args not_positive
                            (* Positive parameters cannot appear. *)

            end
        | _ ->
            check_non_occurrence not_positive (-1) term gamma data

    and non_occurrence might_occur args error =
        List_monadic.foldi_left
            (fun iparam (arg, _) data ->
                let iparam =
                    if might_occur then
                        iparam
                    else
                        - 1
                in
                check_non_occurrence error iparam arg gamma data
            )
            args
            data

    and positive_occurrence ind args =
        List_monadic.foldi_left
            (fun iparam (arg, _) data ->
                if Inductive.is_param_positive iparam ind then
                    check arg
                else
                    check_non_occurrence
                        (fun _ -> Error (
                            range,
                            Nested_negative (ind, iparam, gamma)
                        ))
                        (-1)
                        arg
                        gamma
                        data
            )
            args
            data
    in
    check typ





let check_constructor_argument_type
    (range: range)
    (data: Data.t)
    (arg_typ: Term.typ)
    (gamma: Gamma.t) :
    Data.t result2
=
    fold_type
        (fun data typ gamma ->
            check_non_occurrence
                (fun _ -> Error (range, Build_problem.Negative))
                (-1)
                typ
                gamma
                data
        )
        (check_constructor_argument_result_type range)
        data
        arg_typ
        gamma





let check_constructor_result_type
    (i: int)
    (range: range)
    (data: Data.t)
    (res: Term.typ)
    (gamma: Gamma.t) :
    Data.t result2
=
    if
        Inductive.Header.is_well_constructed
            i
            (Data.params data)
            (Data.headers data)
            Gamma.(count gamma - Data.constructor_base_count data)
            res
    then
        Ok data
    else
        Error (
            range,
            Build_problem.Wrong_type_constructed (res, gamma)
        )





let check_constructor_type
    (i: int)
    (data: Data.t)
    (name: string Located.t)
    (typ: Term.typ)
    (c: Context.t)
    : (Data.t * Inductive.Constructor.t) result2
=
    let range   = Located.range name
    in
    fold_type
        (check_constructor_argument_type range)
        (check_constructor_result_type i range)
        data
        typ
        (Context.gamma c)
    >>= fun data ->
    Ok (data, Inductive.Constructor.make (Located.value name) typ)





let one_constructor
    (i: int)                                      (* inductive type *)
    (data: Data.t)
    ((name, (fargs, typ))
        : Source_entry.named_signature)
    (c: Context.t)                                (* with types and params *)
    : (Data.t * Inductive.Constructor.t) result2
=
    (* Collect constructor arguments. *)
    let module Lst = List.Monadic (Result) in
    Lst.fold_left
        (fun (name, typ) (fargs, c) ->
            match typ with
            | None ->
                assert false  (* Illegal call! Parser has to prevent that. *)
            | Some typ ->
                Build_expression.build_named_type name typ c
                >>= fun typ ->
                let name = Located.value name in
                Ok (
                    (name, typ) :: fargs
                    ,
                    Context.push_local name typ c
                )
        )
        fargs
        ([], c)
    >>= fun (fargs, c1) ->
    (
    (* Analyze final type of the signature. *)
        match typ with
        | None ->
            (*  Must be the default inductive type. Only possible without
                indices. *)
            if
                Inductive.Header.has_index (Data.header i data)
            then
                Error (
                    Located.range name,
                    Build_problem.Missing_inductive_type
                )
            else
                Ok (
                    Inductive.Header.default_type
                        i
                        (Data.params data)
                        (Data.headers data)
                )

        | Some typ ->
            Build_expression.build_named_type name typ c1
    )
    >>= fun typ ->
    let typ =
        List.fold_left
            (fun res (name, typ) ->
                Term.(Pi (typ, res, Pi_info.typed name)))
            typ
            fargs
    in
    check_constructor_type i data name typ c





let one_constructor_set
    (i: int) (* inductive type *)
    (data: Data.t)
    (inds: Source_entry.inductive array)
    (c: Context.t)  (* with types and params *)
    : (Data.t * Inductive.Constructor.t array) result2
=
    let module Arr = Array.Monadic (Result) in
    Arr.fold_left
        (fun constructor (set, data, lst) ->
            one_constructor i data constructor c
            >>= fun (data, co) ->
            let name, _ = constructor in
            let name_str = Located.value name in
            if String_set.mem name_str set then
                Error (Located.range name, Build_problem.Duplicate_constructor)
            else
                Ok (String_set.add name_str set, data, co :: lst)
        )
        (snd inds.(i))
        (String_set.empty, data, [])
    >>= fun (_, data, lst) ->
    Ok (data, Array.of_list (List.rev lst))




let constructors
    (params: Inductive.params)
    (headers: Inductive.Header.t array)
    (inds: Source_entry.inductive array)
    (context: Context.t)
    : Inductive.t result2
=
    let context1 =
        push_types params headers context
        |>
        push_params (Array.length headers) params
    and data =
        Data.make (Context.count context) headers params
    in
    (* list of constructor sets with corresponding header and number of previous
       constructors. *)
    let module Arr = Array.Monadic (Result) in
    Arr.foldi_left
        (fun i header (n, data, constructors) ->
            one_constructor_set
                i
                data
                inds
                context1
            >>= fun (data, constructor_set) ->
            Ok (
                n + Array.length constructor_set
                ,
                data
                ,
                Inductive.Type.make n header constructor_set :: constructors
            )
        )
        headers
        (0, data, [])
    >>=
    fun (_, data, types) ->
    Ok Inductive.(make
        params
        (Data.positives data)
        (Array.of_list (List.rev types)))






let build
    (inds: Source_entry.inductive array)
    (context: Context.t)
    : Inductive.t result2
=
    class_headers inds context
    >>= fun (params,headers) ->
    constructors params headers inds context
OCaml

Innovation. Community. Security.