package coq

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file polynomial.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)
(*                                                                      *)
(* Micromega: A reflexive tactic using the Positivstellensatz           *)
(*                                                                      *)
(*  Frédéric Besson (Irisa/Inria) 2006-20018                            *)
(*                                                                      *)
(************************************************************************)

open NumCompat
open Q.Notations
open Mutils
module Mc = Micromega

let max_nb_cstr = ref max_int

type var = int

let debug = false
let ( <+> ) = ( +/ )
let ( <*> ) = ( */ )

module Monomial : sig
  type t

  val const : t
  val is_const : t -> bool
  val var : var -> t
  val is_var : t -> bool
  val get_var : t -> var option
  val prod : t -> t -> t
  val factor : t -> var -> t option
  val compare : t -> t -> int
  val pp : out_channel -> t -> unit
  val fold : (var -> int -> 'a -> 'a) -> t -> 'a -> 'a
  val sqrt : t -> t option
  val variables : t -> ISet.t
  val degree : t -> int
  val subset : t -> t -> bool
  val output : out_channel -> t -> unit
end =
struct
  type t = int array
  (* Compact representation [| d; e₀; v₀; ...; eₙ; vₙ |] where
    d = Σi v_i is the multi-degree
    e_i gives the variable number as a diff, i.e. the variable at position i
        is Σi e_i, and e_i ≠ 0 for all i > 0
    v_i is the degree of e_i, must be ≠ 0
  *)

  let const = [|0|]

  let subset m1 m2 =
    m1.(0) <= m2.(0) &&

    let len1 = Array.length m1 in
    let len2 = Array.length m2 in

    let get_var m c v =
      v+m.(c) , m.(c+1) in

    let rec xsubset cur1 v1 e1 cur2 v2 e2 =
      match Int.compare v1 v2 with
      | 0 -> e1 <= e2 &&
             (if cur1 + 2 = len1
              then true
              else if cur2 + 2 = len2
              then false
              else
                let (v1,e1) = get_var m1 (cur1+2) v1 in
                let (v2,e2) = get_var m2 (cur2+2) v2 in
                xsubset (cur1+2) v1 e1 (cur2+2) v2 e2)
      | -1 -> false
      |  _ -> if cur2 + 2 = len2
        then false
        else  let (v2,e2) = get_var m2 (cur2+2) v2 in
          xsubset cur1 v1 e1 (cur2+2) v2 e2
    in
    if len1 <= 1 then true
    else if len2 <= 1 then false
    else xsubset 1 m1.(1) m1.(2) 1 m2.(1) m2.(2)

  let is_const (m : t) = match m with [|_|] -> true | _ -> false

  let var x = [|1; x; 1|]

  let is_var (m : t) = Int.equal m.(0) 1

  let get_var (m : t) = match m with
  | [|1; x; _|] -> Some x
  | _ -> None

  let prod (m1 : t) (m2 : t) =
    let len1 = Array.length m1 in
    let len2 = Array.length m2 in
    (* Compute the number of variables in the monomial *)
    let rec nvars accu cur1 cur2 i1 i2 =
      if Int.equal i1 len1 && Int.equal i2 len2 then accu
      else if Int.equal i1 len1 then accu + (len2 - i2)
      else if Int.equal i2 len2 then accu + (len1 - i1)
      else
        let ncur1 = cur1 + m1.(i1) in
        let ncur2 = cur2 + m2.(i2) in
        if ncur1 < ncur2 then nvars (accu + 2) ncur1 cur2 (i1 + 2) i2
        else if ncur1 > ncur2 then nvars (accu + 2) cur1 ncur2 i1 (i2 + 2)
        else nvars (accu + 2) ncur1 ncur2 (i1 + 2) (i2 + 2)
    in
    let n = nvars 1 0 0 1 1 in
    let m = Array.make n 0 in
    let () = m.(0) <- m1.(0) + m2.(0) in
    (* Set the variable exponents *)
    let rec set cur cur1 cur2 i i1 i2 =
      if Int.equal i1 len1 && Int.equal i2 len2 then ()
      else if Int.equal i1 len1 then
        let ncur2 = cur2 + m2.(i2) in
        let () = m.(i) <- ncur2 - cur in
        let () = m.(i + 1) <- m2.(i2 + 1) in
        set ncur2 cur1 ncur2 (i + 2) i1 (i2 + 2)
      else if Int.equal i2 len2 then
        let ncur1 = cur1 + m1.(i1) in
        let () = m.(i) <- ncur1 - cur in
        let () = m.(i + 1) <- m1.(i1 + 1) in
        set ncur1 ncur1 cur2 (i + 2) (i1 + 2) i2
      else
        let ncur1 = cur1 + m1.(i1) in
        let ncur2 = cur2 + m2.(i2) in
        if ncur1 < ncur2 then
          let () = m.(i) <- ncur1 - cur in
          let () = m.(i + 1) <- m1.(i1 + 1) in
          set ncur1 ncur1 cur2 (i + 2) (i1 + 2) i2
        else if ncur1 > ncur2 then
          let () = m.(i) <- ncur2 - cur in
          let () = m.(i + 1) <- m2.(i2 + 1) in
          set ncur2 cur1 ncur2 (i + 2) i1 (i2 + 2)
        else
          let () = m.(i) <- ncur1 - cur in
          let () = m.(i + 1) <- m1.(i1 + 1) + m2.(i2 + 1) in
          set ncur1 ncur1 ncur2 (i + 2) (i1 + 2) (i2 + 2)
    in
    let () = set 0 0 0 1 1 1 in
    m

  (*  [factor m x] returns [None] if [x] does not appear in [m], and decreases
      its exponent by one otherwise *)
  let factor (m : t) (x : var) =
    let len = Array.length m in
    let rec factor cur i =
      if Int.equal i len then None
      else
        let ncur = cur + m.(i) in
        let k = m.(i + 1) in
        if ncur < x then factor ncur (i + 2)
        else if x < ncur then None
        else if Int.equal k 1 then
          (* Need to squeeze out the binding for x *)
          let ans = Array.make (len - 2) 0 in
          let () = ans.(0) <- m.(0) - 1 in
          let () = Array.blit m 1 ans 1 (i - 1) in
          let () = Array.blit m (i + 2) ans i (len - i - 2) in
          (* Correct the diff *)
          let () = if not (Int.equal len (i + 2)) then ans.(i) <- ans.(i) + m.(i) in
          Some ans
        else
          let ans = Array.copy m in
          let () = ans.(0) <- ans.(0) - 1 in
          let () = ans.(i + 1) <- ans.(i + 1) - 1 in
          Some ans
    in
    factor 0 1

  let compare (m1 : t) (m2 : t) = CArray.compare Int.compare m1 m2

  let sqrt (m : t) = match m with
  | [|_|] -> Some const
  | _ ->
    let m = Array.copy m in
    let len = Array.length m in
    let () = m.(0) <- m.(0) / 2 in
    let rec set i =
      if Int.equal i len then ()
      else
        let v = m.(i + 1) in
        let () = if v mod 2 = 0 then m.(i + 1) <- v / 2 else raise_notrace Exit in
        set (i + 2)
    in
    try let () = set 1 in Some m with Exit -> None

  let degree (m : t) = m.(0)

  let fold f (m : t) accu =
    let len = Array.length m in
    let rec fold accu cur i =
      if Int.equal i len then accu
      else
        let cur = cur + m.(i) in
        let accu = f cur m.(i + 1) accu in
        fold accu cur (i + 2)
    in
    fold accu 0 1

  let output o m = fold (fun v i () -> Printf.fprintf o "x%i^%i" v i) m ()


  let variables (m : t) =
    fold (fun x _ accu -> ISet.add x accu) m ISet.empty

  let pp o m =
    let pp_elt o (k, v) =
      if v = 1 then Printf.fprintf o "x%i" k else Printf.fprintf o "x%i^%i" k v
    in
    let rec pp_list o l =
      match l with
      | [] -> ()
      | [e] -> pp_elt o e
      | e :: l -> Printf.fprintf o "%a*%a" pp_elt e pp_list l
    in
    pp_list o (List.rev @@ fold (fun x v accu -> (x, v) :: accu) m [])

end

module MonMap = struct
  include Map.Make (Monomial)

  let union f =
    merge (fun x v1 v2 ->
        match (v1, v2) with
        | None, None -> None
        | Some v, None | None, Some v -> Some v
        | Some v1, Some v2 -> f x v1 v2)
end

let pp_mon o (m, i) =
  if Monomial.is_const m then
    if Q.zero =/ i then () else Printf.fprintf o "%s" (Q.to_string i)
  else if Q.one =/ i then Monomial.pp o m
  else if Q.minus_one =/ i then Printf.fprintf o "-%a" Monomial.pp m
  else if Q.zero =/ i then ()
  else Printf.fprintf o "%s*%a" (Q.to_string i) Monomial.pp m

module Poly : (* A polynomial is a map of monomials *)
              (*
    This is probably a naive implementation
    (expected to be fast enough - Coq is probably the bottleneck)
    *The new ring contribution is using a sparse Horner representation.
    *)
sig
  type t

  val pp : out_channel -> t -> unit
  val get : Monomial.t -> t -> Q.t
  val variable : var -> t
  val add : Monomial.t -> Q.t -> t -> t
  val constant : Q.t -> t
  val product : t -> t -> t
  val addition : t -> t -> t
  val uminus : t -> t
  val fold : (Monomial.t -> Q.t -> 'a -> 'a) -> t -> 'a -> 'a
  val factorise : var -> t -> t * t
end = struct
  (*normalisation bug : 0*x ... *)
  module P = Map.Make (Monomial)
  open P

  type t = Q.t P.t

  let pp o p = P.iter (fun mn i -> Printf.fprintf o "%a + " pp_mon (mn, i)) p

  (* Get the coefficient of monomial mn *)
  let get : Monomial.t -> t -> Q.t =
   fun mn p -> try find mn p with Not_found -> Q.zero

  (* The polynomial 1.x *)
  let variable : var -> t = fun x -> add (Monomial.var x) Q.one empty

  (*The constant polynomial *)
  let constant : Q.t -> t = fun c -> add Monomial.const c empty

  (* The addition of a monomial *)

  let add : Monomial.t -> Q.t -> t -> t =
   fun mn v p ->
    if Q.sign v = 0 then p
    else
      let vl = get mn p <+> v in
      if Q.sign vl = 0 then remove mn p else add mn vl p

  (** Design choice: empty is not a polynomial
     I do not remember why ....
   **)

  (* The product by a monomial *)
  let mult : Monomial.t -> Q.t -> t -> t =
   fun mn v p ->
    if Q.sign v = 0 then constant Q.zero
    else
      fold
        (fun mn' v' res -> P.add (Monomial.prod mn mn') (v <*> v') res)
        p empty

  let addition : t -> t -> t =
   fun p1 p2 -> fold (fun mn v p -> add mn v p) p1 p2

  let product : t -> t -> t =
   fun p1 p2 -> fold (fun mn v res -> addition (mult mn v p2) res) p1 empty

  let uminus : t -> t = fun p -> map (fun v -> Q.neg v) p
  let fold = P.fold

  let factorise x p =
    P.fold
      (fun m v (px, cx) ->
        match Monomial.factor m x with
        | None -> (px, add m v cx)
        | Some mx ->
          (add mx v px, cx))
      p
      (constant Q.zero, constant Q.zero)
end

type vector = Vect.t

type cstr = {coeffs : vector; op : op; cst : Q.t}

and op = Eq | Ge | Gt

exception Strict

let is_strict c = c.op = Gt
let eval_op = function Eq -> ( =/ ) | Ge -> ( >=/ ) | Gt -> ( >/ )
let string_of_op = function Eq -> "=" | Ge -> ">=" | Gt -> ">"

let compare_op o1 o2 =
  match (o1, o2) with
  | Eq, Eq -> 0
  | Eq, _ -> -1
  | _, Eq -> 1
  | Ge, Ge -> 0
  | Ge, _ -> -1
  | _, Ge -> 1
  | Gt, Gt -> 0

let output_cstr o {coeffs; op; cst} =
  Printf.fprintf o "%a %s %s" Vect.pp coeffs (string_of_op op) (Q.to_string cst)

let opMult o1 o2 =
  match (o1, o2) with Eq, _ | _, Eq -> Eq | Ge, _ | _, Ge -> Ge | Gt, Gt -> Gt

let opAdd o1 o2 =
  match (o1, o2) with Eq, x | x, Eq -> x | Gt, x | x, Gt -> Gt | Ge, Ge -> Ge

module LinPoly = struct
  (** A linear polynomial a0 + a1.x1 + ... + an.xn
      By convention, the constant a0 is the coefficient of the variable 0.
   *)

  type t = Vect.t

  module MonT = struct
    module MonoMap = Map.Make (Monomial)
    module IntMap = Map.Make (Int)

    (** A hash table might be preferable but requires a hash function. *)
    let (index_of_monomial : int MonoMap.t ref) = ref MonoMap.empty

    let (monomial_of_index : Monomial.t IntMap.t ref) = ref IntMap.empty
    let fresh = ref 0

    let reserve vr =
      if !fresh > vr then failwith (Printf.sprintf "Cannot reserve %i" vr)
      else fresh := vr + 1

    let safe_reserve vr = if !fresh > vr then () else fresh := vr + 1

    let get_fresh () =
      let vr = !fresh in
      incr fresh; vr

    let register m =
      try MonoMap.find m !index_of_monomial
      with Not_found ->
        let res = !fresh in
        index_of_monomial := MonoMap.add m res !index_of_monomial;
        monomial_of_index := IntMap.add res m !monomial_of_index;
        incr fresh;
        res

    let retrieve i = IntMap.find i !monomial_of_index

    let clear () =
      index_of_monomial := MonoMap.empty;
      monomial_of_index := IntMap.empty;
      fresh := 0;
      ignore (register Monomial.const)

    let _ = register Monomial.const
  end

  let var v = Vect.set (MonT.register (Monomial.var v)) Q.one Vect.null

  let of_monomial m =
    let v = MonT.register m in
    Vect.set v Q.one Vect.null

  let linpol_of_pol p =
    Poly.fold
      (fun mon num vct ->
        let vr = MonT.register mon in
        Vect.set vr num vct)
      p Vect.null

  let pol_of_linpol v =
    Vect.fold
      (fun p vr n -> Poly.add (MonT.retrieve vr) n p)
      (Poly.constant Q.zero) v

  let coq_poly_of_linpol cst p =
    let pol_of_mon m =
      Monomial.fold
        (fun x v p ->
          Mc.PEmul (Mc.PEpow (Mc.PEX (CamlToCoq.positive x), CamlToCoq.n v), p))
        m
        (Mc.PEc (cst Q.one))
    in
    Vect.fold
      (fun acc x v ->
        let mn = MonT.retrieve x in
        Mc.PEadd (Mc.PEmul (Mc.PEc (cst v), pol_of_mon mn), acc))
      (Mc.PEc (cst Q.zero))
      p

  let pp_var o vr =
    try Monomial.pp o (MonT.retrieve vr) (* this is a non-linear variable *)
    with Not_found -> Printf.fprintf o "v%i" vr

  let pp o p = Vect.pp_gen pp_var o p
  let constant c = if Q.sign c = 0 then Vect.null else Vect.set 0 c Vect.null

  let is_linear p =
    Vect.for_all
      (fun v _ ->
        let mn = MonT.retrieve v in
        Monomial.is_var mn || Monomial.is_const mn)
      p

  let is_variable p =
    let (x, v), r = Vect.decomp_fst p in
    if Vect.is_null r && v >/ Q.zero then Monomial.get_var (MonT.retrieve x)
    else None

  let factorise x p =
    let px, cx = Poly.factorise x (pol_of_linpol p) in
    (linpol_of_pol px, linpol_of_pol cx)

  let is_linear_for x p =
    let a, b = factorise x p in
    Vect.is_constant a

  let search_all_linear p l =
    Vect.fold
      (fun acc x v ->
        if p v then
          let x' = MonT.retrieve x in
          match Monomial.get_var x' with
          | None -> acc
          | Some x -> if is_linear_for x l then x :: acc else acc
        else acc)
      [] l

  let min_list (l : int list) =
    match l with [] -> None | e :: l -> Some (List.fold_left min e l)

  let search_linear p l = min_list (search_all_linear p l)

  let product p1 p2 =
    linpol_of_pol (Poly.product (pol_of_linpol p1) (pol_of_linpol p2))

  let addition p1 p2 = Vect.add p1 p2

  let of_vect v =
    Vect.fold
      (fun acc v vl -> addition (product (var v) (constant vl)) acc)
      Vect.null v

  let variables p =
    Vect.fold
      (fun acc v _ -> ISet.union (Monomial.variables (MonT.retrieve v)) acc)
      ISet.empty p

  let monomials p = Vect.fold (fun acc v _ -> ISet.add v acc) ISet.empty p

  let degree v =
    Vect.fold (fun acc v vl -> max acc (Monomial.degree (MonT.retrieve v))) 0 v

  let pp_goal typ o l =
    let vars =
      List.fold_left
        (fun acc p -> ISet.union acc (variables (fst p)))
        ISet.empty l
    in
    let pp_vars o i =
      ISet.iter (fun v -> Printf.fprintf o "(x%i : %s) " v typ) vars
    in
    Printf.fprintf o "forall %a\n" pp_vars vars;
    List.iteri
      (fun i (p, op) ->
        Printf.fprintf o "(H%i : %a %s 0)\n" i pp p (string_of_op op))
      l;
    Printf.fprintf o ", False\n"

  let collect_square p =
    Vect.fold
      (fun acc v _ ->
        let m = MonT.retrieve v in
        match Monomial.sqrt m with None -> acc | Some s -> MonMap.add s m acc)
      MonMap.empty p
end

module ProofFormat = struct
  type prf_rule =
    | Annot of string * prf_rule
    | Hyp of int
    | Def of int
    | Ref of int
    | Cst of Q.t
    | Zero
    | Square of Vect.t
    | MulC of Vect.t * prf_rule
    | Gcd of Z.t * prf_rule
    | MulPrf of prf_rule * prf_rule
    | AddPrf of prf_rule * prf_rule
    | CutPrf of prf_rule
    | LetPrf of prf_rule * prf_rule

  type proof =
    | Done
    | Step of int * prf_rule * proof
    | Split of int * Vect.t * proof * proof
    | Enum of int * prf_rule * Vect.t * prf_rule * proof list
    | ExProof of int * int * int * var * var * var * proof

  (* x = z - t, z >= 0, t >= 0 *)

  let rec output_prf_rule o = function
    | Annot (s, p) -> Printf.fprintf o "(%a)@%s" output_prf_rule p s
    | Hyp i -> Printf.fprintf o "Hyp %i" i
    | Def i -> Printf.fprintf o "Def %i" i
    | Ref i -> Printf.fprintf o "Ref %i" i
    | LetPrf (p1, p2) ->
      Printf.fprintf o "Let (%a) in %a" output_prf_rule p1 output_prf_rule p2
    | Cst c -> Printf.fprintf o "Cst %s" (Q.to_string c)
    | Zero -> Printf.fprintf o "Zero"
    | Square s -> Printf.fprintf o "(%a)^2" Poly.pp (LinPoly.pol_of_linpol s)
    | MulC (p, pr) ->
      Printf.fprintf o "(%a) * (%a)" Poly.pp (LinPoly.pol_of_linpol p)
        output_prf_rule pr
    | MulPrf (p1, p2) ->
      Printf.fprintf o "(%a) * (%a)" output_prf_rule p1 output_prf_rule p2
    | AddPrf (p1, p2) ->
      Printf.fprintf o "%a + %a" output_prf_rule p1 output_prf_rule p2
    | CutPrf p -> Printf.fprintf o "[%a]" output_prf_rule p
    | Gcd (c, p) -> Printf.fprintf o "(%a)/%s" output_prf_rule p (Z.to_string c)

  let rec output_proof o = function
    | Done -> Printf.fprintf o "."
    | Step (i, p, pf) ->
      Printf.fprintf o "%i:= %a\n ; %a" i output_prf_rule p output_proof pf
    | Split (i, v, p1, p2) ->
      Printf.fprintf o "%i:=%a ; { %a } { %a }" i Vect.pp v output_proof p1
        output_proof p2
    | Enum (i, p1, v, p2, pl) ->
      Printf.fprintf o "%i{%a<=%a<=%a}%a" i output_prf_rule p1 Vect.pp v
        output_prf_rule p2 (pp_list ";" output_proof) pl
    | ExProof (i, j, k, x, z, t, pr) ->
      Printf.fprintf o "%i := %i = %i - %i ; %i := %i >= 0 ; %i := %i >= 0 ; %a"
        i x z t j z k t output_proof pr

  module OrdPrfRule = struct
    type t = prf_rule

    let id_of_constr = function
      | Annot _ -> 0
      | Hyp _ -> 1
      | Def _ -> 2
      | Ref _ -> 3
      | Cst _ -> 4
      | Zero -> 5
      | Square _ -> 6
      | MulC _ -> 7
      | Gcd _ -> 8
      | MulPrf _ -> 9
      | AddPrf _ -> 10
      | CutPrf _ -> 11
      | LetPrf _ -> 12

    let cmp_pair c1 c2 (x1, x2) (y1, y2) =
      match c1 x1 y1 with 0 -> c2 x2 y2 | i -> i

    let rec compare p1 p2 =
      match (p1, p2) with
      | Annot (s1, p1), Annot (s2, p2) ->
        if s1 = s2 then compare p1 p2 else String.compare s1 s2
      | Hyp i, Hyp j -> Int.compare i j
      | Def i, Def j -> Int.compare i j
      | Ref i, Ref j -> Int.compare i j
      | Cst n, Cst m -> Q.compare n m
      | Zero, Zero -> 0
      | Square v1, Square v2 -> Vect.compare v1 v2
      | MulC (v1, p1), MulC (v2, p2) ->
        cmp_pair Vect.compare compare (v1, p1) (v2, p2)
      | Gcd (b1, p1), Gcd (b2, p2) ->
        cmp_pair Z.compare compare (b1, p1) (b2, p2)
      | MulPrf (p1, q1), MulPrf (p2, q2) ->
        cmp_pair compare compare (p1, q1) (p2, q2)
      | AddPrf (p1, q1), AddPrf (p2, q2) ->
        cmp_pair compare compare (p1, q1) (p2, q2)
      | CutPrf p, CutPrf p' -> compare p p'
      | LetPrf(p1,q1) , LetPrf(p2,q2) ->
        cmp_pair compare compare (p1, q1) (p2, q2)
      | _, _ -> Int.compare (id_of_constr p1) (id_of_constr p2)
  end

  module PrfRuleMap = Map.Make (OrdPrfRule)

  let rec pr_size = function
    | Annot (_, p) -> pr_size p
    | Zero | Square _ -> Q.zero
    | Hyp _ -> Q.one
    | Def _ -> Q.one
    | Ref _ -> Q.one
    | Cst n -> n
    | Gcd (i, p) -> pr_size p // Q.of_bigint i
    | MulPrf (p1, p2) | AddPrf (p1, p2) | LetPrf (p1, p2) ->
      pr_size p1 +/ pr_size p2
    | CutPrf p -> pr_size p
    | MulC (v, p) -> pr_size p

  let rec pr_unit  = function
    | Annot (_, p) -> pr_unit p
    | Zero | Square _ -> true
    | Hyp _ -> true
    | Def _ -> true
    | Cst n -> true
    | _ -> false

  let rec pr_rule_max_hyp = function
    | Annot (_, p) -> pr_rule_max_hyp p
    | Hyp i -> i
    | Def i -> -1
    | Ref i -> -1
    | Cst _ | Zero | Square _ -> -1
    | MulC (_, p) | CutPrf p | Gcd (_, p) -> pr_rule_max_hyp p
    | MulPrf (p1, p2) | AddPrf (p1, p2) | LetPrf (p1, p2) ->
      max (pr_rule_max_hyp p1) (pr_rule_max_hyp p2)

  let rec pr_rule_max_def = function
    | Annot (_, p) -> pr_rule_max_hyp p
    | Hyp i -> -1
    | Def i -> i
    | Ref _ -> -1
    | Cst _ | Zero | Square _ -> -1
    | MulC (_, p) | CutPrf p | Gcd (_, p) -> pr_rule_max_def p
    | MulPrf (p1, p2) | AddPrf (p1, p2) | LetPrf (p1, p2) ->
      max (pr_rule_max_def p1) (pr_rule_max_def p2)

  let rec proof_max_def = function
    | Done -> -1
    | Step (i, pr, prf) -> max i (max (pr_rule_max_def pr) (proof_max_def prf))
    | Split (i, _, p1, p2) -> max i (max (proof_max_def p1) (proof_max_def p2))
    | Enum (i, p1, _, p2, l) ->
      let m = max (pr_rule_max_def p1) (pr_rule_max_def p2) in
      List.fold_left (fun i prf -> max i (proof_max_def prf)) (max i m) l
    | ExProof (i, j, k, _, _, _, prf) ->
      max (max (max i j) k) (proof_max_def prf)

  (** [pr_rule_def_cut id pr] gives an explicit [id] to cut rules.
      This is because the Coq proof format only accept they as a proof-step *)
  let pr_rule_def_cut m id p =
    let rec pr_rule_def_cut m id = function
      | Annot (_, p) -> pr_rule_def_cut m id p
      | MulC (p, prf) ->
        let bds, m, id', prf' = pr_rule_def_cut m id prf in
        (bds, m, id', MulC (p, prf'))
      | MulPrf (p1, p2) ->
        let bds1, m, id, p1 = pr_rule_def_cut m id p1 in
        let bds2, m, id, p2 = pr_rule_def_cut m id p2 in
        (bds2 @ bds1, m, id, MulPrf (p1, p2))
      | AddPrf (p1, p2) ->
        let bds1, m, id, p1 = pr_rule_def_cut m id p1 in
        let bds2, m, id, p2 = pr_rule_def_cut m id p2 in
        (bds2 @ bds1, m, id, AddPrf (p1, p2))
      | LetPrf (p1, p2) ->
        let bds1, m, id, p1 = pr_rule_def_cut m id p1 in
        let bds2, m, id, p2 = pr_rule_def_cut m id p2 in
        (bds2 @ bds1, m, id, LetPrf (p1, p2))
      | CutPrf p | Gcd (_, p) -> (
        let bds, m, id, p = pr_rule_def_cut m id p in
        try
          let id' = PrfRuleMap.find p m in
          (bds, m, id, Def id')
        with Not_found ->
          let m = PrfRuleMap.add p id m in
          ((id, p) :: bds, m, id + 1, Def id) )
      | (Square _ | Cst _ | Def _ | Hyp _ | Ref _ | Zero) as x -> ([], m, id, x)
    in
    pr_rule_def_cut m id p

  (* Do not define top-level cuts *)
  let pr_rule_def_cut m id = function
    | CutPrf p ->
      let bds, m, ids, p' = pr_rule_def_cut m id p in
      (bds, m, ids, CutPrf p')
    | p -> pr_rule_def_cut m id p

  let rec implicit_cut p = match p with CutPrf p -> implicit_cut p | _ -> p

  let rec pr_rule_collect_defs pr =
    match pr with
    | Annot (_, pr) -> pr_rule_collect_defs pr
    | Def i -> ISet.add i ISet.empty
    | Hyp i -> ISet.empty
    | Ref i -> ISet.empty
    | Cst _ | Zero | Square _ -> ISet.empty
    | MulC (_, pr) | Gcd (_, pr) | CutPrf pr -> pr_rule_collect_defs pr
    | MulPrf (p1, p2) | AddPrf (p1, p2) | LetPrf (p1, p2) ->
      ISet.union (pr_rule_collect_defs p1) (pr_rule_collect_defs p2)


  let add_proof x y =
    match (x, y) with Zero, p | p, Zero -> p | _ -> AddPrf (x, y)

  let rec mul_cst_proof c p =
    match p with
    | Annot (s, p) -> Annot (s, mul_cst_proof c p)
    | MulC (v, p') -> MulC (Vect.mul c v, p')
    | _ -> (
      match Q.sign c with
      | 0 -> Zero (* This is likely to be a bug *)
      | -1 ->
        MulC (LinPoly.constant c, p) (* [p] should represent an equality *)
      | 1 -> if Q.one =/ c then p else MulPrf (Cst c, p)
      | _ -> assert false )

  let sMulC v p =
    let c, v' = Vect.decomp_cst v in
    if Vect.is_null v' then mul_cst_proof c p else MulC (v, p)

  let mul_proof p1 p2 =
    match (p1, p2) with
    | Zero, _ | _, Zero -> Zero
    | Cst c, p | p, Cst c -> mul_cst_proof c p
    | _, _ -> MulPrf (p1, p2)

  let prf_rule_of_map m =
    PrfRuleMap.fold (fun k v acc -> add_proof (sMulC v k) acc) m Zero

  let rec dev_prf_rule p =
    match p with
    | Annot (s, p) -> dev_prf_rule p
    | Hyp _ | Def _ | Ref _ | Cst _ | Zero | Square _ ->
      PrfRuleMap.singleton p (LinPoly.constant Q.one)
    | MulC (v, p) ->
      PrfRuleMap.map (fun v1 -> LinPoly.product v v1) (dev_prf_rule p)
    | AddPrf (p1, p2) ->
      PrfRuleMap.merge
        (fun k o1 o2 ->
          match (o1, o2) with
          | None, None -> None
          | None, Some v | Some v, None -> Some v
          | Some v1, Some v2 -> Some (LinPoly.addition v1 v2))
        (dev_prf_rule p1) (dev_prf_rule p2)
    | MulPrf (p1, p2) -> (
      let p1' = dev_prf_rule p1 in
      let p2' = dev_prf_rule p2 in
      let p1'' = prf_rule_of_map p1' in
      let p2'' = prf_rule_of_map p2' in
      match p1'' with
      | Cst c -> PrfRuleMap.map (fun v1 -> Vect.mul c v1) p2'
      | _ -> PrfRuleMap.singleton (MulPrf (p1'', p2'')) (LinPoly.constant Q.one)
      )
    | Gcd (c, p) ->
      PrfRuleMap.singleton
        (Gcd (c, prf_rule_of_map (dev_prf_rule p)))
        (LinPoly.constant Q.one)
    | CutPrf p ->
      PrfRuleMap.singleton
        (CutPrf (prf_rule_of_map (dev_prf_rule p)))
        (LinPoly.constant Q.one)
    | LetPrf (p1, p2) ->
      let p1' = dev_prf_rule p1 in
      let p2' = dev_prf_rule p2 in
      let p1'' = prf_rule_of_map p1' in
      let p2'' = prf_rule_of_map p2' in
      PrfRuleMap.singleton (LetPrf (p1'', p2'')) (LinPoly.constant Q.one)

  let simplify_prf_rule p = prf_rule_of_map (dev_prf_rule p)

  (** [simplify_proof p] removes proof steps that are never re-used. *)
  let rec simplify_proof p =
    match p with
    | Done -> (Done, ISet.empty)
    | Step (i, pr, Done) -> (p, ISet.add i (pr_rule_collect_defs pr))
    | Step (i, pr, prf) ->
      let prf', hyps = simplify_proof prf in
      if not (ISet.mem i hyps) then (prf', hyps)
      else
        ( Step (i, pr, prf')
        , ISet.add i (ISet.union (pr_rule_collect_defs pr) hyps) )
    | Split (i, v, p1, p2) ->
      let p1, h1 = simplify_proof p1 in
      let p2, h2 = simplify_proof p2 in
      if not (ISet.mem i h1) then (p1, h1) (* Should not have computed p2 *)
      else if not (ISet.mem i h2) then (p2, h2)
      else (Split (i, v, p1, p2), ISet.add i (ISet.union h1 h2))
    | Enum (i, p1, v, p2, pl) ->
      let pl, hl = List.split (List.map simplify_proof pl) in
      let hyps = List.fold_left ISet.union ISet.empty hl in
      ( Enum (i, p1, v, p2, pl)
      , ISet.add i
          (ISet.union
             (ISet.union (pr_rule_collect_defs p1) (pr_rule_collect_defs p2))
             hyps) )
    | ExProof (i, j, k, x, z, t, prf) ->
      let prf', hyps = simplify_proof prf in
      if
        (not (ISet.mem i hyps))
        && (not (ISet.mem j hyps))
        && not (ISet.mem k hyps)
      then (prf', hyps)
      else
        ( ExProof (i, j, k, x, z, t, prf')
        , ISet.add i (ISet.add j (ISet.add k hyps)) )

  let rec normalise_proof id prf =
    match prf with
    | Done -> (id, Done)
    | Step (i, Gcd (c, p), Done) -> normalise_proof id (Step (i, p, Done))
    | Step (i, p, prf) ->
      let bds, m, id, p' =
        pr_rule_def_cut PrfRuleMap.empty id (simplify_prf_rule p)
      in
      let id, prf = normalise_proof id prf in
      let prf =
        List.fold_left
          (fun acc (i, p) -> Step (i, CutPrf p, acc))
          (Step (i, p', prf))
          bds
      in
      (id, prf)
    | Split (i, v, p1, p2) ->
      let id, p1 = normalise_proof id p1 in
      let id, p2 = normalise_proof id p2 in
      (id, Split (i, v, p1, p2))
    | ExProof (i, j, k, x, z, t, prf) ->
      let id, prf = normalise_proof id prf in
      (id, ExProof (i, j, k, x, z, t, prf))
    | Enum (i, p1, v, p2, pl) ->
      (* Why do I have  top-level cuts ? *)
      (* let p1 = implicit_cut p1 in
         let p2 = implicit_cut p2 in
         let (ids,prfs) = List.split (List.map (normalise_proof id) pl) in
           (List.fold_left max  0 ids ,
              Enum(i,p1,v,p2,prfs))
      *)
      let bds1, m, id, p1' =
        pr_rule_def_cut PrfRuleMap.empty id (implicit_cut p1)
      in
      let bds2, m, id, p2' = pr_rule_def_cut m id (implicit_cut p2) in
      let ids, prfs = List.split (List.map (normalise_proof id) pl) in
      ( List.fold_left max 0 ids
      , List.fold_left
          (fun acc (i, p) -> Step (i, CutPrf p, acc))
          (Enum (i, p1', v, p2', prfs))
          (bds2 @ bds1) )

  let normalise_proof id prf =
    let prf = fst (simplify_proof prf) in
    let res = normalise_proof id prf in
    if debug then
      Printf.printf "normalise_proof %a -> %a" output_proof prf output_proof
        (snd res);
    res

  (*
  let mul_proof p1 p2 =
    let res = mul_proof p1 p2 in
    Printf.printf "mul_proof %a %a = %a\n"
    output_prf_rule p1 output_prf_rule p2 output_prf_rule res; res

  let add_proof p1 p2 =
    let res = add_proof p1 p2 in
    Printf.printf "add_proof %a %a = %a\n"
    output_prf_rule p1 output_prf_rule p2 output_prf_rule res; res


  let sMulC v p =
    let res = sMulC v p in
    Printf.printf "sMulC %a %a = %a\n" Vect.pp v output_prf_rule p output_prf_rule res ;
    res

  let mul_cst_proof c p  =
    let res = mul_cst_proof c p in
    Printf.printf "mul_cst_proof %s %a = %a\n" (Num.string_of_num c) output_prf_rule p output_prf_rule res ;
    res
 *)

  let proof_of_farkas env vect =
    Vect.fold
      (fun prf x n -> add_proof (mul_cst_proof n (IMap.find x env)) prf)
      Zero vect

  module Env = struct

    type t =
      {
        lref  : int;
        lhyps : prf_rule list
      }

    let output_hyp_or_def o = function
      | Hyp i -> Printf.fprintf o "Hyp %i" i
      | Def i -> Printf.fprintf o "Def %i" i
      | _ -> ()

    let output_hyps o l = pp_list "," output_hyp_or_def o l

    let push_ref {lref;lhyps} =
      {lref = lref +1 ; lhyps}

    let push_def i {lref;lhyps} =
      if lref <> 0 then failwith "Cannot push def";
      {lref=lref;lhyps = Def i :: lhyps}

    let of_list l  = {lref = 0 ;lhyps = List.map (fun i -> Hyp i) l}
    let of_listi l = {lref = 0 ;lhyps = List.mapi (fun i _ -> Hyp i) l}

    let id_of_hyp hyp {lref;lhyps} =
      let rec xid_of_hyp i l' =
        match l' with
        | [] ->
          Printf.fprintf stdout "\nid_of_hyp: %a notin [%a]\n" output_hyp_or_def
            hyp output_hyps lhyps;
          flush stdout;
          failwith "Cannot find hyp or def"
        | hyp' :: l' -> if hyp = hyp' then i else xid_of_hyp (i + 1) l'
      in
      match hyp with
      | Ref i -> i
      | _     -> xid_of_hyp lref lhyps


  end


  let cmpl_prf_rule norm (cst : Q.t -> 'a) env prf =
    let rec cmpl env = function
      | Annot (s, p) -> cmpl env p
      | (Hyp _ | Def _| Ref _) as h -> Mc.PsatzIn (CamlToCoq.nat (Env.id_of_hyp h env))
      | Cst i -> Mc.PsatzC (cst i)
      | Zero -> Mc.PsatzZ
      | MulPrf (p1, p2) -> Mc.PsatzMulE (cmpl env p1, cmpl env p2)
      | AddPrf (p1, p2) -> Mc.PsatzAdd (cmpl env p1, cmpl env p2)
      | LetPrf (p1, p2) -> Mc.PsatzLet (cmpl env p1, cmpl (Env.push_ref env) p2)
      | MulC (lp, p) ->
        let lp = norm (LinPoly.coq_poly_of_linpol cst lp) in
        Mc.PsatzMulC (lp, cmpl env p)
      | Square lp -> Mc.PsatzSquare (norm (LinPoly.coq_poly_of_linpol cst lp))
      | _ -> failwith "Cuts should already be compiled"
    in
    cmpl env prf

  let cmpl_prf_rule_z env r =
    cmpl_prf_rule Mc.normZ (fun x -> CamlToCoq.bigint (Q.num x)) env r

  let cmpl_pol_z lp =
    try
      let cst x = CamlToCoq.bigint (Q.num x) in
      Mc.normZ (LinPoly.coq_poly_of_linpol cst lp)
    with x ->
      Printf.printf "cmpl_pol_z %s %a\n" (Printexc.to_string x) LinPoly.pp lp;
      raise x

  let rec cmpl_proof env prf =
    match prf with
    | Done -> Mc.DoneProof
    | Step (i, p, prf) -> (
      match p with
      | CutPrf p' ->
        Mc.CutProof (cmpl_prf_rule_z env p', cmpl_proof (Env.push_def i env) prf)
      | _ -> Mc.RatProof (cmpl_prf_rule_z env p, cmpl_proof (Env.push_def i  env) prf)
      )
    | Split (i, v, p1, p2) ->
      Mc.SplitProof
        ( cmpl_pol_z v
        , cmpl_proof (Env.push_def i env) p1
        , cmpl_proof (Env.push_def i env) p2 )
    | Enum (i, p1, _, p2, l) ->
      Mc.EnumProof
        ( cmpl_prf_rule_z env p1
        , cmpl_prf_rule_z env p2
        , List.map (cmpl_proof (Env.push_def i env)) l )
    | ExProof (i, j, k, x, _, _, prf) ->
      Mc.ExProof
        (CamlToCoq.positive x, cmpl_proof (Env.push_def i  (Env.push_def j (Env.push_def k env))) prf)

  let compile_proof env prf =
    let id = 1 + proof_max_def prf in
    let _, prf = normalise_proof id prf in
    cmpl_proof (Env.of_list env) prf

  let rec eval_prf_rule env = function
    | Annot (s, p) -> eval_prf_rule env p
    | Hyp i | Def i | Ref i -> env i
    | Cst n -> (
      ( Vect.set 0 n Vect.null
      , match Q.compare n Q.zero with
        | 0 -> Ge
        | 1 -> Gt
        | _ -> failwith "eval_prf_rule : negative constant" ) )
    | Zero -> (Vect.null, Ge)
    | Square v -> (LinPoly.product v v, Ge)
    | MulC (v, p) -> (
      let p1, o = eval_prf_rule env p in
      match o with
      | Eq -> (LinPoly.product v p1, Eq)
      | _ ->
        Printf.fprintf stdout "MulC(%a,%a) invalid 2d arg %a %s" Vect.pp v
          output_prf_rule p Vect.pp p1 (string_of_op o);
        failwith "eval_prf_rule : not an equality" )
    | Gcd (g, p) ->
      let v, op = eval_prf_rule env p in
      (Vect.div (Q.of_bigint g) v, op)
    | MulPrf (p1, p2) ->
      let v1, o1 = eval_prf_rule env p1 in
      let v2, o2 = eval_prf_rule env p2 in
      (LinPoly.product v1 v2, opMult o1 o2)
    | AddPrf (p1, p2) ->
      let v1, o1 = eval_prf_rule env p1 in
      let v2, o2 = eval_prf_rule env p2 in
      (LinPoly.addition v1 v2, opAdd o1 o2)
    | CutPrf p -> eval_prf_rule env p
    | LetPrf (p1, p2) ->
      let v1, o1 = eval_prf_rule env p1 in
      let v2, o2 =
        eval_prf_rule (fun i -> if i = 0 then (v1, o1) else env (i - 1)) p2
      in
      (v2, o2)

  let is_unsat (p, o) =
    let c, r = Vect.decomp_cst p in
    if Vect.is_null r then not (eval_op o c Q.zero) else false

  let rec eval_proof env p =
    match p with
    | Done -> failwith "Proof is not finished"
    | Step (i, prf, rst) ->
      let p, o = eval_prf_rule (fun i -> IMap.find i env) prf in
      if is_unsat (p, o) then true
      else if rst = Done then begin
        Printf.fprintf stdout "Last inference %a %s\n" LinPoly.pp p
          (string_of_op o);
        false
      end
      else eval_proof (IMap.add i (p, o) env) rst
    | Split (i, v, p1, p2) -> failwith "Not implemented"
    | Enum (i, r1, v, r2, l) ->
      let _ = eval_prf_rule (fun i -> IMap.find i env) r1 in
      let _ = eval_prf_rule (fun i -> IMap.find i env) r2 in
      (* Should check bounds *)
      failwith "Not implemented"
    | ExProof _ -> failwith "Not implemented"
end

module WithProof = struct
  type t = (LinPoly.t * op) * ProofFormat.prf_rule

  (* The comparison ignores proofs on purpose *)
  let compare : t -> t -> int =
   fun ((lp1, o1), _) ((lp2, o2), _) ->
    let c = Vect.compare lp1 lp2 in
    if c = 0 then compare_op o1 o2 else c

  let annot s (p, prf) = (p, ProofFormat.Annot (s, prf))

  let output o ((lp, op), prf) =
    Printf.fprintf o "%a %s 0 by %a\n" LinPoly.pp lp (string_of_op op)
      ProofFormat.output_prf_rule prf

  let output_sys o l = List.iter (Printf.fprintf o "%a\n" output) l

  exception InvalidProof

  let zero = ((Vect.null, Eq), ProofFormat.Zero)
  let const n = ((LinPoly.constant n, Ge), ProofFormat.Cst n)
  let of_cstr (c, prf) = ((Vect.set 0 (Q.neg c.cst) c.coeffs, c.op), prf)

  let product : t -> t -> t =
   fun ((p1, o1), prf1) ((p2, o2), prf2) ->
    ((LinPoly.product p1 p2, opMult o1 o2), ProofFormat.mul_proof prf1 prf2)

  let addition : t -> t -> t =
   fun ((p1, o1), prf1) ((p2, o2), prf2) ->
    ((Vect.add p1 p2, opAdd o1 o2), ProofFormat.add_proof prf1 prf2)

  let neg : t -> t =
   fun ((p1, o1), prf1) ->
    match o1 with
    | Eq ->
      ((Vect.mul Q.minus_one p1, o1), ProofFormat.mul_cst_proof Q.minus_one prf1)
    | _ -> failwith "neg: invalid proof"

  let mult p ((p1, o1), prf1) =
    match o1 with
    | Eq -> ((LinPoly.product p p1, o1), ProofFormat.sMulC p prf1)
    | Gt | Ge ->
      let n, r = Vect.decomp_cst p in
      if Vect.is_null r && n >/ Q.zero then
        ((LinPoly.product p p1, o1), ProofFormat.mul_cst_proof n prf1)
      else (
        if debug then
          Printf.printf "mult_error %a [*] %a\n" LinPoly.pp p output
            ((p1, o1), prf1);
        raise InvalidProof )

  let cutting_plane ((p, o), prf) =
    let c, p' = Vect.decomp_cst p in
    let g = Vect.gcd p' in
    if Z.equal Z.one g || c =/ Q.zero || not (Z.equal (Q.den c) Z.one) then None
      (* Nothing to do *)
    else
      let c1 = c // Q.of_bigint g in
      let c1' = Q.floor c1 in
      if c1 =/ c1' then None
      else
        match o with
        | Eq ->
          Some ((Vect.set 0 Q.minus_one Vect.null, Eq), ProofFormat.CutPrf prf)
        | Gt -> failwith "cutting_plane ignore strict constraints"
        | Ge ->
          (* This is a non-trivial common divisor *)
          Some
            ( (Vect.set 0 c1' (Vect.div (Q.of_bigint g) p), o)
            , ProofFormat.CutPrf prf )

  let construct_sign p =
    let c, p' = Vect.decomp_cst p in
    if Vect.is_null p' then
      Some
        ( match Q.sign c with
        | 0 -> (true, Eq, ProofFormat.Zero)
        | 1 -> (true, Gt, ProofFormat.Cst c)
        | _ (*-1*) -> (false, Gt, ProofFormat.Cst (Q.neg c)) )
    else None

  let get_sign l p =
    match construct_sign p with
    | None -> (
      try
        let (p', o), prf =
          List.find (fun ((p', o), prf) -> Vect.equal p p') l
        in
        Some (true, o, prf)
      with Not_found -> (
        let p = Vect.uminus p in
        try
          let (p', o), prf =
            List.find (fun ((p', o), prf) -> Vect.equal p p') l
          in
          Some (false, o, prf)
        with Not_found -> None ) )
    | Some s -> Some s

  let mult_sign : bool -> t -> t =
   fun b ((p, o), prf) -> if b then ((p, o), prf) else ((Vect.uminus p, o), prf)

  let rec linear_pivot sys ((lp1, op1), prf1) x ((lp2, op2), prf2) =
    (* lp1 = a1.x + b1 *)
    let a1, b1 = LinPoly.factorise x lp1 in
    (* lp2 = a2.x + b2 *)
    let a2, b2 = LinPoly.factorise x lp2 in
    if Vect.is_null a2 then (* We are done *)
      Some ((lp2, op2), prf2)
    else
      match (op1, op2) with
      | Eq, (Ge | Gt) -> (
        match get_sign sys a1 with
        | None -> None (* Impossible to pivot without sign information *)
        | Some (b, o, prf) ->
          let sa1 = mult_sign b ((a1, o), prf) in
          let sa2 = if b then Vect.uminus a2 else a2 in
          let (lp2, op2), prf2 =
            addition
              (product sa1 ((lp2, op2), prf2))
              (mult sa2 ((lp1, op1), prf1))
          in
          linear_pivot sys ((lp1, op1), prf1) x ((lp2, op2), prf2) )
      | Eq, Eq ->
        let (lp2, op2), prf2 =
          addition
            (mult a1 ((lp2, op2), prf2))
            (mult (Vect.uminus a2) ((lp1, op1), prf1))
        in
        linear_pivot sys ((lp1, op1), prf1) x ((lp2, op2), prf2)
      | (Ge | Gt), (Ge | Gt) -> (
        match (get_sign sys a1, get_sign sys a2) with
        | Some (b1, o1, p1), Some (b2, o2, p2) ->
          if b1 <> b2 then
            let (lp2, op2), prf2 =
              addition
                (product (mult_sign b1 ((a1, o1), p1)) ((lp2, op2), prf2))
                (product (mult_sign b2 ((a2, o2), p2)) ((lp1, op1), prf1))
            in
            linear_pivot sys ((lp1, op1), prf1) x ((lp2, op2), prf2)
          else None
        | _ -> None )
      | (Ge | Gt), Eq -> failwith "pivot: equality as second argument"

  let linear_pivot sys ((lp1, op1), prf1) x ((lp2, op2), prf2) =
    match linear_pivot sys ((lp1, op1), prf1) x ((lp2, op2), prf2) with
    | None -> None
    | Some (c, p) -> Some (c, ProofFormat.simplify_prf_rule p)

  let is_substitution strict ((p, o), prf) =
    let pred v = if strict then v =/ Q.one || v =/ Q.minus_one else true in
    match o with Eq -> LinPoly.search_linear pred p | _ -> None

  let subst1 sys0 =
    let oeq, sys' = extract (is_substitution true) sys0 in
    match oeq with
    | None -> sys0
    | Some (v, pc) -> (
      match simplify (linear_pivot sys0 pc v) sys' with
      | None -> sys0
      | Some sys' -> sys' )

  let sort (sys : t list) =
    let size ((p, o), prf) =
      let _, p' = Vect.decomp_cst p in
      let (x, q), p' = Vect.decomp_fst p' in
      Vect.fold
        (fun (l, (q, x)) x' q' ->
          let q' = Q.abs q' in
          (l + 1, if q </ q then (q, x) else (q', x')))
        (1, (Q.abs q, x))
        p
    in
    let cmp ((l1, (q1, _)), ((_, o), _)) ((l2, (q2, _)), ((_, o'), _)) =
      if l1 < l2 then -1 else if l1 = l2 then Q.compare q1 q2 else 1
    in
    List.sort cmp (List.rev_map (fun wp -> (size wp, wp)) sys)

  let iterate_pivot p sys0 =
    let elim sys =
      let oeq, sys' = extract p sys in
      match oeq with
      | None -> None
      | Some (v, pc) -> simplify (linear_pivot sys0 pc v) sys'
    in
    iterate_until_stable elim (List.map snd (sort sys0))

  let subst_constant is_int sys =
    let is_integer q = Q.(q =/ floor q) in
    let is_constant ((c, o), p) =
      match o with
      | Ge | Gt -> None
      | Eq -> (
        Vect.Bound.(
          match of_vect c with
          | None -> None
          | Some b ->
            if (not is_int) || is_integer (b.cst // b.coeff) then
              Monomial.get_var (LinPoly.MonT.retrieve b.var)
            else None) )
    in
    iterate_pivot is_constant sys

  let subst sys0 = iterate_pivot (is_substitution true) sys0

  let saturate_subst b sys0 =
    let select = is_substitution b in
    let gen (v, pc) ((c, op), prf) =
      if ISet.mem v (LinPoly.variables c) then
        linear_pivot sys0 pc v ((c, op), prf)
      else None
    in
    saturate select gen sys0

  let simple_pivot (q1, x) ((v1, o1), prf1) ((v2, o2), prf2) =
    let q2 = Vect.get x v2 in
    if q2 =/ Q.zero then None
    else
      let cv1, cv2 =
        if Q.sign q1 <> Q.sign q2 then (Q.abs q2, Q.abs q1)
        else
          match (o1, o2) with
          | Eq, _ -> (q2, Q.abs q1)
          | _, Eq -> (Q.abs q2, q2)
          | _, _ -> (Q.zero, Q.zero)
      in
      if cv2 =/ Q.zero then None
      else
        Some
          ( (Vect.mul_add cv1 v1 cv2 v2, opAdd o1 o2)
          , ProofFormat.add_proof
              (ProofFormat.mul_cst_proof cv1 prf1)
              (ProofFormat.mul_cst_proof cv2 prf2) )

end

module BoundWithProof =
struct

type t = Vect.Bound.t * op * ProofFormat.prf_rule

let bound_compare b1 b2 =
  let open Vect.Bound in
  let {cst = k1; var = v1; coeff = c1} = b1 in
  let {cst = k2; var = v2; coeff = c2} = b2 in
  let c = Int.compare v1 v2 in
  if c <> 0 then c
  else
    let c = Q.compare k1 k2 in
    if c <> 0 then c
    else Q.compare c1 c2

let compare (p1, o1, _) (p2, o2, _) =
  let c = bound_compare p1 p2 in
  if c = 0 then compare_op o1 o2 else c

let make ((p, o), prf) = match Vect.Bound.of_vect p with
| None -> None
| Some b -> Some (b, o, prf)

let padd (o1, prf1) (o2, prf2) = (opAdd o1 o2, ProofFormat.add_proof prf1 prf2)

let pmul (o1, prf1) (o2, prf2) = (opMult o1 o2, ProofFormat.mul_proof prf1 prf2)

let plet (o1,p1) (o2,p2) f  =
    match ProofFormat.pr_unit p1 , ProofFormat.pr_unit p2 with
    | true , true -> f (o1,p1) (o2,p2)
    | false , false ->
      let (o,prf) = f (o1,ProofFormat.Ref 1) (o2,ProofFormat.Ref 0) in
      (o, ProofFormat.LetPrf(p1,ProofFormat.LetPrf(p2,prf)))
    | true , false ->
      let (o,prf) = f (o1,p1) (o2,ProofFormat.Ref 0) in
      (o, ProofFormat.LetPrf(p2,prf))
    | false , true ->
      let (o,prf) = f (o1,ProofFormat.Ref 0) (o2,p2) in
      (o,ProofFormat.LetPrf(p1,prf))

let pext c (o, prf) =
  if c =/ Q.zero then (Eq, ProofFormat.Zero)
  else (o, ProofFormat.mul_cst_proof c prf)

let mul_bound (b1, o1, prf1) (b2, o2, prf2) =
  let open Vect.Bound in
  match (b1, b2) with
  | {cst = c1; var = v1; coeff = c1'},
    {cst = c2; var = v2; coeff = c2'} ->
    let good_coeff b o =
      match o with
      | Eq -> Some (Q.neg b)
      | _ -> if b <=/ Q.zero then Some (Q.neg b) else None
    in
    match (good_coeff c1 o2, good_coeff c2 o1) with
    | None, _ | _, None -> None
    | Some c1, Some c2 ->
      let w1 = (o1, prf1) in
      let w2 = (o2, prf2) in
      let (o, prf) = plet w1 w2 (fun w1 w2 -> padd (padd (pmul w1 w2) (pext c1 w2)) (pext c2 w1)) in
      let b = {
        cst = Q.neg (c1 */ c2);
        var = LinPoly.MonT.register (Monomial.prod (LinPoly.MonT.retrieve v1) (LinPoly.MonT.retrieve v2));
        coeff = c1' */ c2';
      } in
      Some (b, o, prf)

let bound (b, _, _) = b

let proof (b, o, w) =
  let p = Vect.Bound.to_vect b in
  ((p, o), w)
end

(* Local Variables: *)
(* coding: utf-8 *)
(* End: *)
OCaml

Innovation. Community. Security.