Source file acyclicGraph.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
type constraint_type = Lt | Le | Eq
module type Point = sig
type t
module Set : CSig.SetS with type elt = t
module Map : CMap.ExtS with type key = t and module Set := Set
val equal : t -> t -> bool
val compare : t -> t -> int
val pr : t -> Pp.t
end
module Make (Point:Point) = struct
module Index :
sig
type t
val equal : t -> t -> bool
module Set : CSig.SetS with type elt = t
module Map : CMap.ExtS with type key = t and module Set := Set
type table
val empty : table
val fresh : Point.t -> table -> t * table
val mem : Point.t -> table -> bool
val find : Point.t -> table -> t
val repr : t -> table -> Point.t
val hash : t -> int
end =
struct
type t = int
let equal = Int.equal
module Set = Int.Set
module Map = Int.Map
type table = {
tab_len : int;
tab_fwd : Point.t Int.Map.t;
tab_bwd : int Point.Map.t
}
let empty = {
tab_len = 0;
tab_fwd = Int.Map.empty;
tab_bwd = Point.Map.empty;
}
let mem x t = Point.Map.mem x t.tab_bwd
let find x t = Point.Map.find x t.tab_bwd
let repr n t = Int.Map.find n t.tab_fwd
let fresh x t =
let () = assert (not @@ mem x t) in
let n = t.tab_len in
n, {
tab_len = n + 1;
tab_fwd = Int.Map.add n x t.tab_fwd;
tab_bwd = Point.Map.add x n t.tab_bwd;
}
let hash x = x
end
module PMap = Index.Map
module PSet = Index.Set
type canonical_node =
{ canon: Index.t;
ltle: bool PMap.t;
gtge: PSet.t;
rank : int;
klvl: int;
ilvl: int;
}
type entry =
| Canonical of canonical_node
| Equiv of Index.t
type t =
{ entries : entry PMap.t;
index : int;
n_nodes : int; n_edges : int;
table : Index.table }
module CN = struct
type t = canonical_node
let equal x y = x.canon == y.canon
let hash x = Index.hash x.canon
end
module Status = struct
module Internal = Hashtbl.Make(CN)
(** we could experiment with creation size based on the size of [g] *)
let create (g:t) = Internal.create 17
let mem = Internal.mem
let find = Internal.find
let replace = Internal.replace
let fold = Internal.fold
end
let enter_equiv g u v =
{ entries =
PMap.modify u (fun _ a ->
match a with
| Canonical n ->
Equiv v
| _ -> assert false) g.entries;
index = g.index;
n_nodes = g.n_nodes - 1;
n_edges = g.n_edges;
table = g.table }
let change_node g n =
{ g with entries =
PMap.modify n.canon
(fun _ a ->
match a with
| Canonical _ ->
Canonical n
| _ -> assert false)
g.entries }
let rec repr g u =
match PMap.find u g.entries with
| Equiv v -> repr g v
| Canonical arc -> arc
let repr_node g u =
try repr g (Index.find u g.table)
with Not_found ->
CErrors.anomaly ~label:"Univ.repr"
Pp.(str"Universe " ++ Point.pr u ++ str" undefined.")
exception AlreadyDeclared
let use_index g u =
let u = repr g u in
let g = change_node g { u with ilvl = g.index } in
assert (g.index > min_int);
{ g with index = g.index - 1 }
let topo_compare u v =
if u.klvl > v.klvl then 1
else if u.klvl < v.klvl then -1
else if u.ilvl > v.ilvl then 1
else if u.ilvl < v.ilvl then -1
else (assert (u==v); 0)
let check_invariants ~required_canonical g =
let required_canonical u = required_canonical (Index.repr u g.table) in
let n_edges = ref 0 in
let n_nodes = ref 0 in
PMap.iter (fun l u ->
match u with
| Canonical u ->
PMap.iter (fun v _strict ->
incr n_edges;
let v = repr g v in
assert (topo_compare u v = -1);
if u.klvl = v.klvl then
assert (PSet.mem u.canon v.gtge ||
PSet.exists (fun l -> u == repr g l) v.gtge))
u.ltle;
PSet.iter (fun v ->
let v = repr g v in
assert (v.klvl = u.klvl &&
(PMap.mem u.canon v.ltle ||
PMap.exists (fun l _ -> u == repr g l) v.ltle))
) u.gtge;
assert (Index.equal l u.canon);
assert (u.ilvl > g.index);
assert (not (PMap.mem u.canon u.ltle));
incr n_nodes
| Equiv _ -> assert (not (required_canonical l)))
g.entries;
assert (!n_edges = g.n_edges);
assert (!n_nodes = g.n_nodes)
let clean_ltle g ltle =
PMap.fold (fun u strict acc ->
let uu = (repr g u).canon in
if Index.equal uu u then acc
else (
let acc = PMap.remove u (fst acc) in
if not strict && PMap.mem uu acc then (acc, true)
else (PMap.add uu strict acc, true)))
ltle (ltle, false)
let clean_gtge g gtge =
PSet.fold (fun u acc ->
let uu = (repr g u).canon in
if Index.equal uu u then acc
else PSet.add uu (PSet.remove u (fst acc)), true)
gtge (gtge, false)
let get_ltle g u =
let ltle, chgt_ltle = clean_ltle g u.ltle in
if not chgt_ltle then u.ltle, u, g
else
let sz = PMap.cardinal u.ltle in
let sz2 = PMap.cardinal ltle in
let u = { u with ltle } in
let g = change_node g u in
let g = { g with n_edges = g.n_edges + sz2 - sz } in
u.ltle, u, g
let get_gtge g u =
let gtge, chgt_gtge = clean_gtge g u.gtge in
if not chgt_gtge then u.gtge, u, g
else
let u = { u with gtge } in
let g = change_node g u in
u.gtge, u, g
exception AbortBackward of t
exception CycleDetected
let rec backward_traverse status b_traversed count g x =
let count = count - 1 in
if count < 0 then begin
raise_notrace (AbortBackward g)
end;
if Status.mem status x then b_traversed, count, g
else begin
Status.replace status x ();
let gtge, x, g = get_gtge g x in
let b_traversed, count, g =
PSet.fold (fun y (b_traversed, count, g) ->
let y = repr g y in
backward_traverse status b_traversed count g y)
gtge (b_traversed, count, g)
in
x.canon::b_traversed, count, g
end
let backward_traverse count g x = backward_traverse (Status.create g) [] count g x
let rec forward_traverse f_traversed g v_klvl x y =
let y = repr g y in
if y.klvl < v_klvl then begin
let y = { y with klvl = v_klvl;
gtge = if x == y then PSet.empty
else PSet.singleton x.canon }
in
let g = change_node g y in
let ltle, y, g = get_ltle g y in
let f_traversed, g =
PMap.fold (fun z _ (f_traversed, g) ->
forward_traverse f_traversed g v_klvl y z)
ltle (f_traversed, g)
in
y.canon::f_traversed, g
end else if y.klvl = v_klvl && x != y then
let g = change_node g
{ y with gtge = PSet.add x.canon y.gtge } in
f_traversed, g
else f_traversed, g
let rec find_to_merge status g x v =
let x = repr g x in
match Status.find status x with
| merge -> merge
| exception Not_found ->
if Index.equal x.canon v then begin
Status.replace status x true;
true
end
else
begin
let merge = PSet.fold
(fun y merge ->
let merge' = find_to_merge status g y v in
merge' || merge) x.gtge false
in
Status.replace status x merge;
merge
end
let find_to_merge g x v =
let status = Status.create g in
status, find_to_merge status g x v
let get_new_edges g to_merge =
let ltle =
let fold acc n =
let fold u strict acc =
match PMap.find u acc with
| true -> acc
| false -> if strict then PMap.add u true acc else acc
| exception Not_found -> PMap.add u strict acc
in
PMap.fold fold n.ltle acc
in
match to_merge with
| [] -> assert false
| hd :: tl -> List.fold_left fold hd.ltle tl
in
let ltle, _ = clean_ltle g ltle in
let fold accu a =
match PMap.find a.canon ltle with
| true ->
raise_notrace CycleDetected
| false -> PMap.remove a.canon accu
| exception Not_found -> accu
in
let ltle = List.fold_left fold ltle to_merge in
let gtge =
List.fold_left (fun acc n -> PSet.union acc n.gtge)
PSet.empty to_merge
in
let gtge, _ = clean_gtge g gtge in
let gtge = List.fold_left (fun acc n -> PSet.remove n.canon acc) gtge to_merge in
(ltle, gtge)
let reorder g u v =
let b_traversed, v_klvl, g =
let u = repr g u in
try
let b_traversed, _, g = backward_traverse (u.klvl + 1) g u in
let v_klvl = u.klvl in
b_traversed, v_klvl, g
with AbortBackward g ->
let v_klvl = u.klvl + 1 in
[], v_klvl, g
in
let f_traversed, g =
forward_traverse [] g v_klvl (repr g v) v
in
let to_merge, b_reindex, f_reindex =
if (repr g u).klvl = v_klvl then
begin
let status, merge = find_to_merge g u v in
if merge then
let not_merged u = try not (Status.find status (repr g u)) with Not_found -> true in
Status.fold (fun u merged acc -> if merged then u::acc else acc) status [],
List.filter not_merged b_traversed,
List.filter not_merged f_traversed
else [], b_traversed, f_traversed
end
else [], b_traversed, f_traversed
in
let to_reindex, g =
match to_merge with
| [] -> List.rev_append f_reindex b_reindex, g
| n0::q0 ->
let root, rank_rest =
List.fold_left (fun ((best, _rank_rest) as acc) n ->
if n.rank >= best.rank then n, best.rank else acc)
(n0, min_int) q0
in
let ltle, gtge = get_new_edges g to_merge in
let g = change_node g
{ root with ltle; gtge;
rank = max root.rank (rank_rest + 1); }
in
let g = List.fold_left (fun g n ->
if Index.equal n.canon root.canon then g else enter_equiv g n.canon root.canon)
g to_merge
in
let oldsz =
List.fold_left (fun sz u -> sz+PMap.cardinal u.ltle)
0 to_merge
in
let sz = PMap.cardinal ltle in
let g = { g with n_edges = g.n_edges + sz - oldsz } in
List.rev_append f_reindex (root.canon::b_reindex), g
in
List.fold_left use_index g to_reindex
let insert_edge strict ucan vcan g =
try
let u = ucan.canon and v = vcan.canon in
let g = if topo_compare ucan vcan <= 0 then g else reorder g u v in
let u = repr g u in
let v = repr g v in
if u == v then
if strict then raise_notrace CycleDetected else g
else
let g =
try let oldstrict = PMap.find v.canon u.ltle in
if strict && not oldstrict then
change_node g { u with ltle = PMap.add v.canon true u.ltle }
else g
with Not_found ->
{ (change_node g { u with ltle = PMap.add v.canon strict u.ltle })
with n_edges = g.n_edges + 1 }
in
if u.klvl <> v.klvl || PSet.mem u.canon v.gtge then g
else
let v = { v with gtge = PSet.add u.canon v.gtge } in
change_node g v
with
| CycleDetected as e -> raise_notrace e
let add ?(rank=0) v g =
if Index.mem v g.table then raise AlreadyDeclared
else
let () = assert (g.index > min_int) in
let v, table = Index.fresh v g.table in
let node = {
canon = v;
ltle = PMap.empty;
gtge = PSet.empty;
rank;
klvl = 0;
ilvl = g.index;
}
in
let entries = PMap.add v (Canonical node) g.entries in
{ entries; index = g.index - 1; n_nodes = g.n_nodes + 1; n_edges = g.n_edges; table }
exception Undeclared of Point.t
let check_declared g us =
let check l = if not (Index.mem l g.table) then raise (Undeclared l) in
Point.Set.iter check us
exception Found_explanation of (constraint_type * Point.t) list
let get_explanation strict u v g =
let u = Index.find u g.table in
let v = repr_node g v in
let visited_strict = ref PMap.empty in
let rec traverse strict u =
if u == v then
if strict then None else Some []
else if topo_compare u v = 1 then None
else
let visited =
try not (PMap.find u.canon !visited_strict) || strict
with Not_found -> false
in
if visited then None
else begin
visited_strict := PMap.add u.canon strict !visited_strict;
try
PMap.iter (fun u' strictu' ->
match traverse (strict && not strictu') (repr g u') with
| None -> ()
| Some exp ->
let typ = if strictu' then Lt else Le in
let u' = Index.repr u' g.table in
raise_notrace (Found_explanation ((typ, u') :: exp)))
u.ltle;
None
with Found_explanation exp -> Some exp
end
in
let u = repr g u in
if u == v then [(Eq, Index.repr v.canon g.table)]
else match traverse strict u with Some exp -> exp | None -> assert false
exception Found
type visited = WeakVisited | Visited
let search_path strict u v g =
let rec loop status todo next_todo =
match todo, next_todo with
| [], [] -> ()
| [], _ -> loop status next_todo []
| (u, strict)::todo, _ ->
let is_visited = match Status.find status u with
| Visited -> true
| WeakVisited -> strict
| exception Not_found -> false
in
if is_visited
then loop status todo next_todo
else begin
Status.replace status u (if strict then WeakVisited else Visited);
if try PMap.find v.canon u.ltle || not strict
with Not_found -> false
then raise_notrace Found
else
begin
let next_todo =
PMap.fold (fun u strictu next_todo ->
let strict = not strictu && strict in
let u = repr g u in
if u == v && not strict then raise_notrace Found
else if topo_compare u v = 1 then next_todo
else (u, strict)::next_todo)
u.ltle next_todo
in
loop status todo next_todo
end
end
in
if u == v then not strict
else
try loop (Status.create g) [u, strict] []; false
with Found -> true
(** Uncomment to debug the cycle detection algorithm. *)
(** User interface *)
type 'a check_function = t -> 'a -> 'a -> bool
let check_eq g u v =
u == v ||
let arcu = repr_node g u and arcv = repr_node g v in
arcu == arcv
let check_smaller g strict u v =
search_path strict (repr_node g u) (repr_node g v) g
let check_leq g u v = check_smaller g false u v
let check_lt g u v = check_smaller g true u v
let get_explanation (u, c, v) g = match c with
| Eq ->
if check_lt g u v then get_explanation true u v g else get_explanation true v u g
| Le -> get_explanation true v u g
| Lt -> get_explanation false v u g
let enforce_eq u v g =
let ucan = repr_node g u in
let vcan = repr_node g v in
if ucan == vcan then Some g
else if topo_compare ucan vcan = 1 then
let ucan = vcan and vcan = ucan in
let g = insert_edge false ucan vcan g in
try Some (insert_edge false vcan ucan g)
with CycleDetected -> None
else
let g = insert_edge false ucan vcan g in
try Some (insert_edge false vcan ucan g)
with CycleDetected -> None
let enforce_leq u v g =
let ucan = repr_node g u in
let vcan = repr_node g v in
try Some (insert_edge false ucan vcan g)
with CycleDetected -> None
let enforce_lt u v g =
let ucan = repr_node g u in
let vcan = repr_node g v in
try Some (insert_edge true ucan vcan g)
with CycleDetected -> None
let empty =
{ entries = PMap.empty; index = 0; n_nodes = 0; n_edges = 0; table = Index.empty }
type 'a constraint_fold = Point.t * constraint_type * Point.t -> 'a -> 'a
let constraints_of g fold accu =
let module UF = Unionfind.Make (Point.Set) (Point.Map) in
let uf = UF.create () in
let constraints_of u v acc =
match v with
| Canonical {canon=u; ltle; _} ->
PMap.fold (fun v strict acc->
let typ = if strict then Lt else Le in
let u = Index.repr u g.table in
let v = Index.repr v g.table in
fold (u,typ,v) acc) ltle acc
| Equiv v ->
let u = Index.repr u g.table in
let v = Index.repr v g.table in
UF.union u v uf; acc
in
let csts = PMap.fold constraints_of g.entries accu in
csts, UF.partition uf
let constraints_for ~kept g fold accu =
let add_cst u knd v cst =
fold (Index.repr u g.table, knd, Index.repr v g.table) cst
in
let kept = Point.Set.fold (fun u accu -> PSet.add (Index.find u g.table) accu) kept PSet.empty in
let rmap, csts = PSet.fold (fun u (rmap,csts) ->
let arcu = repr g u in
if PSet.mem arcu.canon kept then
let csts = if Index.equal u arcu.canon then csts
else add_cst u Eq arcu.canon csts
in
PMap.add arcu.canon arcu.canon rmap, csts
else
match PMap.find arcu.canon rmap with
| v -> rmap, add_cst u Eq v csts
| exception Not_found -> PMap.add arcu.canon u rmap, csts)
kept (PMap.empty, accu)
in
let rec add_from u csts todo = match todo with
| [] -> csts
| (v,strict)::todo ->
let v = repr g v in
(match PMap.find v.canon rmap with
| v ->
let d = if strict then Lt else Le in
let csts = add_cst u d v csts in
add_from u csts todo
| exception Not_found ->
let todo = PMap.fold (fun v' strict' todo ->
(v',strict || strict') :: todo)
v.ltle todo
in
add_from u csts todo)
in
PSet.fold (fun u csts ->
let arc = repr g u in
PMap.fold (fun v strict csts -> add_from u csts [v,strict])
arc.ltle csts)
kept csts
let domain g =
let fold u _ accu = Point.Set.add (Index.repr u g.table) accu in
PMap.fold fold g.entries Point.Set.empty
let choose p g u =
let exception Found of Point.t in
let ru = (repr_node g u).canon in
let ruv = Index.repr ru g.table in
if p ruv then Some ruv
else
try PMap.iter (fun v -> function
| Canonical _ -> ()
| Equiv v' ->
let rv = (repr g v').canon in
if rv == ru then
let v = Index.repr v g.table in
if p v then raise_notrace (Found v)
) g.entries; None
with Found v -> Some v
type node = Alias of Point.t | Node of bool Point.Map.t
type repr = node Point.Map.t
let repr g =
let fold u n accu =
let n = match n with
| Canonical n ->
let fold u lt accu = Point.Map.add (Index.repr u g.table) lt accu in
let ltle = PMap.fold fold n.ltle Point.Map.empty in
Node ltle
| Equiv u -> Alias (Index.repr u g.table)
in
Point.Map.add (Index.repr u g.table) n accu
in
PMap.fold fold g.entries Point.Map.empty
end