Source file grammar.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
open Gramext
open Format
open Util
type norec
type mayrec
module type S = sig
type te
type 'c pattern
type ty_pattern = TPattern : 'a pattern -> ty_pattern
module Parsable : sig
type t
val make : ?loc:Loc.t -> char Stream.t -> t
end
module Entry : sig
type 'a t
val make : string -> 'a t
val create : string -> 'a t
val parse : 'a t -> Parsable.t -> 'a
val name : 'a t -> string
type 'a parser_fun = { parser_fun : te LStream.t -> 'a }
val of_parser : string -> 'a parser_fun -> 'a t
val parse_token_stream : 'a t -> te LStream.t -> 'a
val print : Format.formatter -> 'a t -> unit
val is_empty : 'a t -> bool
end
module rec Symbol : sig
type ('self, 'trec, 'a) t
val nterm : 'a Entry.t -> ('self, norec, 'a) t
val nterml : 'a Entry.t -> string -> ('self, norec, 'a) t
val list0 : ('self, 'trec, 'a) t -> ('self, 'trec, 'a list) t
val list0sep :
('self, 'trec, 'a) t -> ('self, norec, unit) t -> bool ->
('self, 'trec, 'a list) t
val list1 : ('self, 'trec, 'a) t -> ('self, 'trec, 'a list) t
val list1sep :
('self, 'trec, 'a) t -> ('self, norec, unit) t -> bool ->
('self, 'trec, 'a list) t
val opt : ('self, 'trec, 'a) t -> ('self, 'trec, 'a option) t
val self : ('self, mayrec, 'self) t
val next : ('self, mayrec, 'self) t
val token : 'c pattern -> ('self, norec, 'c) t
val tokens : ty_pattern list -> ('self, norec, unit) t
val rules : 'a Rules.t list -> ('self, norec, 'a) t
end and Rule : sig
type ('self, 'trec, 'f, 'r) t
val stop : ('self, norec, 'r, 'r) t
val next :
('self, _, 'a, 'r) t -> ('self, _, 'b) Symbol.t ->
('self, mayrec, 'b -> 'a, 'r) t
val next_norec :
('self, norec, 'a, 'r) Rule.t -> ('self, norec, 'b) Symbol.t ->
('self, norec, 'b -> 'a, 'r) t
end and Rules : sig
type 'a t
val make : (_, norec, 'f, Loc.t -> 'a) Rule.t -> 'f -> 'a t
end
module Production : sig
type 'a t
val make : ('a, _, 'f, Loc.t -> 'a) Rule.t -> 'f -> 'a t
end
type 'a single_extend_statement =
string option * Gramext.g_assoc option * 'a Production.t list
type 'a extend_statement =
| Reuse of string option * 'a Production.t list
| Fresh of Gramext.position * 'a single_extend_statement list
val generalize_symbol : ('a, 'tr, 'c) Symbol.t -> ('a, norec, 'c) Symbol.t option
val level_of_nonterm : ('a, norec, 'c) Symbol.t -> string option
end
module type ExtS = sig
include S
val safe_extend : 'a Entry.t -> 'a extend_statement -> unit
val safe_delete_rule : 'a Entry.t -> 'a Production.t -> unit
module Unsafe : sig
val clear_entry : 'a Entry.t -> unit
end
end
module GMake (L : Plexing.S) = struct
type te = L.te
type 'c pattern = 'c L.pattern
type ty_pattern = TPattern : 'a pattern -> ty_pattern
type 'a parser_t = L.te LStream.t -> 'a
type grammar =
{ gtokens : (string * string option, int ref) Hashtbl.t }
let egram =
{ gtokens = Hashtbl.create 301 }
(** Used to propagate possible presence of SELF/NEXT in a rule (binary and) *)
type ('a, 'b, 'c) ty_and_rec =
| NoRec2 : (norec, norec, norec) ty_and_rec
| MayRec2 : ('a, 'b, mayrec) ty_and_rec
(** Used to propagate possible presence of SELF/NEXT in a tree (ternary and) *)
type ('a, 'b, 'c, 'd) ty_and_rec3 =
| NoRec3 : (norec, norec, norec, norec) ty_and_rec3
| MayRec3 : ('a, 'b, 'c, mayrec) ty_and_rec3
type 'a ty_entry = {
ename : string;
mutable estart : int -> 'a parser_t;
mutable econtinue : int -> int -> 'a -> 'a parser_t;
mutable edesc : 'a ty_desc;
}
and 'a ty_desc =
| Dlevels of 'a ty_level list
| Dparser of 'a parser_t
and 'a ty_level = Level : (_, _, 'a) ty_rec_level -> 'a ty_level
and ('trecs, 'trecp, 'a) ty_rec_level = {
assoc : g_assoc;
lname : string option;
lsuffix : ('a, 'trecs, 'a -> Loc.t -> 'a) ty_tree;
lprefix : ('a, 'trecp, Loc.t -> 'a) ty_tree;
}
and ('self, 'trec, 'a) ty_symbol =
| Stoken : 'c pattern -> ('self, norec, 'c) ty_symbol
| Stokens : ty_pattern list -> ('self, norec, unit) ty_symbol
| Slist1 : ('self, 'trec, 'a) ty_symbol -> ('self, 'trec, 'a list) ty_symbol
| Slist1sep : ('self, 'trec, 'a) ty_symbol * ('self, norec, unit) ty_symbol * bool -> ('self, 'trec, 'a list) ty_symbol
| Slist0 : ('self, 'trec, 'a) ty_symbol -> ('self, 'trec, 'a list) ty_symbol
| Slist0sep : ('self, 'trec, 'a) ty_symbol * ('self, norec, unit) ty_symbol * bool -> ('self, 'trec, 'a list) ty_symbol
| Sopt : ('self, 'trec, 'a) ty_symbol -> ('self, 'trec, 'a option) ty_symbol
| Sself : ('self, mayrec, 'self) ty_symbol
| Snext : ('self, mayrec, 'self) ty_symbol
| Snterm : 'a ty_entry -> ('self, norec, 'a) ty_symbol
| Snterml : 'a ty_entry * string -> ('self, norec, 'a) ty_symbol
| Stree : ('self, 'trec, Loc.t -> 'a) ty_tree -> ('self, 'trec, 'a) ty_symbol
and ('self, _, _, 'r) ty_rule =
| TStop : ('self, norec, 'r, 'r) ty_rule
| TNext : ('trr, 'trs, 'tr) ty_and_rec * ('self, 'trr, 'a, 'r) ty_rule * ('self, 'trs, 'b) ty_symbol -> ('self, 'tr, 'b -> 'a, 'r) ty_rule
and ('self, 'trec, 'a) ty_tree =
| Node : ('trn, 'trs, 'trb, 'tr) ty_and_rec3 * ('self, 'trn, 'trs, 'trb, 'b, 'a) ty_node -> ('self, 'tr, 'a) ty_tree
| LocAct : 'k * 'k list -> ('self, norec, 'k) ty_tree
| DeadEnd : ('self, norec, 'k) ty_tree
and ('self, 'trec, 'trecs, 'trecb, 'a, 'r) ty_node = {
node : ('self, 'trec, 'a) ty_symbol;
son : ('self, 'trecs, 'a -> 'r) ty_tree;
brother : ('self, 'trecb, 'r) ty_tree;
}
type 'a ty_rules =
| TRules : (_, norec, 'act, Loc.t -> 'a) ty_rule * 'act -> 'a ty_rules
type 'a ty_production =
| TProd : ('a, _, 'act, Loc.t -> 'a) ty_rule * 'act -> 'a ty_production
let rec derive_eps : type s r a. (s, r, a) ty_symbol -> bool =
function
Slist0 _ -> true
| Slist0sep (_, _, _) -> true
| Sopt _ -> true
| Stree t -> tree_derive_eps t
| Slist1 _ -> false
| Slist1sep (_, _, _) -> false
| Snterm _ -> false | Snterml (_, _) -> false
| Snext -> false
| Sself -> false
| Stoken _ -> false
| Stokens _ -> false
and tree_derive_eps : type s tr a. (s, tr, a) ty_tree -> bool =
function
LocAct (_, _) -> true
| Node (_, {node = s; brother = bro; son = son}) ->
derive_eps s && tree_derive_eps son || tree_derive_eps bro
| DeadEnd -> false
(** FIXME: find a way to do that type-safely *)
let eq_entry : type a1 a2. a1 ty_entry -> a2 ty_entry -> (a1, a2) eq option = fun e1 e2 ->
if (Obj.magic e1) == (Obj.magic e2) then Some (Obj.magic Refl)
else None
let tok_pattern_eq_list pl1 pl2 =
let f (TPattern p1) (TPattern p2) = Option.has_some (L.tok_pattern_eq p1 p2) in
if List.for_all2eq f pl1 pl2 then Some Refl else None
let rec eq_symbol : type s r1 r2 a1 a2. (s, r1, a1) ty_symbol -> (s, r2, a2) ty_symbol -> (a1, a2) eq option = fun s1 s2 ->
match s1, s2 with
Snterm e1, Snterm e2 -> eq_entry e1 e2
| Snterml (e1, l1), Snterml (e2, l2) ->
if String.equal l1 l2 then eq_entry e1 e2 else None
| Slist0 s1, Slist0 s2 ->
begin match eq_symbol s1 s2 with None -> None | Some Refl -> Some Refl end
| Slist0sep (s1, sep1, b1), Slist0sep (s2, sep2, b2) ->
if b1 = b2 then match eq_symbol s1 s2 with
| None -> None
| Some Refl ->
match eq_symbol sep1 sep2 with
| None -> None
| Some Refl -> Some Refl
else None
| Slist1 s1, Slist1 s2 ->
begin match eq_symbol s1 s2 with None -> None | Some Refl -> Some Refl end
| Slist1sep (s1, sep1, b1), Slist1sep (s2, sep2, b2) ->
if b1 = b2 then match eq_symbol s1 s2 with
| None -> None
| Some Refl ->
match eq_symbol sep1 sep2 with
| None -> None
| Some Refl -> Some Refl
else None
| Sopt s1, Sopt s2 ->
begin match eq_symbol s1 s2 with None -> None | Some Refl -> Some Refl end
| Stree _, Stree _ -> None
| Sself, Sself -> Some Refl
| Snext, Snext -> Some Refl
| Stoken p1, Stoken p2 -> L.tok_pattern_eq p1 p2
| Stokens pl1, Stokens pl2 -> tok_pattern_eq_list pl1 pl2
| _ -> None
let is_before : type s1 s2 r1 r2 a1 a2. (s1, r1, a1) ty_symbol -> (s2, r2, a2) ty_symbol -> bool = fun s1 s2 ->
match s1, s2 with
| Stoken p1, Stoken p2 ->
snd (L.tok_pattern_strings p1) <> None
&& snd (L.tok_pattern_strings p2) = None
| Stoken _, _ -> true
| _ -> false
(** Ancillary datatypes *)
type 'a ty_rec = MayRec : mayrec ty_rec | NoRec : norec ty_rec
type ('a, 'b, 'c) ty_and_ex =
| NR00 : (mayrec, mayrec, mayrec) ty_and_ex
| NR01 : (mayrec, norec, mayrec) ty_and_ex
| NR10 : (norec, mayrec, mayrec) ty_and_ex
| NR11 : (norec, norec, norec) ty_and_ex
type ('a, 'b) ty_mayrec_and_ex =
| MayRecNR : ('a, 'b, _) ty_and_ex -> ('a, 'b) ty_mayrec_and_ex
type ('s, 'a) ty_mayrec_symbol =
| MayRecSymbol : ('s, _, 'a) ty_symbol -> ('s, 'a) ty_mayrec_symbol
type ('s, 'a) ty_mayrec_tree =
| MayRecTree : ('s, 'tr, 'a) ty_tree -> ('s, 'a) ty_mayrec_tree
type ('s, 'a, 'r) ty_mayrec_rule =
| MayRecRule : ('s, _, 'a, 'r) ty_rule -> ('s, 'a, 'r) ty_mayrec_rule
type ('self, 'trec, _) ty_symbols =
| TNil : ('self, norec, unit) ty_symbols
| TCns : ('trh, 'trt, 'tr) ty_and_rec * ('self, 'trh, 'a) ty_symbol * ('self, 'trt, 'b) ty_symbols -> ('self, 'tr, 'a * 'b) ty_symbols
(** ('i, 'p, 'f, 'r) rel_prod0 ~
∃ α₁ ... αₙ.
p ≡ αₙ * ... α₁ * 'i ∧
f ≡ α₁ -> ... -> αₙ -> 'r
*)
type ('i, _, 'f, _) rel_prod0 =
| Rel0 : ('i, 'i, 'f, 'f) rel_prod0
| RelS : ('i, 'p, 'f, 'a -> 'r) rel_prod0 -> ('i, 'a * 'p, 'f, 'r) rel_prod0
type ('p, 'k, 'r) rel_prod = (unit, 'p, 'k, 'r) rel_prod0
type ('s, 'tr, 'i, 'k, 'r) any_symbols =
| AnyS : ('s, 'tr, 'p) ty_symbols * ('i, 'p, 'k, 'r) rel_prod0 -> ('s, 'tr, 'i, 'k, 'r) any_symbols
type ('s, 'tr, 'k, 'r) ty_belast_rule =
| Belast : ('trr, 'trs, 'tr) ty_and_rec * ('s, 'trr, 'k, 'a -> 'r) ty_rule * ('s, 'trs, 'a) ty_symbol -> ('s, 'tr, 'k, 'r) ty_belast_rule
let rec get_symbols : type s trec k r. (s, trec, k, r) ty_rule -> (s, trec, unit, k, r) any_symbols =
let rec belast_rule : type s trr trs tr a k r. (trr, trs, tr) ty_and_rec -> (s, trr, k, r) ty_rule -> (s, trs, a) ty_symbol -> (s, tr, a -> k, r) ty_belast_rule =
fun ar r s -> match ar, r with
| NoRec2, TStop -> Belast (NoRec2, TStop, s)
| MayRec2, TStop -> Belast (MayRec2, TStop, s)
| NoRec2, TNext (NoRec2, r, s') ->
let Belast (NoRec2, r, s') = belast_rule NoRec2 r s' in
Belast (NoRec2, TNext (NoRec2, r, s), s')
| MayRec2, TNext (_, r, s') ->
let Belast (_, r, s') = belast_rule MayRec2 r s' in
Belast (MayRec2, TNext (MayRec2, r, s), s') in
function
| TStop -> AnyS (TNil, Rel0)
| TNext (MayRec2, r, s) ->
let Belast (MayRec2, r, s) = belast_rule MayRec2 r s in
let AnyS (r, pf) = get_symbols r in
AnyS (TCns (MayRec2, s, r), RelS pf)
| TNext (NoRec2, r, s) ->
let Belast (NoRec2, r, s) = belast_rule NoRec2 r s in
let AnyS (r, pf) = get_symbols r in
AnyS (TCns (NoRec2, s, r), RelS pf)
let get_rec_symbols (type s tr p) (s : (s, tr, p) ty_symbols) : tr ty_rec =
match s with TCns (MayRec2, _, _) -> MayRec
| TCns (NoRec2, _, _) -> NoRec | TNil -> NoRec
let get_rec_tree (type s tr f) (s : (s, tr, f) ty_tree) : tr ty_rec =
match s with Node (MayRec3, _) -> MayRec
| Node (NoRec3, _) -> NoRec | LocAct _ -> NoRec | DeadEnd -> NoRec
let and_symbols_tree (type s trs trt p f) (s : (s, trs, p) ty_symbols) (t : (s, trt, f) ty_tree) : (trs, trt) ty_mayrec_and_ex =
match get_rec_symbols s, get_rec_tree t with
| MayRec, MayRec -> MayRecNR NR00 | MayRec, NoRec -> MayRecNR NR01
| NoRec, MayRec -> MayRecNR NR10 | NoRec, NoRec -> MayRecNR NR11
let and_and_tree (type s tr' trt tr trn trs trb f) (ar : (tr', trt, tr) ty_and_rec) (arn : (trn, trs, trb, trt) ty_and_rec3) (t : (s, trb, f) ty_tree) : (tr', trb, tr) ty_and_rec =
match ar, arn, get_rec_tree t with
| MayRec2, _, MayRec -> MayRec2 | MayRec2, _, NoRec -> MayRec2
| NoRec2, NoRec3, NoRec -> NoRec2
let insert_tree (type s trs trt tr p k a) entry_name (ar : (trs, trt, tr) ty_and_ex) (gsymbols : (s, trs, p) ty_symbols) (pf : (p, k, a) rel_prod) (action : k) (tree : (s, trt, a) ty_tree) : (s, tr, a) ty_tree =
let rec insert : type trs trt tr p f k. (trs, trt, tr) ty_and_ex -> (s, trs, p) ty_symbols -> (p, k, f) rel_prod -> (s, trt, f) ty_tree -> k -> (s, tr, f) ty_tree =
fun ar symbols pf tree action ->
match symbols, pf with
TCns (ars, s, sl), RelS pf ->
insert_in_tree ar ars s sl pf tree action
| TNil, Rel0 ->
let node (type tb) ({node = s; son = son; brother = bro} : (_, _, _, tb, _, _) ty_node) =
let ar : (norec, tb, tb) ty_and_ex =
match get_rec_tree bro with MayRec -> NR10 | NoRec -> NR11 in
{node = s; son = son; brother = insert ar TNil Rel0 bro action} in
match ar, tree with
| NR10, Node (_, n) -> Node (MayRec3, node n)
| NR11, Node (NoRec3, n) -> Node (NoRec3, node n)
| NR11, LocAct (old_action, action_list) ->
if false then
begin
let msg =
"<W> Grammar extension: " ^
(if entry_name = "" then "" else "in ["^entry_name^"%s], ") ^
"some rule has been masked" in
Feedback.msg_warning (Pp.str msg)
end;
LocAct (action, old_action :: action_list)
| NR11, DeadEnd -> LocAct (action, [])
and insert_in_tree : type trs trs' trs'' trt tr a p f k. (trs'', trt, tr) ty_and_ex -> (trs, trs', trs'') ty_and_rec -> (s, trs, a) ty_symbol -> (s, trs', p) ty_symbols -> (p, k, a -> f) rel_prod -> (s, trt, f) ty_tree -> k -> (s, tr, f) ty_tree =
fun ar ars s sl pf tree action ->
let ar : (trs'', trt, tr) ty_and_rec = match ar with NR11 -> NoRec2
| NR00 -> MayRec2 | NR01 -> MayRec2 | NR10 -> MayRec2 in
match try_insert ar ars s sl pf tree action with
Some t -> t
| None ->
let node ar =
{node = s; son = insert ar sl pf DeadEnd action; brother = tree} in
match ar, ars, get_rec_symbols sl with
| MayRec2, MayRec2, MayRec -> Node (MayRec3, node NR01)
| MayRec2, _, NoRec -> Node (MayRec3, node NR11)
| NoRec2, NoRec2, NoRec -> Node (NoRec3, node NR11)
and try_insert : type trs trs' trs'' trt tr a p f k. (trs'', trt, tr) ty_and_rec -> (trs, trs', trs'') ty_and_rec -> (s, trs, a) ty_symbol -> (s, trs', p) ty_symbols -> (p, k, a -> f) rel_prod -> (s, trt, f) ty_tree -> k -> (s, tr, f) ty_tree option =
fun ar ars symb symbl pf tree action ->
match tree with
Node (arn, {node = symb1; son = son; brother = bro}) ->
begin match eq_symbol symb symb1 with
| Some Refl ->
let MayRecNR = and_symbols_tree symbl son in
let son = insert arss symbl pf son action in
let node = {node = symb1; son = son; brother = bro} in
begin match ar, ars, arn, arss with
| MayRec2, _, _, _ -> Some (Node (MayRec3, node))
| NoRec2, NoRec2, NoRec3, NR11 -> Some (Node (NoRec3, node)) end
| None ->
let ar' = and_and_tree ar arn bro in
if is_before symb1 symb || derive_eps symb && not (derive_eps symb1) then
let bro =
match try_insert ar' ars symb symbl pf bro action with
Some bro ->
bro
| None ->
let MayRecNR = and_symbols_tree symbl DeadEnd in
let son = insert arss symbl pf DeadEnd action in
let node = {node = symb; son = son; brother = bro} in
match ar, ars, arn, arss with
| MayRec2, _, _, _ -> Node (MayRec3, node)
| NoRec2, NoRec2, NoRec3, NR11 -> Node (NoRec3, node)
in
let node = {node = symb1; son = son; brother = bro} in
match ar, arn with
| MayRec2, _ -> Some (Node (MayRec3, node))
| NoRec2, NoRec3 -> Some (Node (NoRec3, node))
else
match try_insert ar' ars symb symbl pf bro action with
Some bro ->
let node = {node = symb1; son = son; brother = bro} in
begin match ar, arn with
| MayRec2, _ -> Some (Node (MayRec3, node))
| NoRec2, NoRec3 -> Some (Node (NoRec3, node)) end
| None ->
None
end
| LocAct (_, _) -> None | DeadEnd -> None
in
insert ar gsymbols pf tree action
let insert_tree_norec (type s p k a) entry_name (gsymbols : (s, norec, p) ty_symbols) (pf : (p, k, a) rel_prod) (action : k) (tree : (s, norec, a) ty_tree) : (s, norec, a) ty_tree =
insert_tree entry_name NR11 gsymbols pf action tree
let insert_tree (type s trs trt p k a) entry_name (gsymbols : (s, trs, p) ty_symbols) (pf : (p, k, a) rel_prod) (action : k) (tree : (s, trt, a) ty_tree) : (s, a) ty_mayrec_tree =
let MayRecNR ar = and_symbols_tree gsymbols tree in
MayRecTree (insert_tree entry_name ar gsymbols pf action tree)
let srules (type self a) (rl : a ty_rules list) : (self, norec, a) ty_symbol =
let rec retype_tree : type s a. (s, norec, a) ty_tree -> (self, norec, a) ty_tree =
function
| Node (NoRec3, {node = s; son = son; brother = bro}) ->
Node (NoRec3, {node = retype_symbol s; son = retype_tree son; brother = retype_tree bro})
| LocAct (k, kl) -> LocAct (k, kl)
| DeadEnd -> DeadEnd
and retype_symbol : type s a. (s, norec, a) ty_symbol -> (self, norec, a) ty_symbol =
function
| Stoken p -> Stoken p
| Stokens l -> Stokens l
| Slist1 s -> Slist1 (retype_symbol s)
| Slist1sep (s, sep, b) -> Slist1sep (retype_symbol s, retype_symbol sep, b)
| Slist0 s -> Slist0 (retype_symbol s)
| Slist0sep (s, sep, b) -> Slist0sep (retype_symbol s, retype_symbol sep, b)
| Sopt s -> Sopt (retype_symbol s)
| Snterm e -> Snterm e
| Snterml (e, l) -> Snterml (e, l)
| Stree t -> Stree (retype_tree t) in
let rec retype_rule : type s k r. (s, norec, k, r) ty_rule -> (self, norec, k, r) ty_rule =
function
| TStop -> TStop
| TNext (NoRec2, r, s) -> TNext (NoRec2, retype_rule r, retype_symbol s) in
let t =
List.fold_left
(fun tree (TRules (symbols, action)) ->
let symbols = retype_rule symbols in
let AnyS (symbols, pf) = get_symbols symbols in
insert_tree_norec "" symbols pf action tree)
DeadEnd rl
in
Stree t
let is_level_labelled n (Level lev) =
match lev.lname with
Some n1 -> n = n1
| None -> false
let insert_level (type s tr p k) entry_name (symbols : (s, tr, p) ty_symbols) (pf : (p, k, Loc.t -> s) rel_prod) (action : k) (slev : s ty_level) : s ty_level =
match symbols with
| TCns (_, Sself, symbols) ->
let Level slev = slev in
let RelS pf = pf in
let MayRecTree lsuffix = insert_tree entry_name symbols pf action slev.lsuffix in
Level
{assoc = slev.assoc; lname = slev.lname;
lsuffix = lsuffix;
lprefix = slev.lprefix}
| _ ->
let Level slev = slev in
let MayRecTree lprefix = insert_tree entry_name symbols pf action slev.lprefix in
Level
{assoc = slev.assoc; lname = slev.lname; lsuffix = slev.lsuffix;
lprefix = lprefix}
let empty_lev lname assoc =
let assoc =
match assoc with
Some a -> a
| None -> LeftA
in
Level
{assoc = assoc; lname = lname; lsuffix = DeadEnd; lprefix = DeadEnd}
let err_no_level lev e =
let msg = sprintf "Grammar.extend: No level labelled \"%s\" in entry \"%s\"" lev e in
failwith msg
let get_position entry position levs =
match position with
First -> [], levs
| Last -> levs, []
| Before n ->
let rec get =
function
[] -> err_no_level n entry.ename
| lev :: levs ->
if is_level_labelled n lev then [], lev :: levs
else
let (levs1, levs2) = get levs in lev :: levs1, levs2
in
get levs
| After n ->
let rec get =
function
[] -> err_no_level n entry.ename
| lev :: levs ->
if is_level_labelled n lev then [lev], levs
else
let (levs1, levs2) = get levs in lev :: levs1, levs2
in
get levs
let get_level entry name levs = match name with
| Some n ->
let rec get =
function
[] -> err_no_level n entry.ename
| lev :: levs ->
if is_level_labelled n lev then [], lev, levs
else
let (levs1, rlev, levs2) = get levs in lev :: levs1, rlev, levs2
in
get levs
| None ->
begin match levs with
lev :: levs -> [], lev, levs
| [] ->
let msg = sprintf "Grammar.extend: No top level in entry \"%s\"" entry.ename in
failwith msg
end
let change_to_self0 (type s) (type trec) (type a) (entry : s ty_entry) : (s, trec, a) ty_symbol -> (s, a) ty_mayrec_symbol =
function
| Snterm e ->
begin match eq_entry e entry with
| None -> MayRecSymbol (Snterm e)
| Some Refl -> MayRecSymbol (Sself)
end
| x -> MayRecSymbol x
let rec change_to_self : type s trec a r. s ty_entry -> (s, trec, a, r) ty_rule -> (s, a, r) ty_mayrec_rule = fun e r -> match r with
| TStop -> MayRecRule TStop
| TNext (_, r, t) ->
let MayRecRule r = change_to_self e r in
let MayRecSymbol t = change_to_self0 e t in
MayRecRule (TNext (MayRec2, r, t))
let insert_token gram tok =
L.tok_using tok;
let r =
let tok = L.tok_pattern_strings tok in
try Hashtbl.find gram.gtokens tok with
Not_found -> let r = ref 0 in Hashtbl.add gram.gtokens tok r; r
in
incr r
let insert_tokens gram symbols =
let rec insert : type s trec a. (s, trec, a) ty_symbol -> unit =
function
| Slist0 s -> insert s
| Slist1 s -> insert s
| Slist0sep (s, t, _) -> insert s; insert t
| Slist1sep (s, t, _) -> insert s; insert t
| Sopt s -> insert s
| Stree t -> tinsert t
| Stoken tok -> insert_token gram tok
| Stokens (TPattern tok::_) -> insert_token gram tok
| Stokens [] -> assert false
| Snterm _ -> () | Snterml (_, _) -> ()
| Snext -> ()
| Sself -> ()
and tinsert : type s tr a. (s, tr, a) ty_tree -> unit =
function
Node (_, {node = s; brother = bro; son = son}) ->
insert s; tinsert bro; tinsert son
| LocAct (_, _) -> () | DeadEnd -> ()
and linsert : type s tr p. (s, tr, p) ty_symbols -> unit = function
| TNil -> ()
| TCns (_, s, r) -> insert s; linsert r
in
linsert symbols
type 'a single_extend_statement =
string option * Gramext.g_assoc option * 'a ty_production list
type 'a extend_statement =
| Reuse of string option * 'a ty_production list
| Fresh of Gramext.position * 'a single_extend_statement list
let add_prod entry lev (TProd (symbols, action)) =
let MayRecRule symbols = change_to_self entry symbols in
let AnyS (symbols, pf) = get_symbols symbols in
insert_tokens egram symbols;
insert_level entry.ename symbols pf action lev
let levels_of_rules entry st =
let elev =
match entry.edesc with
Dlevels elev -> elev
| Dparser _ ->
let msg = sprintf "Grammar.extend: entry not extensible: \"%s\"" entry.ename in
failwith msg
in
match st with
| Reuse (name, []) -> elev
| Reuse (name, prods) ->
let (levs1, lev, levs2) = get_level entry name elev in
let lev = List.fold_left (fun lev prod -> add_prod entry lev prod) lev prods in
levs1 @ [lev] @ levs2
| Fresh (position, rules) ->
let (levs1, levs2) = get_position entry position elev in
let fold levs (lname, assoc, prods) =
let lev = empty_lev lname assoc in
let lev = List.fold_left (fun lev prod -> add_prod entry lev prod) lev prods in
lev :: levs
in
let levs = List.fold_left fold [] rules in
levs1 @ List.rev levs @ levs2
let logically_eq_symbols entry =
let rec eq_symbols : type s1 s2 trec1 trec2 a1 a2. (s1, trec1, a1) ty_symbol -> (s2, trec2, a2) ty_symbol -> bool = fun s1 s2 ->
match s1, s2 with
Snterm e1, Snterm e2 -> e1.ename = e2.ename
| Snterm e1, Sself -> e1.ename = entry.ename
| Sself, Snterm e2 -> entry.ename = e2.ename
| Snterml (e1, l1), Snterml (e2, l2) -> e1.ename = e2.ename && l1 = l2
| Slist0 s1, Slist0 s2 -> eq_symbols s1 s2
| Slist0sep (s1, sep1, b1), Slist0sep (s2, sep2, b2) ->
eq_symbols s1 s2 && eq_symbols sep1 sep2 && b1 = b2
| Slist1 s1, Slist1 s2 -> eq_symbols s1 s2
| Slist1sep (s1, sep1, b1), Slist1sep (s2, sep2, b2) ->
eq_symbols s1 s2 && eq_symbols sep1 sep2 && b1 = b2
| Sopt s1, Sopt s2 -> eq_symbols s1 s2
| Stree t1, Stree t2 -> eq_trees t1 t2
| Stoken p1, Stoken p2 -> L.tok_pattern_eq p1 p2 <> None
| Stokens pl1, Stokens pl2 -> tok_pattern_eq_list pl1 pl2 <> None
| Sself, Sself -> true
| Snext, Snext -> true
| _ -> false
and eq_trees : type s1 s2 tr1 tr2 a1 a2. (s1, tr1, a1) ty_tree -> (s2, tr2, a2) ty_tree -> bool = fun t1 t2 ->
match t1, t2 with
Node (_, n1), Node (_, n2) ->
eq_symbols n1.node n2.node && eq_trees n1.son n2.son &&
eq_trees n1.brother n2.brother
| LocAct _, LocAct _ -> true
| LocAct _, DeadEnd -> true
| DeadEnd, LocAct _ -> true
| DeadEnd, DeadEnd -> true
| _ -> false
in
eq_symbols
type 's ex_symbols =
| ExS : ('s, 'tr, 'p) ty_symbols -> 's ex_symbols
let delete_rule_in_tree entry =
let rec delete_in_tree :
type s tr tr' p r. (s, tr, p) ty_symbols -> (s, tr', r) ty_tree -> (s ex_symbols option * (s, r) ty_mayrec_tree) option =
fun symbols tree ->
match symbols, tree with
| TCns (_, s, sl), Node (_, n) ->
if logically_eq_symbols entry s n.node then delete_son sl n
else
begin match delete_in_tree symbols n.brother with
Some (dsl, MayRecTree t) ->
Some (dsl, MayRecTree (Node (MayRec3, {node = n.node; son = n.son; brother = t})))
| None -> None
end
| TCns (_, s, sl), _ -> None
| TNil, Node (_, n) ->
begin match delete_in_tree TNil n.brother with
Some (dsl, MayRecTree t) ->
Some (dsl, MayRecTree (Node (MayRec3, {node = n.node; son = n.son; brother = t})))
| None -> None
end
| TNil, DeadEnd -> None
| TNil, LocAct (_, []) -> Some (Some (ExS TNil), MayRecTree DeadEnd)
| TNil, LocAct (_, action :: list) -> Some (None, MayRecTree (LocAct (action, list)))
and delete_son :
type s p tr trn trs trb a r. (s, tr, p) ty_symbols -> (s, trn, trs, trb, a, r) ty_node -> (s ex_symbols option * (s, r) ty_mayrec_tree) option =
fun sl n ->
match delete_in_tree sl n.son with
Some (Some (ExS dsl), MayRecTree DeadEnd) -> Some (Some (ExS (TCns (MayRec2, n.node, dsl))), MayRecTree n.brother)
| Some (Some (ExS dsl), MayRecTree t) ->
let t = Node (MayRec3, {node = n.node; son = t; brother = n.brother}) in
Some (Some (ExS (TCns (MayRec2, n.node, dsl))), MayRecTree t)
| Some (None, MayRecTree t) ->
let t = Node (MayRec3, {node = n.node; son = t; brother = n.brother}) in
Some (None, MayRecTree t)
| None -> None
in
delete_in_tree
let decr_keyw_use_in_token gram tok =
let tok' = L.tok_pattern_strings tok in
let r = Hashtbl.find gram.gtokens tok' in
decr r;
if !r == 0 then
begin
Hashtbl.remove gram.gtokens tok';
L.tok_removing tok
end
let rec decr_keyw_use : type s tr a. _ -> (s, tr, a) ty_symbol -> unit = fun gram ->
function
Stoken tok -> decr_keyw_use_in_token gram tok
| Stokens (TPattern tok :: _) -> decr_keyw_use_in_token gram tok
| Stokens [] -> assert false
| Slist0 s -> decr_keyw_use gram s
| Slist1 s -> decr_keyw_use gram s
| Slist0sep (s1, s2, _) -> decr_keyw_use gram s1; decr_keyw_use gram s2
| Slist1sep (s1, s2, _) -> decr_keyw_use gram s1; decr_keyw_use gram s2
| Sopt s -> decr_keyw_use gram s
| Stree t -> decr_keyw_use_in_tree gram t
| Sself -> ()
| Snext -> ()
| Snterm _ -> () | Snterml (_, _) -> ()
and decr_keyw_use_in_tree : type s tr a. _ -> (s, tr, a) ty_tree -> unit = fun gram ->
function
DeadEnd -> () | LocAct (_, _) -> ()
| Node (_, n) ->
decr_keyw_use gram n.node;
decr_keyw_use_in_tree gram n.son;
decr_keyw_use_in_tree gram n.brother
and decr_keyw_use_in_list : type s tr p. _ -> (s, tr, p) ty_symbols -> unit = fun gram ->
function
| TNil -> ()
| TCns (_, s, l) -> decr_keyw_use gram s; decr_keyw_use_in_list gram l
let rec delete_rule_in_suffix entry symbols =
function
Level lev :: levs ->
begin match delete_rule_in_tree entry symbols lev.lsuffix with
Some (dsl, MayRecTree t) ->
begin match dsl with
Some (ExS dsl) -> decr_keyw_use_in_list egram dsl
| None -> ()
end;
begin match t, lev.lprefix with
DeadEnd, DeadEnd -> levs
| _ ->
let lev =
{assoc = lev.assoc; lname = lev.lname; lsuffix = t;
lprefix = lev.lprefix}
in
Level lev :: levs
end
| None ->
let levs = delete_rule_in_suffix entry symbols levs in
Level lev :: levs
end
| [] -> raise Not_found
let rec delete_rule_in_prefix entry symbols =
function
Level lev :: levs ->
begin match delete_rule_in_tree entry symbols lev.lprefix with
Some (dsl, MayRecTree t) ->
begin match dsl with
Some (ExS dsl) -> decr_keyw_use_in_list egram dsl
| None -> ()
end;
begin match t, lev.lsuffix with
DeadEnd, DeadEnd -> levs
| _ ->
let lev =
{assoc = lev.assoc; lname = lev.lname; lsuffix = lev.lsuffix;
lprefix = t}
in
Level lev :: levs
end
| None ->
let levs = delete_rule_in_prefix entry symbols levs in
Level lev :: levs
end
| [] -> raise Not_found
let delete_rule_in_level_list (type s tr p) (entry : s ty_entry) (symbols : (s, tr, p) ty_symbols) levs =
match symbols with
TCns (_, Sself, symbols) -> delete_rule_in_suffix entry symbols levs
| TCns (_, Snterm e, symbols') ->
begin match eq_entry e entry with
| None -> delete_rule_in_prefix entry symbols levs
| Some Refl ->
delete_rule_in_suffix entry symbols' levs
end
| _ -> delete_rule_in_prefix entry symbols levs
let rec flatten_tree : type s tr a. (s, tr, a) ty_tree -> s ex_symbols list =
function
DeadEnd -> []
| LocAct (_, _) -> [ExS TNil]
| Node (_, {node = n; brother = b; son = s}) ->
List.map (fun (ExS l) -> ExS (TCns (MayRec2, n, l))) (flatten_tree s) @ flatten_tree b
let utf8_print = ref true
let utf8_string_escaped s =
let b = Buffer.create (String.length s) in
let rec loop i =
if i = String.length s then Buffer.contents b
else
begin
begin match s.[i] with
'"' -> Buffer.add_string b "\\\""
| '\\' -> Buffer.add_string b "\\\\"
| '\n' -> Buffer.add_string b "\\n"
| '\t' -> Buffer.add_string b "\\t"
| '\r' -> Buffer.add_string b "\\r"
| '\b' -> Buffer.add_string b "\\b"
| c -> Buffer.add_char b c
end;
loop (i + 1)
end
in
loop 0
let string_escaped s =
if !utf8_print then utf8_string_escaped s else String.escaped s
let print_str ppf s = fprintf ppf "\"%s\"" (string_escaped s)
let print_token b ppf p =
match L.tok_pattern_strings p with
| "", Some s -> print_str ppf s
| con, Some prm -> if b then fprintf ppf "%s@ %a" con print_str prm else fprintf ppf "(%s@ %a)" con print_str prm
| con, None -> fprintf ppf "%s" con
let print_tokens ppf = function
| [] -> assert false
| TPattern p :: pl ->
fprintf ppf "[%a%a]"
(print_token true) p
(fun ppf -> List.iter (function TPattern p -> fprintf ppf ";@ "; print_token true ppf p))
pl
let rec print_symbol : type s tr r. formatter -> (s, tr, r) ty_symbol -> unit =
fun ppf ->
function
| Slist0 s -> fprintf ppf "LIST0 %a" print_symbol1 s
| Slist0sep (s, t, osep) ->
fprintf ppf "LIST0 %a SEP %a%s" print_symbol1 s print_symbol1 t
(if osep then " OPT_SEP" else "")
| Slist1 s -> fprintf ppf "LIST1 %a" print_symbol1 s
| Slist1sep (s, t, osep) ->
fprintf ppf "LIST1 %a SEP %a%s" print_symbol1 s print_symbol1 t
(if osep then " OPT_SEP" else "")
| Sopt s -> fprintf ppf "OPT %a" print_symbol1 s
| Stoken p -> print_token true ppf p
| Stokens [TPattern p] -> print_token true ppf p
| Stokens pl -> print_tokens ppf pl
| Snterml (e, l) ->
fprintf ppf "%s%s@ LEVEL@ %a" e.ename ""
print_str l
| s -> print_symbol1 ppf s
and print_symbol1 : type s tr r. formatter -> (s, tr, r) ty_symbol -> unit =
fun ppf ->
function
| Snterm e -> fprintf ppf "%s%s" e.ename ""
| Sself -> pp_print_string ppf "SELF"
| Snext -> pp_print_string ppf "NEXT"
| Stoken p -> print_token false ppf p
| Stokens [TPattern p] -> print_token false ppf p
| Stokens pl -> print_tokens ppf pl
| Stree t -> print_level ppf pp_print_space (flatten_tree t)
| s ->
fprintf ppf "(%a)" print_symbol s
and print_rule : type s tr p. formatter -> (s, tr, p) ty_symbols -> unit =
fun ppf symbols ->
fprintf ppf "@[<hov 0>";
let rec fold : type s tr p. _ -> (s, tr, p) ty_symbols -> unit =
fun sep symbols ->
match symbols with
| TNil -> ()
| TCns (_, symbol, symbols) ->
fprintf ppf "%t%a" sep print_symbol symbol;
fold (fun ppf -> fprintf ppf ";@ ") symbols
in
let () = fold (fun ppf -> ()) symbols in
fprintf ppf "@]"
and print_level : type s. _ -> _ -> s ex_symbols list -> _ =
fun ppf pp_print_space rules ->
fprintf ppf "@[<hov 0>[ ";
let () =
Format.pp_print_list ~pp_sep:(fun ppf () -> fprintf ppf "%a| " pp_print_space ())
(fun ppf (ExS rule) -> print_rule ppf rule)
ppf rules
in
fprintf ppf " ]@]"
let print_levels ppf elev =
Format.pp_print_list ~pp_sep:(fun ppf () -> fprintf ppf "@,| ")
(fun ppf (Level lev) ->
let rules =
List.map (fun (ExS t) -> ExS (TCns (MayRec2, Sself, t))) (flatten_tree lev.lsuffix) @
flatten_tree lev.lprefix
in
fprintf ppf "@[<hov 2>";
begin match lev.lname with
Some n -> fprintf ppf "%a@;<1 2>" print_str n
| None -> ()
end;
begin match lev.assoc with
LeftA -> fprintf ppf "LEFTA"
| RightA -> fprintf ppf "RIGHTA"
| NonA -> fprintf ppf "NONA"
end;
fprintf ppf "@]@;<1 2>";
print_level ppf pp_force_newline rules)
ppf elev
let print_entry ppf e =
fprintf ppf "@[<v 0>[ ";
begin match e.edesc with
Dlevels elev -> print_levels ppf elev
| Dparser _ -> fprintf ppf "<parser>"
end;
fprintf ppf " ]@]"
let name_of_symbol : type s tr a. s ty_entry -> (s, tr, a) ty_symbol -> string =
fun entry ->
function
Snterm e -> "[" ^ e.ename ^ "]"
| Snterml (e, l) -> "[" ^ e.ename ^ " level " ^ l ^ "]"
| Sself -> "[" ^ entry.ename ^ "]"
| Snext -> "[" ^ entry.ename ^ "]"
| Stoken tok -> L.tok_text tok
| Stokens tokl -> String.concat " " (List.map (function TPattern tok -> L.tok_text tok) tokl)
| Slist0 _ -> assert false
| Slist1sep _ -> assert false
| Slist1 _ -> assert false
| Slist0sep _ -> assert false
| Sopt _ -> assert false
| Stree _ -> assert false
type ('r, 'f) tok_list =
| TokNil : ('f, 'f) tok_list
| TokCns : 'a pattern * ('r, 'f) tok_list -> ('a -> 'r, 'f) tok_list
type ('s, 'f) tok_tree = TokTree : 'a pattern * ('s, _, 'a -> 'r) ty_tree * ('r, 'f) tok_list -> ('s, 'f) tok_tree
let rec get_token_list : type s tr a r f.
s ty_entry -> a pattern -> (r, f) tok_list -> (s, tr, a -> r) ty_tree -> (s, f) tok_tree option =
fun entry last_tok rev_tokl tree ->
match tree with
Node (_, {node = Stoken tok; son = son; brother = DeadEnd}) ->
get_token_list entry tok (TokCns (last_tok, rev_tokl)) son
| _ ->
match rev_tokl with
| TokNil -> None
| _ -> Some (TokTree (last_tok, tree, rev_tokl))
let rec name_of_symbol_failed : type s tr a. s ty_entry -> (s, tr, a) ty_symbol -> _ =
fun entry ->
function
| Slist0 s -> name_of_symbol_failed entry s
| Slist0sep (s, _, _) -> name_of_symbol_failed entry s
| Slist1 s -> name_of_symbol_failed entry s
| Slist1sep (s, _, _) -> name_of_symbol_failed entry s
| Sopt s -> name_of_symbol_failed entry s
| Stree t -> name_of_tree_failed entry t
| s -> name_of_symbol entry s
and name_of_tree_failed : type s tr a. s ty_entry -> (s, tr, a) ty_tree -> _ =
fun entry ->
function
Node (_, {node = s; brother = bro; son = son}) ->
let tokl =
match s with
Stoken tok -> get_token_list entry tok TokNil son
| _ -> None
in
begin match tokl with
None ->
let txt = name_of_symbol_failed entry s in
let txt =
match s, son with
Sopt _, Node _ -> txt ^ " or " ^ name_of_tree_failed entry son
| _ -> txt
in
let txt =
match bro with
DeadEnd -> txt | LocAct (_, _) -> txt
| Node _ -> txt ^ " or " ^ name_of_tree_failed entry bro
in
txt
| Some (TokTree (last_tok, _, rev_tokl)) ->
let rec build_str : type a b. string -> (a, b) tok_list -> string =
fun s -> function
| TokNil -> s
| TokCns (tok, t) -> build_str (L.tok_text tok ^ " " ^ s) t in
build_str (L.tok_text last_tok) rev_tokl
end
| DeadEnd -> "???" | LocAct (_, _) -> "action"
let tree_failed (type s tr a) (entry : s ty_entry) (prev_symb_result : a) (prev_symb : (s, tr, a) ty_symbol) tree =
let txt = name_of_tree_failed entry tree in
let txt =
match prev_symb with
Slist0 s ->
let txt1 = name_of_symbol_failed entry s in
txt1 ^ " or " ^ txt ^ " expected"
| Slist1 s ->
let txt1 = name_of_symbol_failed entry s in
txt1 ^ " or " ^ txt ^ " expected"
| Slist0sep (s, sep, _) ->
begin match prev_symb_result with
[] ->
let txt1 = name_of_symbol_failed entry s in
txt1 ^ " or " ^ txt ^ " expected"
| _ ->
let txt1 = name_of_symbol_failed entry sep in
txt1 ^ " or " ^ txt ^ " expected"
end
| Slist1sep (s, sep, _) ->
begin match prev_symb_result with
[] ->
let txt1 = name_of_symbol_failed entry s in
txt1 ^ " or " ^ txt ^ " expected"
| _ ->
let txt1 = name_of_symbol_failed entry sep in
txt1 ^ " or " ^ txt ^ " expected"
end
| Sopt _ -> txt ^ " expected"
| Stree _ -> txt ^ " expected"
| _ -> txt ^ " expected after " ^ name_of_symbol_failed entry prev_symb
in
txt ^ " (in [" ^ entry.ename ^ "])"
let symb_failed entry prev_symb_result prev_symb symb =
let tree = Node (MayRec3, {node = symb; brother = DeadEnd; son = DeadEnd}) in
tree_failed entry prev_symb_result prev_symb tree
let level_number entry lab =
let rec lookup levn =
function
[] -> failwith ("unknown level " ^ lab)
| lev :: levs ->
if is_level_labelled lab lev then levn else lookup (succ levn) levs
in
match entry.edesc with
Dlevels elev -> lookup 0 elev
| Dparser _ -> raise Not_found
let rec top_symb : type s tr a. s ty_entry -> (s, tr, a) ty_symbol -> (s, norec, a) ty_symbol =
fun entry ->
function
Sself -> Snterm entry
| Snext -> Snterm entry
| Snterml (e, _) -> Snterm e
| Slist1sep (s, sep, b) -> Slist1sep (top_symb entry s, sep, b)
| _ -> raise Stream.Failure
let entry_of_symb : type s tr a. s ty_entry -> (s, tr, a) ty_symbol -> a ty_entry =
fun entry ->
function
Sself -> entry
| Snext -> entry
| Snterm e -> e
| Snterml (e, _) -> e
| _ -> raise Stream.Failure
let top_tree : type s tr a. s ty_entry -> (s, tr, a) ty_tree -> (s, tr, a) ty_tree =
fun entry ->
function
Node (MayRec3, {node = s; brother = bro; son = son}) ->
Node (MayRec3, {node = top_symb entry s; brother = bro; son = son})
| Node (NoRec3, {node = s; brother = bro; son = son}) ->
Node (NoRec3, {node = top_symb entry s; brother = bro; son = son})
| LocAct (_, _) -> raise Stream.Failure | DeadEnd -> raise Stream.Failure
let skip_if_empty bp p strm =
if LStream.count strm == bp then fun a -> p strm
else raise Stream.Failure
let continue entry bp a symb son p1 (strm__ : _ LStream.t) =
let a = (entry_of_symb entry symb).econtinue 0 bp a strm__ in
let act =
try p1 strm__ with
Stream.Failure -> raise (Stream.Error (tree_failed entry a symb son))
in
fun _ -> act a
(** Recover from a success on [symb] with result [a] followed by a
failure on [son] in a rule of the form [a = symb; son] *)
let do_recover parser_of_tree entry nlevn alevn bp a symb son
(strm__ : _ LStream.t) =
try
parser_of_tree entry nlevn alevn (top_tree entry son) strm__
with
Stream.Failure ->
try
skip_if_empty bp (fun (strm__ : _ LStream.t) -> raise Stream.Failure)
strm__
with Stream.Failure ->
continue entry bp a symb son (parser_of_tree entry nlevn alevn son)
strm__
let recover parser_of_tree entry nlevn alevn bp a symb son strm =
do_recover parser_of_tree entry nlevn alevn bp a symb son strm
let item_skipped = ref false
let call_and_push ps al strm =
item_skipped := false;
let a = ps strm in
let al = if !item_skipped then al else a :: al in item_skipped := false; al
let token_ematch tok =
let tematch = L.tok_match tok in
fun tok -> tematch tok
(**
nlevn: level for Snext
alevn: level for recursive calls on the left-hand side of the rule (depending on associativity)
*)
let rec parser_of_tree : type s tr r. s ty_entry -> int -> int -> (s, tr, r) ty_tree -> r parser_t =
fun entry nlevn alevn ->
function
DeadEnd -> (fun (strm__ : _ LStream.t) -> raise Stream.Failure)
| LocAct (act, _) -> (fun (strm__ : _ LStream.t) -> act)
| Node (_, {node = Sself; son = LocAct (act, _); brother = DeadEnd}) ->
(fun (strm__ : _ LStream.t) ->
let a = entry.estart alevn strm__ in act a)
| Node (_, {node = Sself; son = LocAct (act, _); brother = bro}) ->
let p2 = parser_of_tree entry nlevn alevn bro in
(fun (strm__ : _ LStream.t) ->
match
try Some (entry.estart alevn strm__) with Stream.Failure -> None
with
Some a -> act a
| _ -> p2 strm__)
| Node (_, {node = Stoken tok; son = son; brother = DeadEnd}) ->
parser_of_token_list entry nlevn alevn tok son
| Node (_, {node = Stoken tok; son = son; brother = bro}) ->
let p2 = parser_of_tree entry nlevn alevn bro in
let p1 = parser_of_token_list entry nlevn alevn tok son in
(fun (strm__ : _ LStream.t) ->
try p1 strm__ with Stream.Failure -> p2 strm__)
| Node (_, {node = s; son = son; brother = DeadEnd}) ->
let ps = parser_of_symbol entry nlevn s in
let p1 = parser_of_tree entry nlevn alevn son in
let p1 = parser_cont p1 entry nlevn alevn s son in
(fun (strm__ : _ LStream.t) ->
let bp = LStream.count strm__ in
let a = ps strm__ in
let act =
try p1 bp a strm__ with
Stream.Failure ->
raise (Stream.Error (tree_failed entry a s son))
in
act a)
| Node (_, {node = s; son = son; brother = bro}) ->
let ps = parser_of_symbol entry nlevn s in
let p1 = parser_of_tree entry nlevn alevn son in
let p1 = parser_cont p1 entry nlevn alevn s son in
let p2 = parser_of_tree entry nlevn alevn bro in
(fun (strm : _ LStream.t) ->
let bp = LStream.count strm in
match try Some (ps strm) with Stream.Failure -> None with
Some a ->
begin match
(try Some (p1 bp a strm) with Stream.Failure -> None)
with
Some act -> act a
| None -> raise (Stream.Error (tree_failed entry a s son))
end
| None -> p2 strm)
and parser_cont : type s tr tr' a r.
(a -> r) parser_t -> s ty_entry -> int -> int -> (s, tr, a) ty_symbol -> (s, tr', a -> r) ty_tree -> int -> a -> (a -> r) parser_t =
fun p1 entry nlevn alevn s son bp a (strm__ : _ LStream.t) ->
try p1 strm__ with
Stream.Failure ->
recover parser_of_tree entry nlevn alevn bp a s son strm__
(** [parser_of_token_list] attempts to look-ahead an arbitrary-long
finite sequence of tokens. E.g., in
[ [ "foo"; "bar1"; "bar3"; ... -> action1
| "foo"; "bar2"; ... -> action2
| other-rules ] ]
compiled as:
[ [ "foo"; ["bar1"; "bar3"; ... -> action1
|"bar2"; ... -> action2]
| other-rules ] ]
this is able to look ahead "foo"; "bar1"; "bar3" and if not found
"foo"; "bar1", then, if still not found, "foo"; "bar2" _without_
consuming the tokens until it is sure that a longest chain of tokens
(before finding non-terminals or the end of the production) is found
(and backtracking to [other-rules] if no such longest chain can be
found). *)
and parser_of_token_list : type s tr lt r.
s ty_entry -> int -> int -> lt pattern -> (s, tr, lt -> r) ty_tree -> r parser_t =
fun entry nlevn alevn tok tree ->
let rec loop : type tr lt r. int -> lt pattern -> (s, tr, r) ty_tree -> lt -> r parser_t =
fun n last_tok tree -> match tree with
| Node (_, {node = Stoken tok; son = son; brother = bro}) ->
let tematch = token_ematch tok in
let p2 = loop n last_tok bro in
let p1 = loop (n+1) tok son in
fun last_a strm ->
(match (try Some (tematch (LStream.peek_nth n strm)) with Stream.Failure -> None) with
| Some a ->
(match try Some (p1 a strm) with Stream.Failure -> None with
| Some act -> act a
| None -> p2 last_a strm)
| None -> p2 last_a strm)
| DeadEnd -> fun last_a strm -> raise Stream.Failure
| _ ->
let ps = parser_of_tree entry nlevn alevn tree in
fun last_a strm ->
for _i = 1 to n do LStream.junk strm done;
match
try Some (ps strm) with Stream.Failure ->
try Some (parser_of_tree entry nlevn alevn (top_tree entry tree) strm) with Stream.Failure -> None
with
| Some act -> act
| None -> raise (Stream.Error (tree_failed entry last_a (Stoken last_tok) tree))
in
let ps = loop 1 tok tree in
let tematch = token_ematch tok in
fun strm ->
match LStream.peek strm with
| Some tok -> let a = tematch tok in let act = ps a strm in act a
| None -> raise Stream.Failure
and parser_of_symbol : type s tr a.
s ty_entry -> int -> (s, tr, a) ty_symbol -> a parser_t =
fun entry nlevn ->
function
| Slist0 s ->
let ps = call_and_push (parser_of_symbol entry nlevn s) in
let rec loop al (strm__ : _ LStream.t) =
match try Some (ps al strm__) with Stream.Failure -> None with
Some al -> loop al strm__
| _ -> al
in
(fun (strm__ : _ LStream.t) ->
let a = loop [] strm__ in List.rev a)
| Slist0sep (symb, sep, false) ->
let ps = call_and_push (parser_of_symbol entry nlevn symb) in
let pt = parser_of_symbol entry nlevn sep in
let rec kont al (strm__ : _ LStream.t) =
match try Some (pt strm__) with Stream.Failure -> None with
Some v ->
let al =
try ps al strm__ with
Stream.Failure ->
raise (Stream.Error (symb_failed entry v sep symb))
in
kont al strm__
| _ -> al
in
(fun (strm__ : _ LStream.t) ->
match try Some (ps [] strm__) with Stream.Failure -> None with
Some al -> let a = kont al strm__ in List.rev a
| _ -> [])
| Slist0sep (symb, sep, true) ->
let ps = call_and_push (parser_of_symbol entry nlevn symb) in
let pt = parser_of_symbol entry nlevn sep in
let rec kont al (strm__ : _ LStream.t) =
match try Some (pt strm__) with Stream.Failure -> None with
Some v ->
begin match
(try Some (ps al strm__) with Stream.Failure -> None)
with
Some al -> kont al strm__
| _ -> al
end
| _ -> al
in
(fun (strm__ : _ LStream.t) ->
match try Some (ps [] strm__) with Stream.Failure -> None with
Some al -> let a = kont al strm__ in List.rev a
| _ -> [])
| Slist1 s ->
let ps = call_and_push (parser_of_symbol entry nlevn s) in
let rec loop al (strm__ : _ LStream.t) =
match try Some (ps al strm__) with Stream.Failure -> None with
Some al -> loop al strm__
| _ -> al
in
(fun (strm__ : _ LStream.t) ->
let al = ps [] strm__ in
let a = loop al strm__ in List.rev a)
| Slist1sep (symb, sep, false) ->
let ps = call_and_push (parser_of_symbol entry nlevn symb) in
let pt = parser_of_symbol entry nlevn sep in
let rec kont al (strm__ : _ LStream.t) =
match try Some (pt strm__) with Stream.Failure -> None with
Some v ->
let al =
try ps al strm__ with
Stream.Failure ->
let a =
try parse_top_symb entry symb strm__ with
Stream.Failure ->
raise (Stream.Error (symb_failed entry v sep symb))
in
a :: al
in
kont al strm__
| _ -> al
in
(fun (strm__ : _ LStream.t) ->
let al = ps [] strm__ in
let a = kont al strm__ in List.rev a)
| Slist1sep (symb, sep, true) ->
let ps = call_and_push (parser_of_symbol entry nlevn symb) in
let pt = parser_of_symbol entry nlevn sep in
let rec kont al (strm__ : _ LStream.t) =
match try Some (pt strm__) with Stream.Failure -> None with
Some v ->
begin match
(try Some (ps al strm__) with Stream.Failure -> None)
with
Some al -> kont al strm__
| _ ->
match
try Some (parse_top_symb entry symb strm__) with
Stream.Failure -> None
with
Some a -> kont (a :: al) strm__
| _ -> al
end
| _ -> al
in
(fun (strm__ : _ LStream.t) ->
let al = ps [] strm__ in
let a = kont al strm__ in List.rev a)
| Sopt s ->
let ps = parser_of_symbol entry nlevn s in
(fun (strm__ : _ LStream.t) ->
match try Some (ps strm__) with Stream.Failure -> None with
Some a -> Some a
| _ -> None)
| Stree t ->
let pt = parser_of_tree entry 1 0 t in
(fun (strm__ : _ LStream.t) ->
let bp = LStream.count strm__ in
let a = pt strm__ in
let ep = LStream.count strm__ in
let loc = LStream.interval_loc bp ep strm__ in a loc)
| Snterm e -> (fun (strm__ : _ LStream.t) -> e.estart 0 strm__)
| Snterml (e, l) ->
(fun (strm__ : _ LStream.t) -> e.estart (level_number e l) strm__)
| Sself -> (fun (strm__ : _ LStream.t) -> entry.estart 0 strm__)
| Snext -> (fun (strm__ : _ LStream.t) -> entry.estart nlevn strm__)
| Stoken tok -> parser_of_token entry tok
| Stokens tokl -> parser_of_tokens entry tokl
and parser_of_token : type s a.
s ty_entry -> a pattern -> a parser_t =
fun entry tok ->
let f = L.tok_match tok in
fun strm ->
match LStream.peek strm with
Some tok -> let r = f tok in LStream.junk strm; r
| None -> raise Stream.Failure
and parser_of_tokens : type s.
s ty_entry -> ty_pattern list -> unit parser_t =
fun entry tokl ->
let rec loop n = function
| [] -> fun strm -> for _i = 1 to n do LStream.junk strm done; ()
| TPattern tok :: tokl ->
let tematch = token_ematch tok in
fun strm ->
ignore (tematch (LStream.peek_nth n strm)); loop (n+1) tokl strm
in
loop 0 tokl
and parse_top_symb : type s tr a. s ty_entry -> (s, tr, a) ty_symbol -> a parser_t =
fun entry symb ->
parser_of_symbol entry 0 (top_symb entry symb)
(** [start_parser_of_levels entry clevn levels levn strm] goes
top-down from level [clevn] to the last level, ignoring rules
between [levn] and [clevn], as if starting from
[max(clevn,levn)]. On each rule of the form [prefix] (where
[prefix] is a rule not starting with [SELF]), it tries to consume
the stream [strm].
The interesting case is [entry.estart] which is
[start_parser_of_levels entry 0 entry.edesc], thus practically
going from [levn] to the end.
More schematically, assuming each level has the form
level n: [ a = SELF; b = suffix_tree_n -> action_n(a,b)
| a = prefix_tree_n -> action'_n(a) ]
then the main loop does the following:
estart n =
if prefix_tree_n matches the stream as a then econtinue n (action'_n(a))
else start (n+1)
econtinue n a =
if suffix_tree_n matches the stream as b then econtinue n (action_n(a,b))
else if n=0 then a else econtinue (n-1) a
*)
let rec start_parser_of_levels entry clevn =
function
[] -> (fun levn (strm__ : _ LStream.t) -> raise Stream.Failure)
| Level lev :: levs ->
let p1 = start_parser_of_levels entry (succ clevn) levs in
match lev.lprefix with
DeadEnd -> p1
| tree ->
let alevn =
match lev.assoc with
LeftA | NonA -> succ clevn
| RightA -> clevn
in
let p2 = parser_of_tree entry (succ clevn) alevn tree in
match levs with
[] ->
(fun levn strm ->
let (strm__ : _ LStream.t) = strm in
let bp = LStream.count strm__ in
let act = p2 strm__ in
let ep = LStream.count strm__ in
let a = act (LStream.interval_loc bp ep strm__) in
entry.econtinue levn bp a strm)
| _ ->
fun levn strm ->
if levn > clevn then
p1 levn strm
else
let (strm__ : _ LStream.t) = strm in
let bp = LStream.count strm__ in
match try Some (p2 strm__) with Stream.Failure -> None with
Some act ->
let ep = LStream.count strm__ in
let a = act (LStream.interval_loc bp ep strm__) in
entry.econtinue levn bp a strm
| _ -> p1 levn strm__
(** [continue_parser_of_levels entry clevn levels levn bp a strm] goes
bottom-up from the last level to level [clevn], ignoring rules
between [levn] and [clevn], as if stopping at [max(clevn,levn)].
It tries to consume the stream [strm] on the suffix of rules of
the form [SELF; suffix] knowing that [a] is what consumed [SELF]
at level [levn] (or [levn+1] depending on associativity).
The interesting case is [entry.econtinue levn bp a] which is [try
continue_parser_of_levels entry 0 entry.edesc levn bp a with
Failure -> a], thus practically going from the end to [levn].
*)
let rec continue_parser_of_levels entry clevn =
function
[] -> (fun levn bp a (strm__ : _ LStream.t) -> raise Stream.Failure)
| Level lev :: levs ->
let p1 = continue_parser_of_levels entry (succ clevn) levs in
match lev.lsuffix with
DeadEnd -> p1
| tree ->
let alevn =
match lev.assoc with
LeftA | NonA -> succ clevn
| RightA -> clevn
in
let p2 = parser_of_tree entry (succ clevn) alevn tree in
fun levn bp a strm ->
if levn > clevn then
p1 levn bp a strm
else
let (strm__ : _ LStream.t) = strm in
try p1 levn bp a strm__ with
Stream.Failure ->
let act = p2 strm__ in
let ep = LStream.count strm__ in
let a = act a (LStream.interval_loc bp ep strm__) in
entry.econtinue levn bp a strm
let continue_parser_of_entry entry =
match entry.edesc with
Dlevels elev ->
let p = continue_parser_of_levels entry 0 elev in
(fun levn bp a (strm__ : _ LStream.t) ->
try p levn bp a strm__ with Stream.Failure -> a)
| Dparser p -> fun levn bp a (strm__ : _ LStream.t) -> raise Stream.Failure
let empty_entry ename levn strm =
raise (Stream.Error ("entry [" ^ ename ^ "] is empty"))
let start_parser_of_entry entry =
match entry.edesc with
Dlevels [] -> empty_entry entry.ename
| Dlevels elev -> start_parser_of_levels entry 0 elev
| Dparser p -> fun levn strm -> p strm
let init_entry_functions entry =
entry.estart <-
(fun lev strm ->
let f = start_parser_of_entry entry in entry.estart <- f; f lev strm);
entry.econtinue <-
(fun lev bp a strm ->
let f = continue_parser_of_entry entry in
entry.econtinue <- f; f lev bp a strm)
let extend_entry entry statement =
let elev = levels_of_rules entry statement in
entry.edesc <- Dlevels elev; init_entry_functions entry
let delete_rule entry sl =
match entry.edesc with
Dlevels levs ->
let levs = delete_rule_in_level_list entry sl levs in
entry.edesc <- Dlevels levs;
entry.estart <-
(fun lev strm ->
let f = start_parser_of_entry entry in
entry.estart <- f; f lev strm);
entry.econtinue <-
(fun lev bp a strm ->
let f = continue_parser_of_entry entry in
entry.econtinue <- f; f lev bp a strm)
| Dparser _ -> ()
module Parsable = struct
type t =
{ pa_tok_strm : L.te LStream.t
; lexer_state : L.State.t ref }
let parse_parsable entry p =
let efun = entry.estart 0 in
let ts = p.pa_tok_strm in
let get_parsing_loc () =
let _ = LStream.peek ts in
let loc' = LStream.max_peek_loc ts in
let loc = LStream.get_loc (LStream.count ts) ts in
Loc.merge loc loc'
in
try efun ts with
Stream.Failure ->
let loc = get_parsing_loc () in
Loc.raise ~loc (Stream.Error ("illegal begin of " ^ entry.ename))
| Stream.Error _ as exc ->
let loc = get_parsing_loc () in
Loc.raise ~loc exc
| exc ->
let exc,info = Exninfo.capture exc in
Exninfo.iraise (exc,info)
let parse_parsable e p =
L.State.set !(p.lexer_state);
try
let c = parse_parsable e p in
p.lexer_state := L.State.get ();
c
with exn ->
let exn,info = Exninfo.capture exn in
L.State.drop ();
Exninfo.iraise (exn,info)
let make ?loc cs =
let lexer_state = ref (L.State.init ()) in
L.State.set !lexer_state;
let ts = L.tok_func ?loc cs in
lexer_state := L.State.get ();
{pa_tok_strm = ts; lexer_state}
let p = L.State.get_comments !(p.lexer_state)
end
module Entry = struct
type 'a t = 'a ty_entry
let make n =
{ ename = n; estart = empty_entry n;
econtinue =
(fun _ _ _ (strm__ : _ LStream.t) -> raise Stream.Failure);
edesc = Dlevels []}
let create = make
let parse (e : 'a t) p : 'a =
Parsable.parse_parsable e p
let parse_token_stream (e : 'a t) ts : 'a =
e.estart 0 ts
let name e = e.ename
type 'a parser_fun = { parser_fun : te LStream.t -> 'a }
let of_parser n { parser_fun = (p : te LStream.t -> 'a) } : 'a t =
{ ename = n;
estart = (fun _ -> p);
econtinue =
(fun _ _ _ (strm__ : _ LStream.t) -> raise Stream.Failure);
edesc = Dparser p}
let print ppf e = fprintf ppf "%a@." print_entry e
let is_empty e = match e.edesc with
| Dparser _ -> failwith "Arbitrary parser entry"
| Dlevels elev -> List.is_empty elev
end
module rec Symbol : sig
type ('self, 'trec, 'a) t = ('self, 'trec, 'a) ty_symbol
val nterm : 'a Entry.t -> ('self, norec, 'a) t
val nterml : 'a Entry.t -> string -> ('self, norec, 'a) t
val list0 : ('self, 'trec, 'a) t -> ('self, 'trec, 'a list) t
val list0sep :
('self, 'trec, 'a) t -> ('self, norec, unit) t -> bool ->
('self, 'trec, 'a list) t
val list1 : ('self, 'trec, 'a) t -> ('self, 'trec, 'a list) t
val list1sep :
('self, 'trec, 'a) t -> ('self, norec, unit) t -> bool ->
('self, 'trec, 'a list) t
val opt : ('self, 'trec, 'a) t -> ('self, 'trec, 'a option) t
val self : ('self, mayrec, 'self) t
val next : ('self, mayrec, 'self) t
val token : 'c pattern -> ('self, norec, 'c) t
val tokens : ty_pattern list -> ('self, norec, unit) t
val rules : 'a Rules.t list -> ('self, norec, 'a) t
end = struct
type ('self, 'trec, 'a) t = ('self, 'trec, 'a) ty_symbol
let nterm e = Snterm e
let nterml e l = Snterml (e, l)
let list0 s = Slist0 s
let list0sep s sep b = Slist0sep (s, sep, b)
let list1 s = Slist1 s
let list1sep s sep b = Slist1sep (s, sep, b)
let opt s = Sopt s
let self = Sself
let next = Snext
let token tok = Stoken tok
let tokens tokl = Stokens tokl
let rules (t : 'a Rules.t list) = srules t
end and Rule : sig
type ('self, 'trec, 'f, 'r) t = ('self, 'trec, 'f, 'r) ty_rule
val stop : ('self, norec, 'r, 'r) t
val next :
('self, _, 'a, 'r) t -> ('self, _, 'b) Symbol.t ->
('self, mayrec, 'b -> 'a, 'r) t
val next_norec :
('self, norec, 'a, 'r) Rule.t -> ('self, norec, 'b) Symbol.t ->
('self, norec, 'b -> 'a, 'r) t
end = struct
type ('self, 'trec, 'f, 'r) t = ('self, 'trec, 'f, 'r) ty_rule
let stop = TStop
let next r s = TNext (MayRec2, r, s)
let next_norec r s = TNext (NoRec2, r, s)
end and Rules : sig
type 'a t = 'a ty_rules
val make : (_, norec, 'f, Loc.t -> 'a) Rule.t -> 'f -> 'a t
end = struct
type 'a t = 'a ty_rules
let make p act = TRules (p, act)
end
module Production = struct
type 'a t = 'a ty_production
let make p act = TProd (p, act)
end
module Unsafe = struct
let clear_entry e =
e.estart <- (fun _ (strm__ : _ LStream.t) -> raise Stream.Failure);
e.econtinue <- (fun _ _ _ (strm__ : _ LStream.t) -> raise Stream.Failure);
match e.edesc with
Dlevels _ -> e.edesc <- Dlevels []
| Dparser _ -> ()
end
let safe_extend (e : 'a Entry.t) data =
extend_entry e data
let safe_delete_rule e (TProd (r,_act)) =
let AnyS (symbols, _) = get_symbols r in
delete_rule e symbols
let level_of_nonterm sym = match sym with
| Snterml (_,l) -> Some l
| _ -> None
exception SelfSymbol
let rec generalize_symbol :
type a tr s. (s, tr, a) Symbol.t -> (s, norec, a) ty_symbol =
function
| Stoken tok ->
Stoken tok
| Stokens tokl ->
Stokens tokl
| Slist1 e ->
Slist1 (generalize_symbol e)
| Slist1sep (e, sep, b) ->
let e = generalize_symbol e in
let sep = generalize_symbol sep in
Slist1sep (e, sep, b)
| Slist0 e ->
Slist0 (generalize_symbol e)
| Slist0sep (e, sep, b) ->
let e = generalize_symbol e in
let sep = generalize_symbol sep in
Slist0sep (e, sep, b)
| Sopt e ->
Sopt (generalize_symbol e)
| Sself ->
raise SelfSymbol
| Snext ->
raise SelfSymbol
| Snterm e ->
Snterm e
| Snterml (e, l) ->
Snterml (e, l)
| Stree r ->
Stree (generalize_tree r)
and generalize_tree : type a tr s .
(s, tr, a) ty_tree -> (s, norec, a) ty_tree = fun r ->
match r with
| Node (fi, n) ->
let fi = match fi with
| NoRec3 -> NoRec3
| MayRec3 -> raise SelfSymbol
in
let n = match n with
| { node; son; brother } ->
let node = generalize_symbol node in
let son = generalize_tree son in
let brother = generalize_tree brother in
{ node; son; brother }
in
Node (fi, n)
| LocAct _ as r -> r
| DeadEnd as r -> r
let generalize_symbol s =
try Some (generalize_symbol s)
with SelfSymbol -> None
end