package coq

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file eConstr.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

open CErrors
open Util
open Names
open Constr
open Context

module ESorts = struct
  include Evd.MiniEConstr.ESorts

  let equal sigma s1 s2 =
    Sorts.equal (kind sigma s1) (kind sigma s2)
end

module EInstance = struct
  include Evd.MiniEConstr.EInstance

  let equal sigma i1 i2 =
    Univ.Instance.equal (kind sigma i1) (kind sigma i2)
end

include (Evd.MiniEConstr : module type of Evd.MiniEConstr
         with module ESorts := ESorts
          and module EInstance := EInstance)

type types = t
type constr = t
type existential = t pexistential
type case_return = t pcase_return
type case_branch = t pcase_branch
type case_invert = t pcase_invert
type case = (t, t, EInstance.t) pcase
type fixpoint = (t, t) pfixpoint
type cofixpoint = (t, t) pcofixpoint
type unsafe_judgment = (constr, types) Environ.punsafe_judgment
type unsafe_type_judgment = types Environ.punsafe_type_judgment
type named_declaration = (constr, types) Context.Named.Declaration.pt
type rel_declaration = (constr, types) Context.Rel.Declaration.pt
type named_context = (constr, types) Context.Named.pt
type rel_context = (constr, types) Context.Rel.pt

type 'a puniverses = 'a * EInstance.t

let in_punivs a = (a, EInstance.empty)

let mkSProp = of_kind (Sort (ESorts.make Sorts.sprop))
let mkProp = of_kind (Sort (ESorts.make Sorts.prop))
let mkSet = of_kind (Sort (ESorts.make Sorts.set))
let mkType u = of_kind (Sort (ESorts.make (Sorts.sort_of_univ u)))
let mkRel n = of_kind (Rel n)
let mkVar id = of_kind (Var id)
let mkMeta n = of_kind (Meta n)
let mkEvar e = of_kind (Evar e)
let mkSort s = of_kind (Sort (ESorts.make s))
let mkCast (b, k, t) = of_kind (Cast (b, k, t))
let mkProd (na, t, u) = of_kind (Prod (na, t, u))
let mkLambda (na, t, c) = of_kind (Lambda (na, t, c))
let mkLetIn (na, b, t, c) = of_kind (LetIn (na, b, t, c))
let mkApp (f, arg) = of_kind (App (f, arg))
let mkConstU pc = of_kind (Const pc)
let mkConst c = of_kind (Const (in_punivs c))
let mkIndU pi = of_kind (Ind pi)
let mkInd i = of_kind (Ind (in_punivs i))
let mkConstructU pc = of_kind (Construct pc)
let mkConstruct c = of_kind (Construct (in_punivs c))
let mkConstructUi ((ind,u),i) = of_kind (Construct ((ind,i),u))
let mkCase (ci, u, pms, c, iv, r, p) = of_kind (Case (ci, u, pms, c, iv, r, p))
let mkFix f = of_kind (Fix f)
let mkCoFix f = of_kind (CoFix f)
let mkProj (p, c) = of_kind (Proj (p, c))
let mkArrow t1 r t2 = of_kind (Prod (make_annot Anonymous r, t1, t2))
let mkArrowR t1 t2 = mkArrow t1 Sorts.Relevant t2
let mkInt i = of_kind (Int i)
let mkFloat f = of_kind (Float f)
let mkArray (u,t,def,ty) = of_kind (Array (u,t,def,ty))

let mkRef (gr,u) = let open GlobRef in match gr with
  | ConstRef c -> mkConstU (c,u)
  | IndRef ind -> mkIndU (ind,u)
  | ConstructRef c -> mkConstructU (c,u)
  | VarRef x -> mkVar x

let type1 = mkSort Sorts.type1

let applist (f, arg) = mkApp (f, Array.of_list arg)
let applistc f arg = mkApp (f, Array.of_list arg)

let isRel sigma c = match kind sigma c with Rel _ -> true | _ -> false
let isVar sigma c = match kind sigma c with Var _ -> true | _ -> false
let isInd sigma c = match kind sigma c with Ind _ -> true | _ -> false
let isEvar sigma c = match kind sigma c with Evar _ -> true | _ -> false
let isMeta sigma c = match kind sigma c with Meta _ -> true | _ -> false
let isSort sigma c = match kind sigma c with Sort _ -> true | _ -> false
let isCast sigma c = match kind sigma c with Cast _ -> true | _ -> false
let isApp sigma c = match kind sigma c with App _ -> true | _ -> false
let isLambda sigma c = match kind sigma c with Lambda _ -> true | _ -> false
let isLetIn sigma c = match kind sigma c with LetIn _ -> true | _ -> false
let isProd sigma c = match kind sigma c with Prod _ -> true | _ -> false
let isConst sigma c = match kind sigma c with Const _ -> true | _ -> false
let isConstruct sigma c = match kind sigma c with Construct _ -> true | _ -> false
let isFix sigma c = match kind sigma c with Fix _ -> true | _ -> false
let isCoFix sigma c = match kind sigma c with CoFix _ -> true | _ -> false
let isCase sigma c = match kind sigma c with Case _ -> true | _ -> false
let isProj sigma c = match kind sigma c with Proj _ -> true | _ -> false

let rec isType sigma c = match kind sigma c with
  | Sort s -> (match ESorts.kind sigma s with
      | Sorts.Type _ -> true
      | _ -> false )
  | Cast (c,_,_) -> isType sigma c
  | _ -> false

let isVarId sigma id c =
  match kind sigma c with Var id' -> Id.equal id id' | _ -> false
let isRelN sigma n c =
  match kind sigma c with Rel n' -> Int.equal n n' | _ -> false

let isRef sigma c = match kind sigma c with
  | Const _ | Ind _ | Construct _ | Var _ -> true
  | _ -> false

let isRefX sigma x c =
  let open GlobRef in
  match x, kind sigma c with
  | ConstRef c, Const (c', _) -> Constant.CanOrd.equal c c'
  | IndRef i, Ind (i', _) -> Ind.CanOrd.equal i i'
  | ConstructRef i, Construct (i', _) -> Construct.CanOrd.equal i i'
  | VarRef id, Var id' -> Id.equal id id'
  | _ -> false


let destRel sigma c = match kind sigma c with
| Rel p -> p
| _ -> raise DestKO

let destVar sigma c = match kind sigma c with
| Var p -> p
| _ -> raise DestKO

let destInd sigma c = match kind sigma c with
| Ind p -> p
| _ -> raise DestKO

let destEvar sigma c = match kind sigma c with
| Evar p -> p
| _ -> raise DestKO

let destMeta sigma c = match kind sigma c with
| Meta p -> p
| _ -> raise DestKO

let destSort sigma c = match kind sigma c with
| Sort p -> p
| _ -> raise DestKO

let destCast sigma c = match kind sigma c with
| Cast (c, k, t) -> (c, k, t)
| _ -> raise DestKO

let destApp sigma c = match kind sigma c with
| App (f, a) -> (f, a)
| _ -> raise DestKO

let destLambda sigma c = match kind sigma c with
| Lambda (na, t, c) -> (na, t, c)
| _ -> raise DestKO

let destLetIn sigma c = match kind sigma c with
| LetIn (na, b, t, c) -> (na, b, t, c)
| _ -> raise DestKO

let destProd sigma c = match kind sigma c with
| Prod (na, t, c) -> (na, t, c)
| _ -> raise DestKO

let destConst sigma c = match kind sigma c with
| Const p -> p
| _ -> raise DestKO

let destConstruct sigma c = match kind sigma c with
| Construct p -> p
| _ -> raise DestKO

let destFix sigma c = match kind sigma c with
| Fix p -> p
| _ -> raise DestKO

let destCoFix sigma c = match kind sigma c with
| CoFix p -> p
| _ -> raise DestKO

let destCase sigma c = match kind sigma c with
| Case (ci, u, pms, t, iv, c, p) -> (ci, u, pms, t, iv, c, p)
| _ -> raise DestKO

let destProj sigma c = match kind sigma c with
| Proj (p, c) -> (p, c)
| _ -> raise DestKO

let destRef sigma c = let open GlobRef in match kind sigma c with
  | Var x -> VarRef x, EInstance.empty
  | Const (c,u) -> ConstRef c, u
  | Ind (ind,u) -> IndRef ind, u
  | Construct (c,u) -> ConstructRef c, u
  | _ -> raise DestKO

let decompose_app sigma c =
  match kind sigma c with
    | App (f,cl) -> (f, Array.to_list cl)
    | _ -> (c,[])

let decompose_lam sigma c =
  let rec lamdec_rec l c = match kind sigma c with
    | Lambda (x,t,c) -> lamdec_rec ((x,t)::l) c
    | Cast (c,_,_)     -> lamdec_rec l c
    | _                -> l,c
  in
  lamdec_rec [] c

let decompose_lam_assum sigma c =
  let open Rel.Declaration in
  let rec lamdec_rec l c =
    match kind sigma c with
    | Lambda (x,t,c)  -> lamdec_rec (Context.Rel.add (LocalAssum (x,t)) l) c
    | LetIn (x,b,t,c) -> lamdec_rec (Context.Rel.add (LocalDef (x,b,t)) l) c
    | Cast (c,_,_)    -> lamdec_rec l c
    | _               -> l,c
  in
  lamdec_rec Context.Rel.empty c

let decompose_lam_n_assum sigma n c =
  let open Rel.Declaration in
  if n < 0 then
    anomaly Pp.(str "decompose_lam_n_assum: integer parameter must be positive.");
  let rec lamdec_rec l n c =
    if Int.equal n 0 then l,c
    else
      match kind sigma c with
      | Lambda (x,t,c)  -> lamdec_rec (Context.Rel.add (LocalAssum (x,t)) l) (n-1) c
      | LetIn (x,b,t,c) -> lamdec_rec (Context.Rel.add (LocalDef (x,b,t)) l) n c
      | Cast (c,_,_)    -> lamdec_rec l n c
      | c -> anomaly Pp.(str "decompose_lam_n_assum: not enough abstractions.")
  in
  lamdec_rec Context.Rel.empty n c

let decompose_lam_n_decls sigma n =
  let open Rel.Declaration in
  if n < 0 then
    anomaly Pp.(str "decompose_lam_n_decls: integer parameter must be positive.");
  let rec lamdec_rec l n c =
    if Int.equal n 0 then l,c
    else
      match kind sigma c with
      | Lambda (x,t,c)  -> lamdec_rec (Context.Rel.add (LocalAssum (x,t)) l) (n-1) c
      | LetIn (x,b,t,c) -> lamdec_rec (Context.Rel.add (LocalDef (x,b,t)) l) (n-1) c
      | Cast (c,_,_)    -> lamdec_rec l n c
      | c -> anomaly Pp.(str "decompose_lam_n_decls: not enough abstractions.")
  in
  lamdec_rec Context.Rel.empty n

let lamn n env b =
  let rec lamrec = function
    | (0, env, b)        -> b
    | (n, ((v,t)::l), b) -> lamrec (n-1,  l, mkLambda (v,t,b))
    | _ -> assert false
  in
  lamrec (n,env,b)

let compose_lam l b = lamn (List.length l) l b

let rec to_lambda sigma n prod =
  if Int.equal n 0 then
    prod
  else
    match kind sigma prod with
      | Prod (na,ty,bd) -> mkLambda (na,ty,to_lambda sigma (n-1) bd)
      | Cast (c,_,_) -> to_lambda sigma n c
      | _   -> anomaly Pp.(str "Not enough products.")

let decompose_prod sigma c =
  let rec proddec_rec l c = match kind sigma c with
    | Prod (x,t,c) -> proddec_rec ((x,t)::l) c
    | Cast (c,_,_) -> proddec_rec l c
    | _            -> l,c
  in
  proddec_rec [] c

let decompose_prod_assum sigma c =
  let open Rel.Declaration in
  let rec proddec_rec l c =
    match kind sigma c with
    | Prod (x,t,c)    -> proddec_rec (Context.Rel.add (LocalAssum (x,t)) l) c
    | LetIn (x,b,t,c) -> proddec_rec (Context.Rel.add (LocalDef (x,b,t)) l) c
    | Cast (c,_,_)    -> proddec_rec l c
    | _               -> l,c
  in
  proddec_rec Context.Rel.empty c

let decompose_prod_n_assum sigma n c =
  let open Rel.Declaration in
  if n < 0 then
    anomaly Pp.(str "decompose_prod_n_assum: integer parameter must be positive.");
  let rec prodec_rec l n c =
    if Int.equal n 0 then l,c
    else
      match kind sigma c with
      | Prod (x,t,c)    -> prodec_rec (Context.Rel.add (LocalAssum (x,t)) l) (n-1) c
      | LetIn (x,b,t,c) -> prodec_rec (Context.Rel.add (LocalDef (x,b,t)) l) (n-1) c
      | Cast (c,_,_)    -> prodec_rec l n c
      | c -> anomaly Pp.(str "decompose_prod_n_assum: not enough declarations.")
  in
  prodec_rec Context.Rel.empty n c

let existential_type = Evd.existential_type

let lift n c = of_constr (Vars.lift n (unsafe_to_constr c))

let of_branches : Constr.case_branch array -> case_branch array =
  match Evd.MiniEConstr.unsafe_eq with
  | Refl -> fun x -> x

let unsafe_to_branches : case_branch array -> Constr.case_branch array =
  match Evd.MiniEConstr.unsafe_eq with
  | Refl -> fun x -> x

let of_return : Constr.case_return -> case_return =
  match Evd.MiniEConstr.unsafe_eq with
  | Refl -> fun x -> x

let unsafe_to_return : case_return -> Constr.case_return =
  match Evd.MiniEConstr.unsafe_eq with
  | Refl -> fun x -> x

let map_branches f br =
  let f c = unsafe_to_constr (f (of_constr c)) in
  of_branches (Constr.map_branches f (unsafe_to_branches br))
let map_return_predicate f p =
  let f c = unsafe_to_constr (f (of_constr c)) in
  of_return (Constr.map_return_predicate f (unsafe_to_return p))

let map sigma f c =
  let f c = unsafe_to_constr (f (of_constr c)) in
  of_constr (Constr.map f (unsafe_to_constr (whd_evar sigma c)))

let map_with_binders sigma g f l c =
  let f l c = unsafe_to_constr (f l (of_constr c)) in
  of_constr (Constr.map_with_binders g f l (unsafe_to_constr (whd_evar sigma c)))

let iter sigma f c =
  let f c = f (of_constr c) in
  Constr.iter f (unsafe_to_constr (whd_evar sigma c))

let expand_case env _sigma (ci, u, pms, p, iv, c, bl) =
  let u = EInstance.unsafe_to_instance u in
  let pms = unsafe_to_constr_array pms in
  let p = unsafe_to_return p in
  let iv = unsafe_to_case_invert iv in
  let c = unsafe_to_constr c in
  let bl = unsafe_to_branches bl in
  let (ci, p, iv, c, bl) = Inductive.expand_case env (ci, u, pms, p, iv, c, bl) in
  let p = of_constr p in
  let c = of_constr c in
  let iv = of_case_invert iv in
  let bl = of_constr_array bl in
  (ci, p, iv, c, bl)

let annotate_case env sigma (ci, u, pms, p, iv, c, bl as case) =
  let (_, p, _, _, bl) = expand_case env sigma case in
  let p =
    (* Too bad we need to fetch this data in the environment, should be in the
      case_info instead. *)
    let (_, mip) = Inductive.lookup_mind_specif env ci.ci_ind in
    decompose_lam_n_decls sigma (mip.Declarations.mind_nrealdecls + 1) p
  in
  let mk_br c n = decompose_lam_n_decls sigma n c in
  let bl = Array.map2 mk_br bl ci.ci_cstr_ndecls in
  (ci, u, pms, p, iv, c, bl)

let expand_branch env _sigma u pms (ind, i) (nas, _br) =
  let open Declarations in
  let u = EInstance.unsafe_to_instance u in
  let pms = unsafe_to_constr_array pms in
  let (mib, mip) = Inductive.lookup_mind_specif env ind in
  let paramdecl = Vars.subst_instance_context u mib.mind_params_ctxt in
  let paramsubst = Vars.subst_of_rel_context_instance paramdecl pms in
  let (ctx, _) = mip.mind_nf_lc.(i - 1) in
  let (ctx, _) = List.chop mip.mind_consnrealdecls.(i - 1) ctx in
  let ans = Inductive.instantiate_context u paramsubst nas ctx in
  let ans : rel_context = match Evd.MiniEConstr.unsafe_eq with Refl -> ans in
  ans

let contract_case env _sigma (ci, p, iv, c, bl) =
  let p = unsafe_to_constr p in
  let iv = unsafe_to_case_invert iv in
  let c = unsafe_to_constr c in
  let bl = unsafe_to_constr_array bl in
  let (ci, u, pms, p, iv, c, bl) = Inductive.contract_case env (ci, p, iv, c, bl) in
  let u = EInstance.make u in
  let pms = of_constr_array pms in
  let p = of_return p in
  let iv = of_case_invert iv in
  let c = of_constr c in
  let bl = of_branches bl in
  (ci, u, pms, p, iv, c, bl)

let iter_with_full_binders env sigma g f n c =
  let open Context.Rel.Declaration in
  match kind sigma c with
  | (Rel _ | Meta _ | Var _   | Sort _ | Const _ | Ind _
    | Construct _ | Int _ | Float _) -> ()
  | Cast (c,_,t) -> f n c; f n t
  | Prod (na,t,c) -> f n t; f (g (LocalAssum (na, t)) n) c
  | Lambda (na,t,c) -> f n t; f (g (LocalAssum (na, t)) n) c
  | LetIn (na,b,t,c) -> f n b; f n t; f (g (LocalDef (na, b, t)) n) c
  | App (c,l) -> f n c; Array.Fun1.iter f n l
  | Evar (_,l) -> List.iter (fun c -> f n c) l
  | Case (ci,u,pms,p,iv,c,bl) ->
    let (ci, _, pms, p, iv, c, bl) = annotate_case env sigma (ci, u, pms, p, iv, c, bl) in
    let f_ctx (ctx, c) = f (List.fold_right g ctx n) c in
    Array.Fun1.iter f n pms; f_ctx p; iter_invert (f n) iv; f n c; Array.iter f_ctx bl
  | Proj (p,c) -> f n c
  | Fix (_,(lna,tl,bl)) ->
    Array.iter (f n) tl;
    let n' = Array.fold_left2_i (fun i n na t -> g (LocalAssum (na, lift i t)) n) n lna tl in
    Array.iter (f n') bl
  | CoFix (_,(lna,tl,bl)) ->
    Array.iter (f n) tl;
    let n' = Array.fold_left2_i (fun i n na t -> g (LocalAssum (na,lift i t)) n) n lna tl in
    Array.iter (f n') bl
  | Array (_u,t,def,ty) -> Array.Fun1.iter f n t; f n def; f n ty

let iter_with_binders sigma g f n c =
  let f l c = f l (of_constr c) in
  Constr.iter_with_binders g f n (unsafe_to_constr (whd_evar sigma c))

let fold sigma f acc c =
  let f acc c = f acc (of_constr c) in
  Constr.fold f acc (unsafe_to_constr (whd_evar sigma c))

let fold_with_binders sigma g f acc e c =
  let f e acc c = f e acc (of_constr c) in
  Constr.fold_constr_with_binders g f acc e (unsafe_to_constr (whd_evar sigma c))

let compare_gen k eq_inst eq_sort eq_constr nargs c1 c2 =
  (c1 == c2) || Constr.compare_head_gen_with k k eq_inst eq_sort eq_constr nargs c1 c2

let eq_constr sigma c1 c2 =
  let kind c = kind sigma c in
  let eq_inst _ i1 i2 = EInstance.equal sigma i1 i2 in
  let eq_sorts s1 s2 = ESorts.equal sigma s1 s2 in
  let rec eq_constr nargs c1 c2 =
    compare_gen kind eq_inst eq_sorts eq_constr nargs c1 c2
  in
  eq_constr 0 c1 c2

let eq_constr_nounivs sigma c1 c2 =
  let kind c = kind sigma c in
  let rec eq_constr nargs c1 c2 =
    compare_gen kind (fun _ _ _ -> true) (fun _ _ -> true) eq_constr nargs c1 c2
  in
  eq_constr 0 c1 c2

let compare_constr sigma cmp c1 c2 =
  let kind c = kind sigma c in
  let eq_inst _ i1 i2 = EInstance.equal sigma i1 i2 in
  let eq_sorts s1 s2 = ESorts.equal sigma s1 s2 in
  let cmp nargs c1 c2 = cmp c1 c2 in
  compare_gen kind eq_inst eq_sorts cmp 0 c1 c2

let compare_cumulative_instances cv_pb nargs_ok variances u u' cstrs =
  let open UnivProblem in
  if not nargs_ok then enforce_eq_instances_univs false u u' cstrs
  else
    let make u = Sorts.sort_of_univ @@ Univ.Universe.make u in
    CArray.fold_left3
      (fun cstrs v u u' ->
         let open Univ.Variance in
         match v with
         | Irrelevant -> Set.add (UWeak (u,u')) cstrs
         | Covariant ->
           (match cv_pb with
            | Reduction.CONV -> Set.add (UEq (make u, make u')) cstrs
            | Reduction.CUMUL -> Set.add (ULe (make u, make u')) cstrs)
         | Invariant ->
           Set.add (UEq (make u, make u')) cstrs)
      cstrs variances (Univ.Instance.to_array u) (Univ.Instance.to_array u')

let cmp_inductives cv_pb (mind,ind as spec) nargs u1 u2 cstrs =
  let open UnivProblem in
  match mind.Declarations.mind_variance with
  | None -> enforce_eq_instances_univs false u1 u2 cstrs
  | Some variances ->
    let num_param_arity = Reduction.inductive_cumulativity_arguments spec in
    compare_cumulative_instances cv_pb (Int.equal num_param_arity nargs) variances u1 u2 cstrs

let cmp_constructors (mind, ind, cns as spec) nargs u1 u2 cstrs =
  let open UnivProblem in
  match mind.Declarations.mind_variance with
  | None -> enforce_eq_instances_univs false u1 u2 cstrs
  | Some _ ->
    let num_cnstr_args = Reduction.constructor_cumulativity_arguments spec in
    if not (Int.equal num_cnstr_args nargs)
    then enforce_eq_instances_univs false u1 u2 cstrs
    else
      Array.fold_left2 (fun cstrs u1 u2 -> UnivProblem.(Set.add (UWeak (u1,u2)) cstrs))
        cstrs (Univ.Instance.to_array u1) (Univ.Instance.to_array u2)

let eq_universes env sigma cstrs cv_pb refargs l l' =
  if EInstance.is_empty l then (assert (EInstance.is_empty l'); true)
  else
    let l = EInstance.kind sigma l
    and l' = EInstance.kind sigma l' in
    let open GlobRef in
    let open UnivProblem in
    match refargs with
    | Some (ConstRef c, 1) when Environ.is_array_type env c ->
      cstrs := compare_cumulative_instances cv_pb true [|Univ.Variance.Irrelevant|] l l' !cstrs;
      true
    | None | Some (ConstRef _, _) ->
      cstrs := enforce_eq_instances_univs true l l' !cstrs; true
    | Some (VarRef _, _) -> assert false (* variables don't have instances *)
    | Some (IndRef ind, nargs) ->
      let mind = Environ.lookup_mind (fst ind) env in
      cstrs := cmp_inductives cv_pb (mind,snd ind) nargs l l' !cstrs;
      true
    | Some (ConstructRef ((mi,ind),ctor), nargs) ->
      let mind = Environ.lookup_mind mi env in
      cstrs := cmp_constructors (mind,ind,ctor) nargs l l' !cstrs;
      true

let test_constr_universes env sigma leq ?(nargs=0) m n =
  let open UnivProblem in
  let kind c = kind sigma c in
  if m == n then Some Set.empty
  else
    let cstrs = ref Set.empty in
    let cv_pb = if leq then Reduction.CUMUL else Reduction.CONV in
    let eq_universes refargs l l' = eq_universes env sigma cstrs Reduction.CONV refargs l l'
    and leq_universes refargs l l' = eq_universes env sigma cstrs cv_pb refargs l l' in
    let eq_sorts s1 s2 =
      let s1 = ESorts.kind sigma s1 in
      let s2 = ESorts.kind sigma s2 in
      if Sorts.equal s1 s2 then true
      else (cstrs := Set.add
              (UEq (s1, s2)) !cstrs;
            true)
    in
    let leq_sorts s1 s2 =
      let s1 = ESorts.kind sigma s1 in
      let s2 = ESorts.kind sigma s2 in
      if Sorts.equal s1 s2 then true
      else
        (cstrs := Set.add
           (ULe (s1, s2)) !cstrs;
         true)
    in
    let rec eq_constr' nargs m n = compare_gen kind eq_universes eq_sorts eq_constr' nargs m n in
    let res =
      if leq then
        let rec compare_leq nargs m n =
          Constr.compare_head_gen_leq_with kind kind leq_universes leq_sorts
            eq_constr' leq_constr' nargs m n
        and leq_constr' nargs m n = m == n || compare_leq nargs m n in
        compare_leq nargs m n
      else
        Constr.compare_head_gen_with kind kind eq_universes eq_sorts eq_constr' nargs m n
    in
    if res then Some !cstrs else None

let eq_constr_universes env sigma ?nargs m n =
  test_constr_universes env sigma false ?nargs m n
let leq_constr_universes env sigma ?nargs m n =
  test_constr_universes env sigma true ?nargs m n

let compare_head_gen_proj env sigma equ eqs eqc' nargs m n =
  let kind c = kind sigma c in
  match kind m, kind n with
  | Proj (p, c), App (f, args)
  | App (f, args), Proj (p, c) ->
      (match kind f with
      | Const (p', u) when Environ.QConstant.equal env (Projection.constant p) p' ->
          let npars = Projection.npars p in
          if Array.length args == npars + 1 then
            eqc' 0 c args.(npars)
          else false
      | _ -> false)
  | _ -> Constr.compare_head_gen_with kind kind equ eqs eqc' nargs m n

let eq_constr_universes_proj env sigma m n =
  let open UnivProblem in
  if m == n then Some Set.empty
  else
    let cstrs = ref Set.empty in
    let eq_universes ref l l' = eq_universes env sigma cstrs Reduction.CONV ref l l' in
    let eq_sorts s1 s2 =
      let s1 = ESorts.kind sigma s1 in
      let s2 = ESorts.kind sigma s2 in
      if Sorts.equal s1 s2 then true
      else
        (cstrs := Set.add
           (UEq (s1, s2)) !cstrs;
         true)
    in
    let rec eq_constr' nargs m n =
      m == n || compare_head_gen_proj env sigma eq_universes eq_sorts eq_constr' nargs m n
    in
    let res = eq_constr' 0 m n in
    if res then Some !cstrs else None

let universes_of_constr sigma c =
  let open Univ in
  let rec aux s c =
    match kind sigma c with
    | Const (c, u) ->
      Level.Set.fold Level.Set.add (Instance.levels (EInstance.kind sigma u)) s
    | Ind ((mind,_), u) | Construct (((mind,_),_), u) ->
      Level.Set.fold Level.Set.add (Instance.levels (EInstance.kind sigma u)) s
    | Sort u ->
      let sort = ESorts.kind sigma u in
      if Sorts.is_small sort then s
      else
        Level.Set.fold Level.Set.add (Sorts.levels sort) s
    | Evar (k, args) ->
      let concl = Evd.evar_concl (Evd.find sigma k) in
      fold sigma aux (aux s concl) c
    | Array (u,_,_,_) ->
      let s = Level.Set.fold Level.Set.add (Instance.levels (EInstance.kind sigma u)) s in
      fold sigma aux s c
    | Case (_,u,_,_,_,_,_) ->
      let s = Level.Set.fold Level.Set.add (Instance.levels (EInstance.kind sigma u)) s in
      fold sigma aux s c
    | _ -> fold sigma aux s c
  in aux Level.Set.empty c

open Context
open Environ

let cast_list : type a b. (a,b) eq -> a list -> b list =
  fun Refl x -> x

let cast_list_snd : type a b. (a,b) eq -> ('c * a) list -> ('c * b) list =
  fun Refl x -> x

let cast_vect : type a b. (a,b) eq -> a array -> b array =
  fun Refl x -> x

let cast_rel_decl :
  type a b. (a,b) eq -> (a, a) Rel.Declaration.pt -> (b, b) Rel.Declaration.pt =
  fun Refl x -> x

let cast_rel_context :
  type a b. (a,b) eq -> (a, a) Rel.pt -> (b, b) Rel.pt =
  fun Refl x -> x

let cast_rec_decl :
  type a b. (a,b) eq -> (a, a) Constr.prec_declaration -> (b, b) Constr.prec_declaration =
  fun Refl x -> x

let cast_named_decl :
  type a b. (a,b) eq -> (a, a) Named.Declaration.pt -> (b, b) Named.Declaration.pt =
  fun Refl x -> x

let cast_named_context :
  type a b. (a,b) eq -> (a, a) Named.pt -> (b, b) Named.pt =
  fun Refl x -> x


module Vars =
struct
exception LocalOccur
let to_constr = unsafe_to_constr
let to_rel_decl = unsafe_to_rel_decl

type instance = t array
type instance_list = t list
type substl = t list

(** Operations that commute with evar-normalization *)
let lift = lift
let liftn n m c = of_constr (Vars.liftn n m (to_constr c))

let substnl subst n c = of_constr (Vars.substnl (cast_list unsafe_eq subst) n (to_constr c))
let substl subst c = of_constr (Vars.substl (cast_list unsafe_eq subst) (to_constr c))
let subst1 c r = of_constr (Vars.subst1 (to_constr c) (to_constr r))

let substnl_decl subst n d = of_rel_decl (Vars.substnl_decl (cast_list unsafe_eq subst) n (to_rel_decl d))
let substl_decl subst d = of_rel_decl (Vars.substl_decl (cast_list unsafe_eq subst) (to_rel_decl d))
let subst1_decl c d = of_rel_decl (Vars.subst1_decl (to_constr c) (to_rel_decl d))

let replace_vars subst c =
  of_constr (Vars.replace_vars (cast_list_snd unsafe_eq subst) (to_constr c))
let substn_vars n subst c = of_constr (Vars.substn_vars n subst (to_constr c))
let subst_vars subst c = of_constr (Vars.subst_vars subst (to_constr c))
let subst_var subst c = of_constr (Vars.subst_var subst (to_constr c))

let subst_univs_level_constr subst c =
  of_constr (Vars.subst_univs_level_constr subst (to_constr c))

let subst_instance_context subst ctx =
  cast_rel_context (sym unsafe_eq) (Vars.subst_instance_context subst (cast_rel_context unsafe_eq ctx))

let subst_instance_constr subst c =
  of_constr (Vars.subst_instance_constr subst (to_constr c))

(** Operations that dot NOT commute with evar-normalization *)
let noccurn sigma n term =
  let rec occur_rec n c = match kind sigma c with
    | Rel m -> if Int.equal m n then raise LocalOccur
    | _ -> iter_with_binders sigma succ occur_rec n c
  in
  try occur_rec n term; true with LocalOccur -> false

let noccur_between sigma n m term =
  let rec occur_rec n c = match kind sigma c with
    | Rel p -> if n<=p && p<n+m then raise LocalOccur
    | _        -> iter_with_binders sigma succ occur_rec n c
  in
  try occur_rec n term; true with LocalOccur -> false

let closedn sigma n c =
  let rec closed_rec n c = match kind sigma c with
    | Rel m -> if m>n then raise LocalOccur
    | _ -> iter_with_binders sigma succ closed_rec n c
  in
  try closed_rec n c; true with LocalOccur -> false

let closed0 sigma c = closedn sigma 0 c

let subst_of_rel_context_instance ctx subst =
  cast_list (sym unsafe_eq)
    (Vars.subst_of_rel_context_instance (cast_rel_context unsafe_eq ctx) (cast_vect unsafe_eq subst))
let subst_of_rel_context_instance_list ctx subst =
  cast_list (sym unsafe_eq)
    (Vars.subst_of_rel_context_instance_list (cast_rel_context unsafe_eq ctx) (cast_list unsafe_eq subst))

let liftn_rel_context n k ctx =
  cast_rel_context (sym unsafe_eq)
    (Vars.liftn_rel_context n k (cast_rel_context unsafe_eq ctx))

let lift_rel_context n ctx =
  cast_rel_context (sym unsafe_eq)
    (Vars.lift_rel_context n (cast_rel_context unsafe_eq ctx))

let substnl_rel_context subst n ctx =
  cast_rel_context (sym unsafe_eq)
    (Vars.substnl_rel_context (cast_list unsafe_eq subst) n (cast_rel_context unsafe_eq ctx))

let substl_rel_context subst ctx =
  cast_rel_context (sym unsafe_eq)
    (Vars.substl_rel_context (cast_list unsafe_eq subst) (cast_rel_context unsafe_eq ctx))

let smash_rel_context ctx =
  cast_rel_context (sym unsafe_eq)
      (Vars.smash_rel_context (cast_rel_context unsafe_eq ctx))

let esubst : (int -> 'a -> t) -> 'a Esubst.subs -> t -> t =
match unsafe_eq with
| Refl -> Vars.esubst

type substituend = Vars.substituend
let make_substituend c = Vars.make_substituend (unsafe_to_constr c)
let lift_substituend n s = of_constr (Vars.lift_substituend n s)


end

let rec isArity sigma c =
  match kind sigma c with
  | Prod (_,_,c)    -> isArity sigma c
  | LetIn (_,b,_,c) -> isArity sigma (Vars.subst1 b c)
  | Cast (c,_,_)      -> isArity sigma c
  | Sort _          -> true
  | _               -> false

type arity = rel_context * ESorts.t

let destArity sigma =
  let open Context.Rel.Declaration in
  let rec prodec_rec l c =
    match kind sigma c with
    | Prod (x,t,c)    -> prodec_rec (LocalAssum (x,t) :: l) c
    | LetIn (x,b,t,c) -> prodec_rec (LocalDef (x,b,t) :: l) c
    | Cast (c,_,_)      -> prodec_rec l c
    | Sort s          -> l,s
    | _               -> anomaly ~label:"destArity" (Pp.str "not an arity.")
  in
  prodec_rec []

let mkProd_or_LetIn decl c =
  let open Context.Rel.Declaration in
  match decl with
  | LocalAssum (na,t) -> mkProd (na, t, c)
  | LocalDef (na,b,t) -> mkLetIn (na, b, t, c)

let mkLambda_or_LetIn decl c =
  let open Context.Rel.Declaration in
  match decl with
  | LocalAssum (na,t) -> mkLambda (na, t, c)
  | LocalDef (na,b,t) -> mkLetIn (na, b, t, c)

let mkNamedProd id typ c = mkProd (map_annot Name.mk_name id, typ, Vars.subst_var id.binder_name c)
let mkNamedLambda id typ c = mkLambda (map_annot Name.mk_name id, typ, Vars.subst_var id.binder_name c)
let mkNamedLetIn id c1 t c2 = mkLetIn (map_annot Name.mk_name id, c1, t, Vars.subst_var id.binder_name c2)

let mkNamedProd_or_LetIn decl c =
  let open Context.Named.Declaration in
  match decl with
    | LocalAssum (id,t) -> mkNamedProd id t c
    | LocalDef (id,b,t) -> mkNamedLetIn id b t c

let mkNamedLambda_or_LetIn decl c =
  let open Context.Named.Declaration in
  match decl with
    | LocalAssum (id,t) -> mkNamedLambda id t c
    | LocalDef (id,b,t) -> mkNamedLetIn id b t c

let it_mkProd_or_LetIn t ctx = List.fold_left (fun c d -> mkProd_or_LetIn d c) t ctx
let it_mkLambda_or_LetIn t ctx = List.fold_left (fun c d -> mkLambda_or_LetIn d c) t ctx

let push_rel d e = push_rel (cast_rel_decl unsafe_eq d) e
let push_rel_context d e = push_rel_context (cast_rel_context unsafe_eq d) e
let push_rec_types d e = push_rec_types (cast_rec_decl unsafe_eq d) e
let push_named d e = push_named (cast_named_decl unsafe_eq d) e
let push_named_context d e = push_named_context (cast_named_context unsafe_eq d) e
let push_named_context_val d e = push_named_context_val (cast_named_decl unsafe_eq d) e

let rel_context e = cast_rel_context (sym unsafe_eq) (rel_context e)
let named_context e = cast_named_context (sym unsafe_eq) (named_context e)

let val_of_named_context e = val_of_named_context (cast_named_context unsafe_eq e)
let named_context_of_val e = cast_named_context (sym unsafe_eq) (named_context_of_val e)

let of_existential : Constr.existential -> existential =
  let gen : type a b. (a,b) eq -> 'c * b list -> 'c * a list = fun Refl x -> x in
  gen unsafe_eq

let lookup_rel i e = cast_rel_decl (sym unsafe_eq) (lookup_rel i e)
let lookup_named n e = cast_named_decl (sym unsafe_eq) (lookup_named n e)
let lookup_named_val n e = cast_named_decl (sym unsafe_eq) (lookup_named_ctxt n e)

let map_rel_context_in_env f env sign =
  let rec aux env acc = function
    | d::sign ->
        aux (push_rel d env) (Context.Rel.Declaration.map_constr (f env) d :: acc) sign
    | [] ->
        acc
  in
  aux env [] (List.rev sign)

let match_named_context_val :
  named_context_val -> (named_declaration * lazy_val * named_context_val) option =
  match unsafe_eq with
  | Refl -> match_named_context_val

let identity_subst_val : named_context_val -> t list =
  match unsafe_eq with Refl -> fun ctx -> ctx.env_named_var

let fresh_global ?loc ?rigid ?names env sigma reference =
  let (evd,t) = Evd.fresh_global ?loc ?rigid ?names env sigma reference in
  evd, t

let is_global = isRefX

(** Kind of type *)

type kind_of_type =
  | SortType   of ESorts.t
  | CastType   of types * t
  | ProdType   of Name.t Context.binder_annot * t * t
  | LetInType  of Name.t Context.binder_annot * t * t * t
  | AtomicType of t * t array

let kind_of_type sigma t = match kind sigma t with
  | Sort s -> SortType s
  | Cast (c,_,t) -> CastType (c, t)
  | Prod (na,t,c) -> ProdType (na, t, c)
  | LetIn (na,b,t,c) -> LetInType (na, b, t, c)
  | App (c,l) -> AtomicType (c, l)
  | (Rel _ | Meta _ | Var _ | Evar _ | Const _
  | Proj _ | Case _ | Fix _ | CoFix _ | Ind _)
    -> AtomicType (t,[||])
  | (Lambda _ | Construct _ | Int _ | Float _ | Array _) -> failwith "Not a type"

module Unsafe =
struct
let to_sorts = ESorts.unsafe_to_sorts
let to_instance = EInstance.unsafe_to_instance
let to_constr = unsafe_to_constr
let to_constr_array = unsafe_to_constr_array
let to_rel_decl = unsafe_to_rel_decl
let to_named_decl = unsafe_to_named_decl
let to_named_context =
  let gen : type a b. (a, b) eq -> (a,a) Context.Named.pt -> (b,b) Context.Named.pt
    = fun Refl x -> x
  in
  gen unsafe_eq
let to_rel_context =
  let gen : type a b. (a, b) eq -> (a,a) Context.Rel.pt -> (b,b) Context.Rel.pt
    = fun Refl x -> x
  in
  gen unsafe_eq
let to_case_invert = unsafe_to_case_invert

let eq = unsafe_eq
end
OCaml

Innovation. Community. Security.