package coq

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file univSubst.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

open Sorts
open Util
open Constr
open Univ

type 'a universe_map = 'a Level.Map.t
type universe_subst = Universe.t universe_map
type universe_subst_fn = Level.t -> Universe.t
type universe_level_subst_fn = Level.t -> Level.t

let subst_instance fn i =
  Instance.of_array (Array.Smart.map fn (Instance.to_array i))

let subst_univs_universe fn ul =
  let addn n u = iterate Universe.super n u in
  let subst, nosubst =
    List.fold_right (fun (u, n) (subst,nosubst) ->
      try let a' = addn n (fn u) in
            (a' :: subst, nosubst)
      with Not_found -> (subst, (u, n) :: nosubst))
      (Universe.repr ul) ([], [])
  in
  match subst with
  | [] -> ul
  | u :: ul ->
    let substs = List.fold_left Universe.sup u subst in
    List.fold_left (fun acc (u, n) -> Universe.sup acc (addn n (Universe.make u))) substs nosubst

let enforce_eq u v c =
  if Universe.equal u v then c else match Universe.level u, Universe.level v with
  | Some u, Some v -> enforce_eq_level u v c
  | _ -> CErrors.anomaly (Pp.str "A universe comparison can only happen between variables.")

let constraint_add_leq v u c =
  let eq (x, n) (y, m) = Int.equal m n && Level.equal x y in
  (* We just discard trivial constraints like u<=u *)
  if eq v u then c
  else
    match v, u with
    | (x,n), (y,m) ->
    let j = m - n in
      if j = -1 (* n = m+1, v+1 <= u <-> v < u *) then
        Constraints.add (x,Lt,y) c
      else if j <= -1 (* n = m+k, v+k <= u and k>0 *) then
        if Level.equal x y then (* u+k <= u with k>0 *)
          Constraints.add (x,Lt,x) c
        else CErrors.anomaly (Pp.str"Unable to handle arbitrary u+k <= v constraints.")
      else if j = 0 then
        Constraints.add (x,Le,y) c
      else (* j >= 1 *) (* m = n + k, u <= v+k *)
        if Level.equal x y then c (* u <= u+k, trivial *)
        else if Level.is_set x then c (* Prop,Set <= u+S k, trivial *)
        else Constraints.add (x,Le,y) c (* u <= v implies u <= v+k *)

let check_univ_leq_one u v =
  let leq (u,n) (v,n') =
    let cmp = Level.compare u v in
      if Int.equal cmp 0 then n <= n'
      else false
  in
  Universe.exists (leq u) v

let check_univ_leq u v =
  Universe.for_all (fun u -> check_univ_leq_one u v) u

let enforce_leq u v c =
  List.fold_left (fun c v -> (List.fold_left (fun c u -> constraint_add_leq u v c) c u)) c v

let enforce_leq u v c =
  if check_univ_leq u v then c
  else enforce_leq (Universe.repr u) (Universe.repr v) c

let get_algebraic = function
| Prop | SProp -> assert false
| Set -> Universe.type0
| Type u -> u

let enforce_eq_sort s1 s2 cst = match s1, s2 with
| (SProp, SProp) | (Prop, Prop) | (Set, Set) -> cst
| (((Prop | Set | Type _) as s1), (Prop | SProp as s2))
| ((Prop | SProp as s1), ((Prop | Set | Type _) as s2)) ->
  raise (UGraph.UniverseInconsistency (Eq, s1, s2, None))
| (Set | Type _), (Set | Type _) ->
  enforce_eq (get_algebraic s1) (get_algebraic s2) cst

let enforce_leq_sort s1 s2 cst = match s1, s2 with
| (SProp, SProp) | (Prop, Prop) | (Set, Set) -> cst
| (Prop, (Set | Type _)) -> cst
| (((Prop | Set | Type _) as s1), (Prop | SProp as s2))
| ((SProp as s1), ((Prop | Set | Type _) as s2)) ->
  raise (UGraph.UniverseInconsistency (Le, s1, s2, None))
| (Set | Type _), (Set | Type _) ->
  enforce_leq (get_algebraic s1) (get_algebraic s2) cst

let enforce_leq_alg_sort s1 s2 g = match s1, s2 with
| (SProp, SProp) | (Prop, Prop) | (Set, Set) -> Constraints.empty, g
| (Prop, (Set | Type _)) -> Constraints.empty, g
| (((Prop | Set | Type _) as s1), (Prop | SProp as s2))
| ((SProp as s1), ((Prop | Set | Type _) as s2)) ->
  if UGraph.cumulative_sprop g && is_sprop s1 then
    Constraints.empty, g
  else
    raise (UGraph.UniverseInconsistency (Le, s1, s2, None))
| (Set | Type _), (Set | Type _) ->
  UGraph.enforce_leq_alg (get_algebraic s1) (get_algebraic s2) g

let enforce_univ_constraint (u,d,v) =
  match d with
  | Eq -> enforce_eq u v
  | Le -> enforce_leq u v
  | Lt -> enforce_leq (Universe.super u) v

let subst_univs_level fn l =
  try Some (fn l)
  with Not_found -> None

let subst_univs_constraint fn (u,d,v as c) cstrs =
  let u' = subst_univs_level fn u in
  let v' = subst_univs_level fn v in
  match u', v' with
  | None, None -> Constraints.add c cstrs
  | Some u, None -> enforce_univ_constraint (u,d,Universe.make v) cstrs
  | None, Some v -> enforce_univ_constraint (Universe.make u,d,v) cstrs
  | Some u, Some v -> enforce_univ_constraint (u,d,v) cstrs

let subst_univs_constraints subst csts =
  Constraints.fold
    (fun c cstrs -> subst_univs_constraint subst c cstrs)
    csts Constraints.empty

let level_subst_of f =
  fun l ->
    try let u = f l in
          match Universe.level u with
          | None -> l
          | Some l -> l
    with Not_found -> l

let normalize_univ_variable ~find =
  let rec aux cur =
    let b = find cur in
    let b' = subst_univs_universe aux b in
      if Universe.equal b' b then b
      else b'
  in aux

type universe_opt_subst = Universe.t option universe_map

let normalize_univ_variable_opt_subst ectx =
  let find l =
    match Univ.Level.Map.find l ectx with
    | Some b -> b
    | None -> raise Not_found
  in
  normalize_univ_variable ~find

let normalize_universe_opt_subst subst =
  let normlevel = normalize_univ_variable_opt_subst subst in
    subst_univs_universe normlevel

let normalize_opt_subst ctx =
  let normalize = normalize_universe_opt_subst ctx in
  Univ.Level.Map.mapi (fun u -> function
      | None -> None
      | Some v -> Some (normalize v)) ctx

let normalize_univ_variables ctx =
  let ctx = normalize_opt_subst ctx in
  let def, subst =
    Univ.Level.Map.fold (fun u v (def, subst) ->
      match v with
      | None -> (def, subst)
      | Some b -> (Univ.Level.Set.add u def, Univ.Level.Map.add u b subst))
    ctx (Univ.Level.Set.empty, Univ.Level.Map.empty)
  in ctx, def, subst

let subst_univs_fn_puniverses f (c, u as cu) =
  let u' = subst_instance f u in
    if u' == u then cu else (c, u')

let nf_evars_and_universes_opt_subst f subst =
  let subst = normalize_univ_variable_opt_subst subst in
  let lsubst = level_subst_of subst in
  let rec aux c =
    match kind c with
    | Evar (evk, args) ->
      let args' = List.Smart.map aux args in
      (match try f (evk, args') with Not_found -> None with
      | None -> if args == args' then c else mkEvar (evk, args')
      | Some c -> aux c)
    | Const pu ->
      let pu' = subst_univs_fn_puniverses lsubst pu in
        if pu' == pu then c else mkConstU pu'
    | Ind pu ->
      let pu' = subst_univs_fn_puniverses lsubst pu in
        if pu' == pu then c else mkIndU pu'
    | Construct pu ->
      let pu' = subst_univs_fn_puniverses lsubst pu in
        if pu' == pu then c else mkConstructU pu'
    | Sort (Type u) ->
      let u' = subst_univs_universe subst u in
      if u' == u then c else mkSort (sort_of_univ u')
    | Case (ci,u,pms,p,iv,t,br) ->
      let u' = subst_instance lsubst u in
      if u' == u then Constr.map aux c
      else Constr.map aux (mkCase (ci,u',pms,p,iv,t,br))
    | Array (u,elems,def,ty) ->
      let u' = subst_instance lsubst u in
      let elems' = CArray.Smart.map aux elems in
      let def' = aux def in
      let ty' = aux ty in
      if u == u' && elems == elems' && def == def' && ty == ty' then c
      else mkArray (u',elems',def',ty')
    | _ -> Constr.map aux c
  in aux

let pr_universe_subst =
  let open Pp in
  Level.Map.pr (fun u -> str" := " ++ Universe.pr u ++ spc ())
OCaml

Innovation. Community. Security.