Source file ind_types.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
open Logtk
open Libzipperposition
module Lits = Literals
module T = Term
type term = T.t
let section = Ind_ty.section
let stat_acyclicity = Util.mk_stat "ind_ty.acyclicity_steps"
let stat_disjointness = Util.mk_stat "ind_ty.disjointness_steps"
let stat_injectivity = Util.mk_stat "ind_ty.injectivity_steps"
let stat_exhaustiveness = Util.mk_stat "ind_ty.exhaustiveness_steps"
let enabled_ = ref true
(** {1 Deal with Inductive Types} *)
module Make(Env : Env_intf.S) = struct
module C = Env.C
let as_cstor_app (t:term): (ID.t * term list) option =
begin match T.view t with
| T.App (f, l) ->
begin match T.view f with
| T.Const id when Ind_ty.is_constructor id -> Some (id,l)
| _ -> None
end
| T.Const id when Ind_ty.is_constructor id -> Some (id, [])
| T.Const _
| T.Fun _
| T.Var _
| T.DB _
| T.AppBuiltin _ -> None
end
let is_cstor_app t = CCOpt.is_some (as_cstor_app t)
let walk_cstor_args (t:term): term Iter.t =
let rec aux t = match as_cstor_app t with
| Some (_, l) ->
Iter.of_list l
|> Iter.flat_map (fun u -> Iter.cons u (aux u))
| None -> Iter.empty
in
aux t
let acyclicity lit: [`Absurd | `Trivial | `Neither] =
let occurs_in_ t ~sub =
walk_cstor_args t |> Iter.exists (T.equal sub)
in
begin match lit with
| Literal.Equation (l, r, b) ->
if
( Ind_ty.is_inductive_type (T.ty l) && occurs_in_ ~sub:l r )
||
( Ind_ty.is_inductive_type (T.ty r) && occurs_in_ ~sub:r l )
then if b then `Absurd else `Trivial else `Neither
| _ -> `Neither
end
let acyclicity_trivial c: bool =
let res =
C.Seq.lits c
|> Iter.exists
(fun lit -> match acyclicity lit with
| `Neither
| `Absurd -> false
| `Trivial -> true)
in
if res then (
Util.incr_stat stat_acyclicity;
Util.debugf ~section 3 "@[<2>acyclicity:@ `@[%a@]` is trivial@]"
(fun k->k C.pp c);
);
res
let acyclicity_simplify c: C.t SimplM.t =
let lits' =
C.Seq.lits c
|> Iter.filter
(fun lit -> match acyclicity lit with
| `Neither
| `Trivial -> true
| `Absurd -> false
)
|> Iter.to_array
in
if Array.length lits' = Array.length (C.lits c)
then SimplM.return_same c
else (
let proof =
Proof.Step.inference ~rule:(Proof.Rule.mk "acyclicity")
~tags:[Proof.Tag.T_data] [C.proof_parent c] in
let c' = C.create_a ~trail:(C.trail c) ~penalty:(C.penalty c) lits' proof in
Util.incr_stat stat_acyclicity;
Util.debugf ~section 3
"@[<2>acyclicity:@ simplify `@[%a@]`@ into `@[%a@]`@]" (fun k->k C.pp c C.pp c');
SimplM.return_new c'
)
let acyclicity_inf (c:C.t): C.t list =
let unify_sub t ~sub =
walk_cstor_args t
|> Iter.filter_map
(fun t' ->
try Some (Unif.FO.unify_full (t',0) (sub,0))
with Unif.Fail -> None)
in
let kill_lit lit: Unif_subst.t Iter.t =
begin match lit with
| Literal.Equation (l, r, true) ->
begin match as_cstor_app l, as_cstor_app r with
| Some _, None -> unify_sub l ~sub:r
| None, Some _ -> unify_sub r ~sub:l
| Some _, Some _
| None, None -> Iter.empty
end
| _ -> Iter.empty
end
in
begin
Iter.of_array_i (C.lits c)
|> Iter.flat_map
(fun (i, lit) ->
kill_lit lit |> Iter.map (fun subst -> i, subst))
|> Iter.map
(fun (i,us) ->
let subst = Unif_subst.subst us in
let new_lits = CCArray.except_idx (C.lits c) i in
let renaming = Subst.Renaming.create () in
let c_guard = Literal.of_unif_subst renaming us in
let new_lits =
c_guard @ Literal.apply_subst_list renaming subst (new_lits,0)
in
let proof =
Proof.Step.inference [C.proof_parent_subst renaming (c,0) subst]
~rule:(Proof.Rule.mk "acyclicity") ~tags:[Proof.Tag.T_data]
in
let new_c =
C.create
~trail:(C.trail c) ~penalty:(C.penalty c)
new_lits proof
in
Util.incr_stat stat_acyclicity;
Util.debugf ~section 3
"@[<2>acyclicity@ :from `@[%a@]`@ :into `@[%a@]`@ :subst %a@]"
(fun k->k C.pp c C.pp new_c Subst.pp subst);
new_c)
|> Iter.to_rev_list
end
let find_cstor_pair ~sign ~eligible c =
Lits.fold_lits ~eligible (C.lits c)
|> Iter.find
(fun (lit, i) -> match lit with
| Literal.Equation (l, r, sign') when sign=sign' ->
begin match T.Classic.view l, T.Classic.view r with
| T.Classic.App (s1, l1), T.Classic.App (s2, l2)
when Ind_ty.is_constructor s1
&& Ind_ty.is_constructor s2
-> Some (i,s1,l1,s2,l2)
| _ -> None
end
| _ -> None)
let injectivity_destruct_pos c =
let eligible = C.Eligible.(filter Literal.is_eq) in
match find_cstor_pair ~sign:true ~eligible c with
| Some (idx,s1,l1,s2,l2) when ID.equal s1 s2 ->
assert (List.length l1 = List.length l2);
let other_lits = CCArray.except_idx (C.lits c) idx in
let new_lits =
List.combine l1 l2
|> CCList.filter_map
(fun (t1,t2) ->
if T.equal t1 t2 then None else Some (Literal.mk_eq t1 t2))
in
let rule = Proof.Rule.mk "injectivity_destruct+" in
let proof = Proof.Step.inference ~tags:[Proof.Tag.T_data] ~rule [C.proof_parent c] in
let clauses =
List.map
(fun lit ->
C.create ~trail:(C.trail c) ~penalty:(C.penalty c)
(lit :: other_lits) proof)
new_lits
in
Util.incr_stat stat_injectivity;
Util.debugf ~section 3 "@[<hv2>injectivity:@ simplify @[%a@]@ into @[<v>%a@]@]"
(fun k->k C.pp c (CCFormat.list C.pp) clauses);
Some clauses
| Some _
| None -> None
let disjointness lit = match lit with
| Literal.Equation (l,r,sign) ->
begin match T.Classic.view l, T.Classic.view r with
| T.Classic.App (s1, _), T.Classic.App (s2, _)
when Ind_ty.is_constructor s1
&& Ind_ty.is_constructor s2
&& not (ID.equal s1 s2)
->
Util.incr_stat stat_disjointness;
let proof =
let ity = T.head_term l |> T.ty |> Type.returns in
Ind_ty.as_inductive_type_exn ity |> fst |> Ind_ty.proof |> Proof.Parent.from
in
if sign
then Some (Literal.mk_absurd, [proof], [Proof.Tag.T_data])
else Some (Literal.mk_tauto, [proof], [Proof.Tag.T_data])
| _ -> None
end
| _ -> None
let exhaustiveness_tbl_ : unit T.Tbl.t = T.Tbl.create 128
let rec pure_value (t:term): bool = match as_cstor_app t with
| Some (_, l) -> List.for_all pure_value l
| None ->
begin match T.view t with
| T.Const id -> not (Classify_cst.id_is_defined id)
| T.App (f,l) -> pure_value f && List.for_all pure_value l
| T.Fun (_,u) -> pure_value u
| T.Var _ | T.DB _ | T.AppBuiltin _
-> false
end
let exhaustiveness (c:C.t): C.t list =
let mk_sub_skolem (t:term) (ty:Type.t): ID.t =
if Ind_ty.is_inductive_type ty then (
let depth = match T.view t with
| T.Const id ->
Ind_cst.id_as_cst id |> CCOpt.map Ind_cst.depth |> CCOpt.map succ
| _ -> None
in
Ind_cst.make ~is_sub:false ?depth ty |> Ind_cst.id
) else Ind_cst.make_skolem ty
in
let make_axiom (t:term): C.t =
assert (T.is_ground t);
let ity, ty_params = match Ind_ty.as_inductive_type (T.ty t) with
| Some t -> t
| None -> assert false
in
assert (List.for_all Type.is_ground ty_params);
let rhs_l =
ity.Ind_ty.ty_constructors
|> List.map
(fun { Ind_ty.cstor_name; cstor_ty; _ } ->
let n_args, _, _ = Type.open_poly_fun cstor_ty in
assert (n_args = List.length ty_params);
let cstor_ty_args, ret =
Type.apply cstor_ty ty_params |> Type.open_fun
in
assert (Type.equal ret (T.ty t));
let args =
List.map
(fun ty ->
let c = mk_sub_skolem t ty in
Env.Ctx.declare c ty;
T.const ~ty c)
cstor_ty_args
in
T.app_full
(T.const ~ty:cstor_ty cstor_name)
ty_params
args)
in
let lits = List.map (Literal.mk_eq t) rhs_l in
let proof = Proof.Step.trivial in
let penalty = 5 in
let new_c = C.create ~trail:Trail.empty ~penalty lits proof in
Util.incr_stat stat_exhaustiveness;
Util.debugf ~section 3
"(@[<2>exhaustiveness axiom@ :for `@[%a:%a@]`@ :clause %a@])"
(fun k->k T.pp t Type.pp (T.ty t) C.pp new_c);
new_c
in
let find_terms (t:term): term Iter.t =
T.Seq.subterms t
|> Iter.filter
(fun t ->
T.is_ground t &&
begin match Ind_ty.as_inductive_type (T.ty t) with
| None -> false
| Some (ity,_) ->
not (Ind_ty.is_recursive ity) &&
pure_value t
end)
in
begin
let eligible = C.Eligible.(res c ** neg) in
C.lits c
|> Iter.of_array_i
|> Iter.filter_map
(fun (i,lit) -> if eligible i lit then Some lit else None)
|> Iter.flat_map Literal.Seq.terms
|> Iter.flat_map find_terms
|> Iter.filter
(fun t ->
not (is_cstor_app t) &&
not (T.Tbl.mem exhaustiveness_tbl_ t))
|> T.Set.of_seq |> T.Set.to_list
|> List.rev_map
(fun t ->
T.Tbl.add exhaustiveness_tbl_ t ();
let ax = make_axiom t in
ax)
end
let setup() =
if !enabled_ then (
Util.debug ~section 2 "setup inductive types calculus";
Env.add_is_trivial acyclicity_trivial;
Env.add_unary_simplify acyclicity_simplify;
Env.add_multi_simpl_rule injectivity_destruct_pos;
Env.add_lit_rule "ind_types.disjointness" disjointness;
Env.add_unary_inf "ind_types.acyclicity" acyclicity_inf;
Env.add_unary_inf "ind_types.exhaustiveness" exhaustiveness
)
end
let env_act (module E : Env_intf.S) =
let module M = Make(E) in
M.setup ()
let extension =
let open Extensions in
{ default with
name="ind_types";
env_actions=[env_act]
}
let () =
Params.add_to_mode "ho-complete-basic" (fun () ->
enabled_ := false
);
Params.add_to_mode "ho-pragmatic" (fun () ->
enabled_ := false
);
Params.add_to_mode "ho-competitive" (fun () ->
enabled_ := false
);
Params.add_to_mode "fo-complete-basic" (fun () ->
enabled_ := false
);