package libzipperposition

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file avatar.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607

(* This file is free software, part of Zipperposition. See file "license" for more details. *)

(** {1 Basic Splitting à la Avatar} *)

open Logtk
open Libzipperposition

module T = Term
module Lit = Literal
module Fmt = CCFormat

type 'a printer = Format.formatter -> 'a -> unit

let section = Util.Section.make ~parent:Const.section "avatar"
(** {2 Avatar} *)

let prof_splits = Util.mk_profiler "avatar.split"
let prof_check = Util.mk_profiler "avatar.check"
let prof_simp_trail = Util.mk_profiler "avatar.simp_trail"

let stat_splits = Util.mk_stat "avatar.splits"
let stat_trail_trivial = Util.mk_stat "avatar.trivial_trail"
let stat_trail_simplify = Util.mk_stat "avatar.simplify_trail"
let stat_backward_simp_trail = Util.mk_stat "avatar.backward_simplify_trail"

(* annotate clauses that have been introduced by lemma *)
let flag_cut_introduced = SClause.new_flag()

module type S = Avatar_intf.S

let k_avatar : (module S) Flex_state.key = Flex_state.create_key ()
let k_show_lemmas : bool Flex_state.key = Flex_state.create_key()
let k_simplify_trail : bool Flex_state.key = Flex_state.create_key()
let k_back_simplify_trail : bool Flex_state.key = Flex_state.create_key()

module Make(E : Env.S)(Sat : Sat_solver.S)
= struct
  module E = E
  module Ctx = E.Ctx
  module C = E.C
  module Solver = Sat
  module BLit = BBox.Lit

  (* union-find that maps vars to list of literals, used for splitting *)
  module UF =
    UnionFind.Make(struct
      type key = T.var
      type value = Lit.Set.t
      let equal = HVar.equal Type.equal
      let hash = HVar.hash
      let zero = Lit.Set.empty
      let merge = Lit.Set.union
    end)

  let simplify_split_ (c:C.t): C.t list option =
    let lits = C.lits c in
    (* maps each variable to a list of literals. Sets can be merged whenever
       two variables occur in the same literal.  *)
    let uf_vars =
      C.Seq.vars c
      |> T.VarSet.of_seq
      |> T.VarSet.to_list
      |> UF.create
    (* set of ground literals (each one is its own component) *)
    and cluster_ground = ref Lit.Set.empty in

    (* literals belong to either their own ground component, or to every
        sets in [uf_vars] associated to their variables *)
    Array.iter
      (fun lit ->
         let v_opt = Lit.Seq.vars lit |> Iter.head in
         begin match v_opt with
           | None -> (* ground, lit has its own component *)
             cluster_ground := Lit.Set.add lit !cluster_ground
           | Some v ->
             (* merge other variables of the literal with [v] *)
             Lit.Seq.vars lit
             |> Iter.iter
               (fun v' ->
                  (* lit is in the equiv class of [v'] *)
                  UF.add uf_vars v' (Lit.Set.singleton lit);
                  UF.union uf_vars v v');
         end)
      lits;

    (* now gather all the components as a literal list list *)
    let components = ref [] in
    Lit.Set.iter (fun lit -> components := [lit] :: !components) !cluster_ground;
    UF.iter uf_vars (fun _ comp -> components := Lit.Set.to_list comp :: !components);

    begin match !components with
      | [] -> assert (Array.length lits=0); None
      | [_] -> None
      | _::_ ->
        (* do a simplification! *)
        Util.incr_stat stat_splits;
        let proof =
          Proof.Step.esa ~rule:(Proof.Rule.mk "split")
            [Proof.Parent.from @@ C.proof c]
        in
        (* elements of the trail to keep *)
        let keep_trail =
          C.trail c |> Trail.filter BBox.must_be_kept
        in
        let clauses_and_names =
          List.map
            (fun lits ->
               let lits = Array.of_list lits in
               let bool_name = BBox.inject_lits lits in
               Util.debugf ~section 5 "(@[<2>inject_lits@ :lits %a@ :blit %a@])"
                 (fun k->k Literals.pp lits BBox.pp bool_name);
               (* new trail: add the new one *)
               let trail = Trail.add bool_name keep_trail in
               let c = C.create_a ~trail ~penalty:(C.penalty c) lits proof in
               c, bool_name)
            !components
        in
        let clauses, bool_clause = List.split clauses_and_names in
        Util.debugf ~section 4 "@[split of @[%a@]@ yields @[%a@]@]"
          (fun k->k C.pp c (Util.pp_list C.pp) clauses);
        (* add boolean constraint: trail(c) => bigor_{name in clauses} name *)
        let bool_guard =
          C.trail c
          |> Trail.to_list
          |> List.map Trail.Lit.neg
        in
        let bool_clause = List.append bool_clause bool_guard in
        Sat.add_clause ~proof bool_clause;
        Util.debugf ~section 4 "@[constraint clause is @[%a@]@]"
          (fun k->k BBox.pp_bclause bool_clause);
        (* return the clauses *)
        Some clauses
    end

  (* Avatar splitting *)
  let split c =
    Util.enter_prof prof_splits;
    let res =
      if Array.length (C.lits c) <= 1 || Literals.is_trivial (C.lits c)
      then None
      else simplify_split_ c
    in
    Util.exit_prof prof_splits;
    res

  let filter_absurd_trails_ = ref (fun _ -> true)
  let filter_absurd_trails f = filter_absurd_trails_ := f

  (* if c.lits = [], negate c.trail *)
  let check_empty c =
    if Array.length (C.lits c) = 0 && !filter_absurd_trails_ (C.trail c)
    then (
      assert (not (Trail.is_empty (C.trail c)));
      let b_clause =
        C.trail c
        |> Trail.to_list
        |> List.map Trail.Lit.neg
      in
      Util.debugf ~section 4 "@[negate trail of @[%a@] (id %d)@ with @[%a@]@]"
        (fun k->k C.pp c (C.id c) BBox.pp_bclause b_clause);
      Sat.add_clause ~proof:(C.proof_step c) b_clause;
    );
    [] (* never infers anything! *)

  (* check whether the trail is false and will remain so *)
  let trail_is_trivial_ (trail:Trail.t): bool =
    let res =
      Trail.to_seq trail
      |> Iter.find_map
        (fun lit ->
           try match Sat.valuation_level lit with
             | false, 0 -> Some lit (* false at level 0: proven false *)
             | _ -> None
           with Sat.UndecidedLit -> None)
    in
    begin match res with
      | None -> false
      | Some lit ->
        Util.incr_stat stat_trail_trivial;
        Util.debugf ~section 3 "(@[<hv2>trivial_trail@ :trail @[<hv>%a@]@ :lit `%a`@]"
          (fun k->k C.pp_trail trail BBox.pp lit);
        true
    end

  let trail_is_trivial tr =
    Sat.last_result () = Sat_solver.Sat && trail_is_trivial_ tr

  type trail_status =
    | Tr_trivial
    | Tr_simplify_into of BLit.t list * BLit.t list (* kept, removed *)
    | Tr_same

  exception Trail_is_trivial

  (* return [new_trail], [is_trivial] *)
  let simplify_opt_ (trail:Trail.t): trail_status =
    let n_simpl = ref 0 in
    try
      let trail, removed =
        Trail.to_list trail
        |> List.partition
          (fun lit ->
             try match Sat.valuation_level lit with
               | true, 0 ->
                 (* [lit] is proven true, it is therefore not necessary
                    to depend on it *)
                 incr n_simpl;
                 false
               | false, 0 ->
                 (* [lit] is proven false, the whole trail is trivial *)
                 raise Trail_is_trivial
               | _ -> true
             with Sat.UndecidedLit -> true)
      in
      if !n_simpl > 0
      then (
        assert (removed<>[]);
        Tr_simplify_into (trail, removed)
      ) else Tr_same
    with Trail_is_trivial ->
      Tr_trivial

  let simplify_opt trail = Util.with_prof prof_simp_trail simplify_opt_ trail

  (* simplify the trail of [c] using boolean literals that have been proven *)
  let simplify_trail_ c =
    let trail = C.trail c in
    (* remove bool literals made trivial by SAT solver *)
    begin match simplify_opt trail with
      | Tr_same
      | Tr_trivial -> SimplM.return_same c (* handled by [is_trivial] *)
      | Tr_simplify_into (new_trail, removed_trail) ->
        Util.incr_stat stat_trail_simplify;
        let new_trail = Trail.of_list new_trail in
        (* use SAT resolution proofs for tracking why the trail
           has been simplified, so that the other branches that have been
           closed can appear in the proof *)
        let proof_removed =
          List.map (CCFun.compose Sat.get_proof_of_lit Proof.Parent.from) removed_trail
        in
        let proof =
          Proof.Step.simp ~rule:(Proof.Rule.mk "simpl_trail")
            (Proof.Parent.from (C.proof c) :: proof_removed) in
        let c' =
          C.create_a ~trail:new_trail ~penalty:(C.penalty c)(C.lits c) proof
        in
        Util.debugf ~section 3
          "@[<2>clause @[%a@]@ trail-simplifies into @[%a@]@]"
          (fun k->k C.pp c C.pp c');
        SimplM.return_new c'
    end

  (* only simplify if SAT *)
  let simplify_trail c =
    if Sat.last_result () = Sat_solver.Sat
    then simplify_trail_ c
    else SimplM.return_same c

  let new_proved_lits : unit -> bool =
    let num_proved_last_ = ref 0 in
    fun () ->
      let set = Sat.all_proved () in
      let n = BLit.Set.cardinal set in
      assert (n >= !num_proved_last_);
      let yes = n > !num_proved_last_ in
      num_proved_last_ := n;
      yes


  (* subset of active clauses that have a trivial trail or simplifiable
     trail *)
  let backward_simplify_trails (_:C.t): C.ClauseSet.t =
    if Sat.last_result () = Sat_solver.Sat && new_proved_lits () then (
      E.ProofState.ActiveSet.clauses ()
      |> C.ClauseSet.to_seq
      |> Iter.filter (fun c -> not (Trail.is_empty @@ C.trail c))
      |> Iter.filter
        (fun c ->
           let ok = match simplify_opt (C.trail c) with
             | Tr_trivial | Tr_simplify_into _ -> true
             | Tr_same -> false
           in
           if ok then (
             Util.incr_stat stat_backward_simp_trail;
             Util.debugf ~section 5
               "(@[<2>backward_simplify_trail@ %a@])" (fun k->k C.pp c);
           );
           ok)
      |> C.ClauseSet.of_seq
    ) else C.ClauseSet.empty

  let skolem_count_ = ref 0

  type cut_res = {
    cut_form: Cut_form.t; (** the lemma itself *)
    cut_pos: E.C.t list; (** clauses true if lemma is true *)
    cut_lit: BLit.t; (** lit that is true if lemma is true *)
    cut_depth: int; (** if the lemma is used to prove another lemma *)
    cut_proof: Proof.Step.t; (** where does the lemma come from? *)
    cut_proof_parent: Proof.Parent.t; (** how to justify sth from the lemma *)
    cut_reason: unit CCFormat.printer option; (** Informal reason why the lemma was added *)
  }

  let cut_form c = c.cut_form
  let cut_pos c = c.cut_pos
  let cut_lit c = c.cut_lit
  let cut_depth c = c.cut_depth
  let cut_proof c = c.cut_proof
  let cut_proof_parent c = c.cut_proof_parent

  let pp_cut_res out (c:cut_res): unit =
    let pp_depth out d = if d>0  then Format.fprintf out "@ :depth %d" d in
    let pp_reason out r = Format.fprintf out "@ :reason @[%a@]" r () in
    Format.fprintf out "(@[<4>@[<hv>cut@ :form @[%a@]@ :lit @[%a@]%a]%a@])"
      (Util.pp_list E.C.pp) c.cut_pos
      BLit.pp c.cut_lit pp_depth c.cut_depth
      (Fmt.some pp_reason) c.cut_reason

  let cut_res_clauses c = Iter.of_list c.cut_pos

  (* generic mechanism for adding clause(s)
     and make a lemma out of them, including Skolemization, etc. *)
  let introduce_cut ?reason ?(penalty=1) ?(depth=0) (f:Cut_form.t) proof : cut_res =
    let box = BBox.inject_lemma f in
    let cut_proof_parent =
      let form = Cut_form.to_s_form f in
      let st =
        Statement.lemma ~proof:(Proof.Step.lemma @@ Proof.Src.internal[])
          [form]
      in
      Proof.Parent.from @@ Statement.as_proof_i st
    in
    (* positive clauses *)
    let proof_pos =
      Proof.Step.esa ~rule:(Proof.Rule.mk "cut") [cut_proof_parent]
    in
    let c_pos =
      List.map
        (fun lits ->
           C.create_a ~trail:(Trail.singleton box) ~penalty lits proof_pos)
        (Cut_form.cs f)
    in
    { cut_form=f; cut_pos=c_pos; cut_lit=box;
      cut_depth=depth; cut_proof=proof; cut_reason=reason;
      cut_proof_parent; }

  let on_input_lemma : cut_res Signal.t = Signal.create ()
  let on_lemma : cut_res Signal.t = Signal.create()

  module Lemma_tbl = BBox.Lit.Tbl

  (* map from [cut.cut_lit] to [cut] *)
  let all_lemmas_ : cut_res Lemma_tbl.t = Lemma_tbl.create 64

  let prove_lemma_handlers_ : (cut_res -> C.t list E.conversion_result) list ref = ref []

  let add_prove_lemma x = CCList.Ref.push prove_lemma_handlers_ x

  (* clauses recently pushed while trying to prove lemmas *)
  let new_clauses_from_lemmas_ : C.t list ref = ref []

  (* return the list of new lemmas *)
  let inf_new_lemmas ~full:_ () =
    let l = !new_clauses_from_lemmas_ in
    new_clauses_from_lemmas_ := [];
    l

  (* try to prove a lemma, by trying handlers one by one, or just skolemizing *)
  let prove_lemma (c:cut_res): unit =
    let default () =
      let g = cut_form c in
      (* proof step *)
      let proof =
        Proof.Step.esa [cut_proof_parent c] ~rule:(Proof.Rule.mk "cut")
      in
      let vars = Cut_form.vars g |> T.VarSet.to_list in
      Util.debugf ~section 2
        "(@[<hv2>prove_lemma@ :form %a@ :vars (@[%a@])@])"
        (fun k->k Cut_form.pp g (Util.pp_list HVar.pp) vars);
      (* map variables to skolems *)
      let subst : Subst.t =
        vars
        |> List.map
          (fun v ->
             let ty_v = HVar.ty v in
             let id = Ind_cst.make_skolem ty_v in
             Ctx.declare id ty_v;
             (v,0), (T.const ~ty:ty_v id,0))
        |> Subst.FO.of_list' ?init:None
      in
      (* for each clause, apply [subst] to it and negate its
          literals, obtaining a DNF of [¬ And_i ctx_i[case]];
          then turn DNF into CNF *)
      let renaming = Subst.Renaming.create () in
      let clauses =
        begin
          Cut_form.apply_subst renaming subst (g,0)
          |> Cut_form.cs
          |> Util.map_product
            ~f:(fun lits ->
                let lits = Array.map (fun l -> [Literal.negate l]) lits in
                Array.to_list lits)
          |> CCList.map
            (fun l ->
               let lits = Array.of_list l in
               let trail = Trail.singleton (BLit.neg @@ cut_lit c) in
               C.create_a lits proof ~trail ~penalty:1)
        end
      in
      clauses
    in
    let rec aux acc = function
      | [] -> List.rev_append (default()) acc
      | proof_handler :: tail ->
        begin match proof_handler c with
          | E.CR_drop
          | E.CR_skip -> aux acc tail
          | E.CR_return cs -> List.rev_append cs acc
          | E.CR_add cs -> aux (List.rev_append cs acc) tail
        end
    in
    (* add proof clauses to the positive clauses *)
    let cs = aux (cut_pos c) !prove_lemma_handlers_ in
    Util.debugf ~section 3
      "(@[prove_lemma@ :lemma %a@ :clauses (@[<hv>%a@])@])"
      (fun k->k Cut_form.pp (cut_form c) (Util.pp_list C.pp) cs);
    CCList.Ref.push_list new_clauses_from_lemmas_ cs

  let add_lemma (c:cut_res): unit =
    if not (Lemma_tbl.mem all_lemmas_ c.cut_lit) then (
      Util.debugf ~section 2 "(@[<2>add_lemma@ :on `[@[<hv>%a@]]`@ :lit %a@])"
        (fun k->k Cut_form.pp c.cut_form BBox.pp c.cut_lit);
      Lemma_tbl.add all_lemmas_ c.cut_lit c;
      (* start a subproof for the lemma *)
      prove_lemma c;
      Signal.send on_lemma c;
    ) else (
      (* already existing lemma *)
      Util.debugf ~section 3
        "(@[<2>add_lemma [already there]@ :on `[@[<hv>%a@]]`@])"
        (fun k->k Cut_form.pp c.cut_form);
    )

  let add_imply (l:cut_res list) (res:cut_res) (p:Proof.Step.t): unit =
    let c = res.cut_lit :: List.map (fun cut -> BLit.neg cut.cut_lit) l in
    Util.debugf ~section 3
      "(@[<2>add_imply@ :premises (@[<hv>%a@])@ :concl %a@ :proof %a@])"
      (fun k->k (Util.pp_list pp_cut_res) l pp_cut_res res Proof.Step.pp p);
    Solver.add_clause ~proof:p c;
    ()


  let lemma_seq : cut_res Iter.t =
    fun yield -> Lemma_tbl.iter (fun _ c -> yield c) all_lemmas_

  (* is this literal involved in the proof? *)
  let rec in_proof_of_ (p:Proof.t) (lit:BLit.t): bool =
    let eq_abs l1 l2 = BLit.equal (BLit.abs l1) (BLit.abs l2) in
    let in_proof_ (p:Proof.Step.t) (lit:BLit.t): bool =
      List.exists (fun parent -> in_proof_of_ (Proof.Parent.proof parent) lit) (Proof.Step.parents p)
    in
    begin match Proof.S.result p with
      | Proof.Res (_, Bool_clause.E_proof l) ->
        List.exists (eq_abs lit) l || in_proof_ (Proof.S.step p) lit
      | _ -> in_proof_ (Proof.S.step p) lit
    end

  let print_lemmas out () =
    let in_core = match Sat.get_proof_opt () with
      | None -> (fun _ -> false)
      | Some p -> in_proof_of_ p
    and pp_reason out r = Format.fprintf out "@ :reason @[%a@]" r () in
    let pp_lemma out c =
      let status = match Sat.proved_at_0 c.cut_lit with
        | _ when in_core c.cut_lit -> "in_proof"
        | None -> "unknown"
        | Some true -> "proved"
        | Some false -> "refuted"
      in
      Format.fprintf out "@[<4>@[<hv>@{<Green>*@} %s %a@]%a@]"
        status Cut_form.pp c.cut_form (Fmt.some pp_reason) c.cut_reason
    in
    let l = lemma_seq |> Iter.to_rev_list in
    Format.fprintf out "@[<v2>lemmas (%d): {@ %a@,@]}"
      (List.length l) (Util.pp_list ~sep:"" pp_lemma) l;
    ()

  let show_lemmas () = Format.printf "%a@." print_lemmas ()

  let convert_lemma st = match Statement.view st with
    | Statement.Lemma l ->
      let proof_st = Statement.proof_step st in
      let f =
        l
        |> List.map (List.map Ctx.Lit.of_form)
        |> List.map Array.of_list
        |> Cut_form.make
      in
      let proof =
        Cut_form.cs f
        |> List.map
          (fun c ->
             Proof.Parent.from @@ Proof.S.mk proof_st @@
             SClause.mk_proof_res @@ SClause.make ~trail:Trail.empty c)
        |> Proof.Step.esa ~rule:(Proof.Rule.mk "lemma")
      in
      let cut = introduce_cut ~reason:Fmt.(return "in-input") f proof in
      let all_clauses = cut_res_clauses cut |> Iter.to_rev_list in
      add_lemma cut;
      Signal.send on_input_lemma cut;
      (* interrupt here *)
      E.cr_return all_clauses
    | _ -> E.cr_skip

  let before_check_sat = Signal.create()
  let after_check_sat = Signal.create()

  (* Just check the solver *)
  let check_satisfiability ~full () =
    Util.enter_prof prof_check;
    Signal.send before_check_sat ();
    let res = match Sat.check ~full ()  with
      | Sat_solver.Sat ->
        Util.debug ~section 3 "SAT-solver reports \"SAT\"";
        []
      | Sat_solver.Unsat proof ->
        Util.debug ~section 1 "SAT-solver reports \"UNSAT\"";
        let proof = Proof.S.step proof in
        let c = C.create ~trail:Trail.empty ~penalty:1 [] proof in
        [c]
    in
    Signal.send after_check_sat ();
    Util.exit_prof prof_check;
    res

  let register ~split:do_split () =
    Util.debugf ~section:Const.section 2 "register extension Avatar (split: %B)"
      (fun k->k do_split);
    Sat.set_printer BBox.pp;
    if do_split then (
      E.add_multi_simpl_rule split;
    );
    E.add_unary_inf "avatar_check_empty" check_empty;
    E.add_generate "avatar_check_sat" check_satisfiability;
    E.add_generate "avatar.lemmas" inf_new_lemmas;
    E.add_clause_conversion convert_lemma;
    E.add_is_trivial_trail trail_is_trivial;
    if E.flex_get k_simplify_trail then (
      E.add_unary_simplify simplify_trail;
      if E.flex_get k_back_simplify_trail then (
        E.add_backward_simplify backward_simplify_trails;
      );
    );
    if E.flex_get k_show_lemmas then (
      Signal.once Signals.on_exit (fun _ -> show_lemmas ());
    );
    (* be sure there is an initial valuation *)
    ignore (Sat.check ~full:true ());
    ()
end

let get_env (module E : Env.S) : (module S) = E.flex_get k_avatar

let enabled_ = ref true
let show_lemmas_ = ref false
let simplify_trail_ = ref true
let back_simplify_trail_ = ref true

let extension =
  let action env =
    let module E = (val env : Env.S) in
    Util.debug 1 "create new SAT solver";
    let module Sat = Sat_solver.Make(struct end) in
    Sat.setup();
    let module A = Make(E)(Sat) in
    E.flex_add k_avatar (module A : S);
    E.flex_add k_show_lemmas !show_lemmas_;
    E.flex_add k_simplify_trail !simplify_trail_;
    E.flex_add k_back_simplify_trail !back_simplify_trail_;
    Util.debug 1 "enable Avatar";
    A.register ~split:!enabled_ ()
  in
  Extensions.({default with name="avatar"; env_actions=[action]})

let () =
  Params.add_opts
    [ "--avatar", Arg.Set enabled_, " enable Avatar splitting"
    ; "--no-avatar", Arg.Clear enabled_, " disable Avatar splitting"
    ; "--print-lemmas", Arg.Set show_lemmas_, " show status of Avatar lemmas"
    ; "--avatar-simp-trail", Arg.Set simplify_trail_, " simplify boolean trails in Avatar"
    ; "--no-avatar-simp-trail", Arg.Clear simplify_trail_, " do not simplify boolean trails in Avatar"
    ; "--avatar-backward-simp-trail", Arg.Set back_simplify_trail_, " backward-simplify boolean trails in Avatar"
    ; "--no-avatar-backward-simp-trail", Arg.Clear back_simplify_trail_, " do not backward-simplify boolean trails in Avatar"
    ];
  Params.add_to_mode "ho-complete-basic" (fun () ->
      enabled_ := false
    );
  Params.add_to_mode "ho-pragmatic" (fun () ->
      enabled_ := false
    );
  Params.add_to_mode "ho-competitive" (fun () ->
      enabled_ := false
    );
  Params.add_to_mode "fo-complete-basic" (fun () ->
      enabled_ := false
    );
OCaml

Innovation. Community. Security.