package libzipperposition

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file Arith_rat.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525

(* This file is free software, part of Zipperposition. See file "license" for more details. *)

(** {1 Cancellative Inferences} *)

open Logtk
open Libzipperposition

module T = Term
module Lit = Literal
module Lits = Literals
module S = Subst
module M = Monome
module MF = Monome.Focus
module AL = Rat_lit
module ALF = AL.Focus
module Stmt = Statement
module US = Unif_subst

let stat_rat_sup = Util.mk_stat "rat.superposition"
let stat_rat_cancellation = Util.mk_stat "rat.rat_cancellation"
let stat_rat_eq_factoring = Util.mk_stat "rat.eq_factoring"
let stat_rat_ineq_chaining = Util.mk_stat "rat.ineq_chaining"
let stat_rat_semantic_tautology = Util.mk_stat "rat.semantic_tauto"
let stat_rat_ineq_factoring = Util.mk_stat "rat.ineq_factoring"
let stat_rat_demod = Util.mk_stat "rat.demod"
let stat_rat_backward_demod = Util.mk_stat "rat.backward_demod"
let stat_rat_trivial_ineq = Util.mk_stat "rat.redundant_by_ineq.calls"
let stat_rat_trivial_ineq_steps = Util.mk_stat "rat.redundant_by_ineq.steps"
let stat_rat_demod_ineq = Util.mk_stat "rat.demod_ineq.calls"
let stat_rat_demod_ineq_steps = Util.mk_stat "rat.demod_ineq.steps"
(*
let stat_rat_reflexivity_resolution = Util.mk_stat "rat.reflexivity_resolution"
*)

let prof_rat_sup = Util.mk_profiler "rat.superposition"
let prof_rat_cancellation = Util.mk_profiler "rat.rat_cancellation"
let prof_rat_eq_factoring = Util.mk_profiler "rat.eq_factoring"
let prof_rat_ineq_chaining = Util.mk_profiler "rat.ineq_chaining"
let prof_rat_demod = Util.mk_profiler "rat.demod"
let prof_rat_backward_demod = Util.mk_profiler "rat.backward_demod"
let prof_rat_semantic_tautology = Util.mk_profiler "rat.semantic_tauto"
let prof_rat_ineq_factoring = Util.mk_profiler "rat.ineq_factoring"
let prof_rat_trivial_ineq = Util.mk_profiler "rat.redundant_by_ineq"
let prof_rat_demod_ineq = Util.mk_profiler "rat.demod_ineq"
(*
let prof_rat_reflexivity_resolution = Util.mk_profiler "rat.reflexivity_resolution"
*)

let section = Util.Section.make ~parent:Const.section "rat-arith"

let enable_rat_ = ref true
let enable_ac_ = ref false
let enable_semantic_tauto_ = ref true
let dot_unit_ = ref None

let flag_tauto = SClause.new_flag ()
let flag_computed_tauto = SClause.new_flag ()

module type S = sig
  module Env : Env.S
  module C : module type of Env.C
  module PS : module type of Env.ProofState

  (** {2 Contributions to Env} *)

  val register : unit -> unit
end

let enable_trivial_ineq_ = ref true
let enable_demod_ineq_ = ref true

module Make(E : Env.S) : S with module Env = E = struct
  module Env = E
  module Ctx = Env.Ctx
  module C = Env.C
  module PS = Env.ProofState

  let _idx_eq = ref (PS.TermIndex.empty ())
  let _idx_ineq_left = ref (PS.TermIndex.empty ())
  let _idx_ineq_right = ref (PS.TermIndex.empty ())
  let _idx_all = ref (PS.TermIndex.empty ())

  (* unit clauses *)
  let _idx_unit_eq = ref (PS.TermIndex.empty ())
  let _idx_unit_ineq = ref (PS.TermIndex.empty ())

  (* apply [f] to some subterms of [c] *)
  let update f c =
    let ord = Ctx.ord () in
    _idx_eq :=
      Lits.fold_terms ~vars:false ~ty_args:false ~which:`Max ~ord ~subterms:false
        ~eligible:C.Eligible.(filter Lit.is_rat_eq ** max c)
        (C.lits c)
      |> Iter.fold
        (fun acc (t,pos) ->
           let with_pos = C.WithPos.( {term=t; pos; clause=c} ) in
           f acc t with_pos)
        !_idx_eq;
    let left, right =
      Lits.fold_terms ~vars:false ~ty_args:false ~which:`Max ~ord ~subterms:false
        ~eligible:C.Eligible.(filter Lit.is_rat_less ** max c)
        (C.lits c)
      |> Iter.fold
        (fun (left,right) (t,pos) ->
           let with_pos = C.WithPos.( {term=t; pos; clause=c} ) in
           match pos with
           | Position.Arg (_, Position.Left _) ->
             f left t with_pos, right
           | Position.Arg (_, Position.Right _) ->
             left, f right t with_pos
           | _ -> assert false)
        (!_idx_ineq_left, !_idx_ineq_right)
    in
    _idx_ineq_left := left;
    _idx_ineq_right := right;
    _idx_all :=
      Lits.fold_terms ~vars:false ~ty_args:false ~which:`Max ~ord ~subterms:false
        ~eligible:C.Eligible.(filter Lit.is_rat ** max c)
        (C.lits c)
      |> Iter.fold
        (fun acc (t,pos) ->
           let with_pos = C.WithPos.( {term=t; pos; clause=c} ) in
           f acc t with_pos)
        !_idx_all;
    ()

  (* simplification set *)
  let update_simpl f c =
    let ord = Ctx.ord () in
    begin match C.lits c with
      | [| Lit.Rat ({AL.op=AL.Equal; _} as alit) |] ->
        let pos = Position.(arg 0 stop) in
        _idx_unit_eq :=
          AL.fold_terms ~subterms:false ~vars:false ~pos ~which:`Max ~ord alit
          |> Iter.fold
            (fun acc (t,pos) ->
               assert (not (T.is_var t));
               let with_pos = C.WithPos.( {term=t; pos; clause=c;} ) in
               f acc t with_pos)
            !_idx_unit_eq
      | [| Lit.Rat ({AL.op=AL.Less; _} as alit) |] ->
        let pos = Position.(arg 0 stop) in
        _idx_unit_ineq :=
          if !enable_trivial_ineq_ || !enable_demod_ineq_
          then AL.fold_terms ~subterms:false ~vars:false ~pos ~which:`Max ~ord alit
               |> Iter.fold
                 (fun acc (t,pos) ->
                    assert (not (T.is_var t));
                    let with_pos = C.WithPos.( {term=t; pos; clause=c;} ) in
                    f acc t with_pos)
                 !_idx_unit_ineq
          else !_idx_unit_ineq
      | _ -> ()
    end;
    ()

  let () =
    Signal.on PS.ActiveSet.on_add_clause
      (fun c ->
         if !enable_rat_ then update PS.TermIndex.add c;
         Signal.ContinueListening);
    Signal.on PS.SimplSet.on_add_clause
      (fun c ->
         if !enable_rat_ then update_simpl PS.TermIndex.add c;
         Signal.ContinueListening);
    Signal.on PS.ActiveSet.on_remove_clause
      (fun c ->
         if !enable_rat_ then update PS.TermIndex.remove c;
         Signal.ContinueListening);
    Signal.on PS.SimplSet.on_remove_clause
      (fun c ->
         if !enable_rat_ then update_simpl PS.TermIndex.remove c;
         Signal.ContinueListening);
    ()

  (** {2 Utils} *)


  (* data required for superposition *)
  module SupInfo = struct
    type t = {
      active : C.t;
      active_pos : Position.t;
      active_lit : AL.Focus.t;
      active_scope : int;
      passive : C.t;
      passive_pos : Position.t;
      passive_lit : AL.Focus.t;
      passive_scope : int;
      subst : Unif_subst.t;
    }
  end

  let rule_canc = Proof.Rule.mk "canc_sup"

  (* do cancellative superposition *)
  let _do_canc info acc =
    let open SupInfo in
    let ord = Ctx.ord () in
    let renaming = Subst.Renaming.create () in
    let us = info.subst in
    let idx_a, _ = Lits.Pos.cut info.active_pos in
    let idx_p, _ = Lits.Pos.cut info.passive_pos in
    let s_a = info.active_scope and s_p = info.passive_scope in
    let subst = Unif_subst.subst us in
    let lit_a = ALF.apply_subst renaming subst (info.active_lit,s_a) in
    let lit_p = ALF.apply_subst renaming subst (info.passive_lit,s_p) in
    Util.debugf ~section 5
      "@[<2>arith superposition@ between @[%a[%d]@]@ and @[%a[%d]@]@ (subst @[%a@])...@]"
      (fun k->k C.pp info.active s_a C.pp info.passive s_p Subst.pp subst);
    (* check ordering conditions *)
    if C.is_maxlit (info.active,s_a) subst ~idx:idx_a
    && C.is_maxlit (info.passive,s_p) subst ~idx:idx_p
    && ALF.is_max ~ord lit_a
    (* && ALF.is_max ~ord lit_p *)
    then (
      (* the active literals *)
      let lit_a, lit_p = ALF.scale lit_a lit_p in
      (* other literals *)
      let lits_a = CCArray.except_idx (C.lits info.active) idx_a in
      let lits_a = Lit.apply_subst_list renaming subst (lits_a,s_a) in
      let lits_p = CCArray.except_idx (C.lits info.passive) idx_p in
      let lits_p = Lit.apply_subst_list renaming subst (lits_p,s_p) in
      (* new literal: lit_a=[t+m1=m2], lit_p=[t'+m1' R m2'] for some
         relation R. Now let's replace t' by [m2-m1] in lit', ie,
         build m = [m1'-m2'+(m2-m1) R 0]. *)
      let mf_a, m_a = match lit_a with
        | ALF.Left (AL.Equal, mf, m)
        | ALF.Right (AL.Equal, m, mf) -> mf, m
        | _ -> assert false
      in
      let new_lit = match lit_p with
        | ALF.Left (op, mf_p, m_p) ->
          Lit.mk_rat_op op
            (M.sum (MF.rest mf_p) m_a)
            (M.sum m_p (MF.rest mf_a))
        | ALF.Right (op, m_p, mf_p) ->
          Lit.mk_rat_op op
            (M.sum m_p (MF.rest mf_a))
            (M.sum (MF.rest mf_p) m_a)
      in
      let c_guard = Literal.of_unif_subst renaming us in
      let all_lits = new_lit :: c_guard @ lits_a @ lits_p in
      (* build clause *)
      let proof =
        Proof.Step.inference ~tags:[Proof.Tag.T_lra]
          ~rule:rule_canc
          [C.proof_parent_subst renaming (info.active,s_a) subst;
           C.proof_parent_subst renaming (info.passive,s_p) subst] in
      let trail = C.trail_l [info.active;info.passive] in
      let penalty = max (C.penalty info.active) (C.penalty info.passive) in
      let new_c = C.create ~penalty ~trail all_lits proof in
      Util.debugf ~section 5 "@[<2>... gives@ @[%a@]@]" (fun k->k C.pp new_c);
      Util.incr_stat stat_rat_sup;
      new_c :: acc
    ) else (
      Util.debug ~section 5 "... has bad ordering conditions";
      acc
    )

  let canc_sup_active c =
    Util.enter_prof prof_rat_sup;
    let ord = Ctx.ord () in
    let eligible = C.Eligible.(pos ** max c ** filter Lit.is_rat_eq) in
    let sc_a = 0 and sc_p = 1 in
    let res =
      Lits.fold_rat_terms ~eligible ~which:`Max ~ord (C.lits c)
      |> Iter.fold
        (fun acc (t,active_lit,active_pos) ->
           assert (ALF.op active_lit = AL.Equal);
           Util.debugf ~section 5 "@[<2>active canc. sup.@ with @[%a@]@ in @[%a@]@]"
             (fun k->k ALF.pp active_lit C.pp c);
           PS.TermIndex.retrieve_unifiables (!_idx_all,sc_p) (t,sc_a)
           |> Iter.fold
             (fun acc (t',with_pos,subst) ->
                let passive = with_pos.C.WithPos.clause in
                let passive_pos = with_pos.C.WithPos.pos in
                let passive_lit = Lits.View.get_rat_exn (C.lits passive) passive_pos in
                Util.debugf ~section 5 "@[<4>  possible match:@ @[%a@]@ in @[%a@]@]"
                  (fun k->k ALF.pp passive_lit C.pp passive);
                (* now to unify active_lit and passive_lit further *)
                if T.is_var t || T.is_var t'
                then acc
                else
                  ALF.unify ~subst (active_lit,sc_a) (passive_lit,sc_p)
                  |> Iter.fold
                    (fun acc (active_lit, passive_lit, subst) ->
                       let info = SupInfo.({
                           active=c; active_pos; active_lit; active_scope=sc_a;
                           passive; passive_pos; passive_lit; passive_scope=sc_p; subst;
                         }) in
                       _do_canc info acc)
                    acc)
             acc)
        []
    in
    Util.exit_prof prof_rat_sup;
    res

  let canc_sup_passive c =
    Util.enter_prof prof_rat_sup;
    let ord = Ctx.ord () in
    let eligible = C.Eligible.(max c ** arith) in
    let sc_a = 0 and sc_p = 1 in
    let res =
      Lits.fold_rat_terms ~eligible ~which:`All ~ord (C.lits c)
      |> Iter.fold
        (fun acc (t,passive_lit,passive_pos) ->
           Util.debugf ~section 5 "@[<2>passive canc. sup.@ with @[%a@]@ in @[%a@]@]"
             (fun k->k ALF.pp passive_lit C.pp c);
           PS.TermIndex.retrieve_unifiables (!_idx_eq,sc_a) (t,sc_p)
           |> Iter.fold
             (fun acc (t',with_pos,subst) ->
                let active = with_pos.C.WithPos.clause in
                let active_pos = with_pos.C.WithPos.pos in
                let active_lit = Lits.View.get_rat_exn (C.lits active) active_pos in
                (* must have an equation as active lit *)
                match ALF.op active_lit with
                | AL.Equal when not (T.is_var t) && not (T.is_var t') ->
                  Util.debugf ~section 5 "@[<4>  possible match:@ @[%a@]@ in @[%a@]@]"
                    (fun k->k ALF.pp passive_lit C.pp c);
                  (* unify literals further *)
                  ALF.unify ~subst (active_lit,sc_a) (passive_lit,sc_p)
                  |> Iter.fold
                    (fun acc (active_lit, passive_lit, subst) ->
                       let info = SupInfo.({
                           active; active_pos; active_lit; active_scope=sc_a;
                           passive=c; passive_pos; passive_lit; passive_scope=sc_p; subst;
                         }) in
                       _do_canc info acc
                    ) acc
                | _ -> acc)
             acc)
        []
    in
    Util.exit_prof prof_rat_sup;
    res

  exception SimplifyInto of AL.t * C.t * S.t

  (* how to simplify the passive lit with the active lit, in one step *)
  let _try_demod_step ~subst passive_lit _s_p c pos active_lit s_a c' _pos' =
    let ord = Ctx.ord () in
    let i = Lits.Pos.idx pos in
    let renaming = S.Renaming.create () in
    let active_lit' = ALF.apply_subst renaming subst (active_lit,s_a) in
    (* restrictions:
       - the rewriting term must be bigger than other terms
         (in other words, the inference is strictly decreasing)
       - all variables of active clause must be bound by subst
       - must not rewrite itself (c != c')
       - trail(active) must subsume trail(passive) *)
    if ALF.is_strictly_max ~ord active_lit'
    && (C.Seq.vars c'
        |> Iter.for_all
          (fun v -> S.mem subst ((v:Type.t HVar.t:>InnerTerm.t HVar.t),s_a)))
    && ( (C.lits c |> Array.length) > 1
         || not(Lit.equal (C.lits c).(i) (C.lits c').(0))
         || not(ALF.is_max ~ord passive_lit && C.is_maxlit (c,0) S.empty ~idx:i)
       )
    && (C.trail_subsumes c' c) then (
      (* we know all variables of [active_lit] are bound, no need
         for a renaming *)
      let active_lit = ALF.apply_subst Subst.Renaming.none subst (active_lit,s_a) in
      let active_lit, passive_lit = ALF.scale active_lit passive_lit in
      match active_lit, passive_lit with
      | ALF.Left (AL.Equal, mf1, m1), _
      | ALF.Right (AL.Equal, m1, mf1), _ ->
        let new_lit =
          ALF.replace passive_lit (M.difference m1 (MF.rest mf1))
        in
        raise (SimplifyInto (new_lit, c',subst))
      | _ -> ()
    ) else ()

  (* reduce an arithmetic literal to its current normal form *)
  let rec _demod_lit_nf ~add_lit ~add_premise ~i c a_lit =
    let ord = Ctx.ord () in
    let s_a = 1 and s_p = 0 in  (* scopes *)
    begin
      try
        AL.fold_terms ~pos:Position.stop ~vars:false ~which:`Max
          ~ord ~subterms:false a_lit
        |> Iter.iter
          (fun (t,lit_pos) ->
             assert (not (T.is_var t));
             let passive_lit = ALF.get_exn a_lit lit_pos in
             (* search for generalizations of [t] *)
             PS.TermIndex.retrieve_generalizations (!_idx_unit_eq,s_a) (t,s_p)
             |> Iter.iter
               (fun (_t',with_pos,subst) ->
                  let c' = with_pos.C.WithPos.clause in
                  let pos' = with_pos.C.WithPos.pos in
                  assert (C.is_unit_clause c');
                  assert (Lits.Pos.idx pos' = 0);
                  let active_lit = Lits.View.get_rat_exn (C.lits c') pos' in
                  let pos = Position.(arg i lit_pos) in
                  _try_demod_step ~subst passive_lit s_p c pos active_lit s_a c' pos'));
        (* could not simplify, keep the literal *)
        add_lit (Lit.mk_rat a_lit)
      with SimplifyInto (a_lit',c',subst) ->
        (* lit ----> lit' *)
        add_premise c' subst;
        (* recurse until the literal isn't reducible *)
        Util.debugf ~section 4
          "(@[<hv2>rewrite_rat_arith@ :lit `%a`@ :into `%a`@ \
           :using @[%a@]@ :subst @[%a@]@])"
          (fun k->k AL.pp a_lit AL.pp a_lit' C.pp c' S.pp subst);
        _demod_lit_nf ~add_premise ~add_lit ~i c a_lit'
    end

  let eq_c_subst (c1,s1)(c2,s2) = C.equal c1 c2 && Subst.equal s1 s2

  (* demodulation (simplification) *)
  let _demodulation c =
    Util.enter_prof prof_rat_demod;
    let did_simplify = ref false in
    let lits = ref [] in  (* simplified literals *)
    let add_lit l = lits := l :: !lits in
    let clauses = ref [] in  (* simplifying clauses *)
    (* add a rewriting clause *)
    let add_premise c' subst =
      did_simplify := true;
      clauses := (c',subst) :: !clauses
    in
    (* simplify each and every literal *)
    Lits.fold_lits ~eligible:C.Eligible.always (C.lits c)
    |> Iter.iter
      (fun (lit,i) ->
         match lit with
         | Lit.Rat a_lit ->
           _demod_lit_nf ~add_lit ~add_premise ~i c a_lit
         | _ ->
           add_lit lit (* keep non-arith literals *)
      );
    (* build result clause (if it was simplified) *)
    let res =
      if !did_simplify then (
        clauses := CCList.uniq ~eq:eq_c_subst !clauses;
        let proof =
          Proof.Step.inference ~tags:[Proof.Tag.T_lra]
            ~rule:(Proof.Rule.mk "canc_demod")
            (C.proof_parent c ::
             List.rev_map
               (fun (c,subst) -> C.proof_parent_subst Subst.Renaming.none (c,1) subst)
               !clauses)
        in
        let trail = C.trail c in
        let new_c = C.create ~penalty:(C.penalty c) ~trail (List.rev !lits) proof in
        Util.incr_stat stat_rat_demod;
        Util.debugf ~section 5 "@[<2>arith demodulation@ of @[%a@]@ with [@[%a@]]@ gives @[%a@]@]"
          (fun k->
             let pp_c_s out (c,s) =
               Format.fprintf out "(@[%a@ :subst %a@])" C.pp c Subst.pp s
             in
             k C.pp c (Util.pp_list pp_c_s) !clauses C.pp new_c);
        SimplM.return_new new_c
      ) else
        SimplM.return_same c
    in
    Util.exit_prof prof_rat_demod;
    res

  let canc_demodulation c = _demodulation c

  (* find clauses in which some literal could be rewritten by [c], iff
     [c] is a positive unit arith clause *)
  let canc_backward_demodulation c =
    Util.enter_prof prof_rat_backward_demod;
    let ord = Ctx.ord () in
    let res = C.ClauseSet.empty in
    let res = match C.lits c with
      | [| Lit.Rat ({AL.op=AL.Equal; _} as alit) |] ->
        AL.fold_terms ~vars:false ~which:`Max ~subterms:false ~ord alit
        |> Iter.fold
          (fun acc (t,pos) ->
             PS.TermIndex.retrieve_specializations (!_idx_all,0) (t,1)
             |> Iter.fold
               (fun acc (_t',with_pos,subst) ->
                  let c' = with_pos.C.WithPos.clause in
                  (* check whether the term [t] is indeed maximal in
                     its literal (and clause) after substitution *)
                  let alit' = ALF.get_exn alit pos in
                  let alit' = ALF.apply_subst Subst.Renaming.none subst (alit',1) in
                  if C.trail_subsumes c' c && ALF.is_max ~ord alit'
                  then (
                    Util.incr_stat stat_rat_backward_demod;
                    C.ClauseSet.add c' acc
                  ) else acc)
               acc)
          C.ClauseSet.empty
      | _ -> res (* no demod *)
    in
    Util.exit_prof prof_rat_backward_demod;
    res

  let cancellation c =
    Util.enter_prof prof_rat_cancellation;
    let ord = Ctx.ord () in
    let eligible = C.Eligible.(max c ** arith) in
    let res =
      Lits.fold_rat ~eligible (C.lits c)
      |> Iter.fold
        (fun acc (a_lit,pos) ->
           let idx = Lits.Pos.idx pos in
           (* cancellation depends on what the literal looks like *)
           let {AL.left=m1; right=m2; op} = a_lit in
           Util.debugf ~section 5 "@[<2>try cancellation@ in @[%a@]@]" (fun k->k AL.pp a_lit);
           (* try to unify terms in [m1] and [m2] *)
           MF.unify_mm (m1,0) (m2,0)
           |> Iter.fold
             (fun acc (mf1, mf2, us) ->
                let renaming = Subst.Renaming.create () in
                let subst = US.subst us in
                let mf1' = MF.apply_subst renaming subst (mf1,0) in
                let mf2' = MF.apply_subst renaming subst (mf2,0) in
                let is_max_lit = C.is_maxlit (c,0) subst ~idx in
                Util.debugf ~section 5
                  "@[<4>... candidate:@ @[%a@] (max lit ? %B)@]"
                  (fun k->k S.pp subst is_max_lit);
                if is_max_lit && MF.is_max ~ord mf1' && MF.is_max ~ord mf2'
                then (
                  (* do the inference *)
                  let lits' = CCArray.except_idx (C.lits c) idx in
                  let lits' = Lit.apply_subst_list renaming subst (lits',0) in
                  let new_lit = Lit.mk_rat_op op (MF.rest mf1') (MF.rest mf2') in
                  let c_guard = Literal.of_unif_subst renaming us in
                  let all_lits = new_lit :: c_guard @ lits' in
                  let proof =
                    Proof.Step.inference ~tags:[Proof.Tag.T_lra]
                      ~rule:(Proof.Rule.mk "cancellation")
                      [C.proof_parent_subst renaming (c,0) subst] in
                  let trail = C.trail c in
                  let penalty = C.penalty c in
                  let new_c = C.create ~trail ~penalty all_lits proof in
                  Util.debugf ~section 3
                    "@[<2>cancellation@ of @[%a@]@ (with %a)@ into @[%a@]@]"
                    (fun k->k C.pp c Subst.pp subst C.pp new_c);
                  Util.incr_stat stat_rat_cancellation;
                  new_c :: acc
                ) else
                  acc
             ) acc)
        []
    in
    Util.exit_prof prof_rat_cancellation;
    res

  let rule_canc_eq_fact = Proof.Rule.mk "rat_eq_factoring"

  let canc_equality_factoring c =
    Util.enter_prof prof_rat_eq_factoring;
    let ord = Ctx.ord () in
    let eligible = C.Eligible.(max c ** filter Lit.is_rat_eq) in
    let res =
      Lits.fold_rat_terms ~which:`Max ~eligible ~ord (C.lits c)
      |> Iter.fold
        (fun acc (t1,lit1,pos1) ->
           assert(ALF.op lit1 = AL.Equal);
           let idx1 = Lits.Pos.idx pos1 in
           (* lit1 is the factored literal *)
           Lits.fold_rat_terms ~which:`Max ~ord
             ~eligible:C.Eligible.(filter Lit.is_rat_eq) (C.lits c)
           |> Iter.fold
             (fun acc (t2,lit2,pos2) ->
                assert(ALF.op lit2 = AL.Equal);
                let idx2 = Lits.Pos.idx pos2 in
                let mf1 = ALF.focused_monome lit1
                and mf2 = ALF.focused_monome lit2 in
                try
                  if idx1 = idx2 then raise Unif.Fail;  (* exit *)
                  let subst = Unif.FO.unify_full (t1,0) (t2,0) in
                  Util.debugf ~section 5
                    "@[<2>arith canc. eq. factoring:@ possible match in @[%a@]@ (at %d, %d)@]"
                    (fun k->k C.pp c idx1 idx2);
                  MF.unify_ff ~subst (mf1,0) (mf2,0)
                  |> Iter.fold
                    (fun acc (_, _, us) ->
                       let renaming = Subst.Renaming.create () in
                       let subst = US.subst us in
                       let lit1' = ALF.apply_subst renaming subst (lit1,0) in
                       let lit2' = ALF.apply_subst renaming subst (lit2,0) in
                       if C.is_maxlit (c,0) subst ~idx:idx1
                       && ALF.is_max ~ord lit1'
                       && ALF.is_max ~ord lit2'
                       then (
                         (*  lit1 is   a.t + l1 = l2,
                             lit2 is   a'.t + l1' = l2',
                             so we scale them, and replace lit1 with
                             a'.l1 + a.l2' != a'.l2 + a.l1' *)
                         let lit1', lit2' = ALF.scale lit1' lit2' in
                         let m1 = ALF.opposite_monome lit1'
                         and mf1 = ALF.focused_monome lit1'
                         and m2 = ALF.opposite_monome lit2'
                         and mf2 = ALF.focused_monome lit2' in
                         (* m1 != m2, translated as two ineqs *)
                         let new_lits =
                           let x = M.sum m1 (MF.rest mf2) in
                           let y = M.sum m2 (MF.rest mf1) in
                           [Lit.mk_rat_less x y; Lit.mk_rat_less y x]
                         in
                         let other_lits = CCArray.except_idx (C.lits c) idx1 in
                         let other_lits =
                           Lit.apply_subst_list
                             renaming subst (other_lits,0) in
                         let c_guard = Literal.of_unif_subst renaming us in
                         (* apply subst and build clause *)
                         let all_lits = c_guard @ new_lits @ other_lits in
                         let proof =
                           Proof.Step.inference ~tags:[Proof.Tag.T_lra]
                             ~rule:rule_canc_eq_fact
                             [C.proof_parent_subst renaming (c,0) subst] in
                         let penalty = C.penalty c
                         and trail = C.trail c in
                         let new_c = C.create ~trail ~penalty all_lits proof in
                         Util.debugf ~section 5
                           "@[<2>arith_eq_factoring:@ @[%a@]@ gives @[%a@]@]"
                           (fun k->k C.pp c C.pp new_c);
                         Util.incr_stat stat_rat_eq_factoring;
                         new_c :: acc
                       ) else acc)
                    acc
                with Unif.Fail ->
                  acc)
             acc)
        []
    in Util.exit_prof prof_rat_eq_factoring;
    res

  (** Data necessary to fully describe a chaining inference.
      [left] is basically the clause/literal in which the chained
      term is on the left of <,
      [right] is the other one. *)
  module ChainingInfo = struct
    type t = {
      left : C.t;
      left_scope : int;
      left_pos : Position.t;
      left_lit : AL.Focus.t;
      right : C.t;
      right_scope : int;
      right_pos : Position.t;
      right_lit : AL.Focus.t;
      subst : US.t;
    }
  end

  (* range from low to low+len *)
  (* cancellative chaining *)
  let _do_chaining info acc =
    let open ChainingInfo in
    let ord = Ctx.ord () in
    let renaming = S.Renaming.create () in
    let us = info.subst in
    let idx_l, _ = Lits.Pos.cut info.left_pos in
    let idx_r, _ = Lits.Pos.cut info.right_pos in
    let s_l = info.left_scope and s_r = info.right_scope in
    let subst = Unif_subst.subst us in
    let lit_l = ALF.apply_subst renaming subst (info.left_lit,s_l) in
    let lit_r = ALF.apply_subst renaming subst (info.right_lit,s_r) in
    Util.debugf ~section 5
      "@[<2>arith chaining@ between @[%a[%d]@]@ and @[%a[%d]@]@ (subst @[%a@])...@]"
      (fun k->k C.pp info.left s_l C.pp info.right s_r Subst.pp subst);
    (* check ordering conditions *)
    if C.is_maxlit (info.left,s_l) subst ~idx:idx_l
    && C.is_maxlit (info.right,s_r) subst ~idx:idx_r
    && ALF.is_max ~ord lit_l
    && ALF.is_max ~ord lit_r
    then (
      (* scale literals *)
      let lit_l, lit_r = ALF.scale lit_l lit_r in
      match lit_l, lit_r with
      | ALF.Left (AL.Less, mf_1, m1), ALF.Right (AL.Less, m2, mf_2) ->
        (* m2 ≤ mf_2 and mf_1 ≤ m1, with mf_1 and mf_2 sharing the same
           focused term. We deduce m2 + mf_1 ≤ m1 + mf_2 and cancel the
           term out (after scaling) *)
        assert (Q.equal (MF.coeff mf_1) (MF.coeff mf_2));
        let new_lit = Lit.mk_rat_less
            (M.sum m2 (MF.rest mf_1))
            (M.sum m1 (MF.rest mf_2))
        in
        let lits_l = CCArray.except_idx (C.lits info.left) idx_l in
        let lits_l = Lit.apply_subst_list renaming subst (lits_l,s_l) in
        let lits_r = CCArray.except_idx (C.lits info.right) idx_r in
        let lits_r = Lit.apply_subst_list renaming subst (lits_r,s_r) in
        let c_guard = Literal.of_unif_subst renaming us in
        let all_lits = new_lit :: c_guard @ lits_l @ lits_r in
        let proof =
          Proof.Step.inference ~tags:[Proof.Tag.T_lra]
            ~rule:(Proof.Rule.mk "canc_ineq_chaining")
            [C.proof_parent_subst renaming (info.left,s_l) subst;
             C.proof_parent_subst renaming (info.right,s_r) subst] in
        let trail = C.trail_l [info.left; info.right] in
        (* penalty for some chaining *)
        let penalty =
          max (C.penalty info.left) (C.penalty info.right)
          + 3 (* nested chainings are dangerous *)
          + (if MF.term mf_1 |> T.is_var then 10 else 0)
          + (if MF.term mf_2 |> T.is_var then 10 else 0)
        in
        let new_c = C.create ~penalty ~trail all_lits proof in
        Util.debugf ~section 5 "@[<2>ineq chaining@ of @[%a@]@ and @[%a@]@ gives @[%a@]@]"
          (fun k->k C.pp info.left C.pp info.right C.pp new_c);
        Util.incr_stat stat_rat_ineq_chaining;
        new_c :: acc
      | _ -> assert false
    ) else
      acc

  let canc_ineq_chaining c =
    Util.enter_prof prof_rat_ineq_chaining;
    let ord = Ctx.ord () in
    let eligible = C.Eligible.(max c ** filter Lit.is_rat_less) in
    let sc_l = 0 and sc_r = 1 in
    let res =
      Lits.fold_rat_terms ~eligible ~ord ~which:`Max (C.lits c)
      |> Iter.fold
        (fun acc (t,lit,pos) ->
           match lit with
           | _ when T.is_var t -> acc (* ignore variables *)
           | ALF.Left (AL.Less, mf_l, _) ->
             (* find a right-chaining literal in some other clause *)
             PS.TermIndex.retrieve_unifiables (!_idx_ineq_right,sc_r) (t,sc_l)
             |> Iter.fold
               (fun acc (_t',with_pos,subst) ->
                  let right = with_pos.C.WithPos.clause in
                  let right_pos = with_pos.C.WithPos.pos in
                  let lit_r = Lits.View.get_rat_exn (C.lits right) right_pos in
                  match lit_r with
                  | ALF.Right (AL.Less, _, mf_r) ->
                    MF.unify_ff ~subst (mf_l,sc_l) (mf_r,sc_r)
                    |> Iter.fold
                      (fun acc (_, _, subst) ->
                         let info = ChainingInfo.({
                             left=c; left_scope=sc_l; left_lit=lit; left_pos=pos;
                             right; right_scope=sc_r; right_lit=lit_r; right_pos; subst;
                           })
                         in _do_chaining info acc)
                      acc
                  | _ -> acc)
               acc
           | ALF.Right (AL.Less, _, mf_r) ->
             (* find a right-chaining literal in some other clause *)
             PS.TermIndex.retrieve_unifiables (!_idx_ineq_left,sc_l) (t,sc_r)
             |> Iter.fold
               (fun acc (_t',with_pos,subst) ->
                  let left = with_pos.C.WithPos.clause in
                  let left_pos = with_pos.C.WithPos.pos in
                  let lit_l = Lits.View.get_rat_exn (C.lits left) left_pos in
                  match lit_l with
                  | ALF.Left (AL.Less, mf_l, _) ->
                    MF.unify_ff ~subst (mf_l,sc_l) (mf_r,sc_r)
                    |> Iter.fold
                      (fun acc (_, _, subst) ->
                         let info = ChainingInfo.({
                             left; left_scope=sc_l; left_lit=lit_l; left_pos; subst;
                             right=c; right_scope=sc_r; right_lit=lit; right_pos=pos;
                           })
                         in _do_chaining info acc)
                      acc
                  | _ -> acc)
               acc
           | _ -> assert false)
        []
    in
    Util.exit_prof prof_rat_ineq_chaining;
    res

  (* TODO: update with equality case, check that signs correct *)
  let canc_ineq_factoring c =
    Util.enter_prof prof_rat_ineq_factoring;
    let ord = Ctx.ord () in
    let acc = ref [] in
    (* do the factoring if ordering conditions are ok *)
    let _do_factoring ~subst:us lit1 lit2 i j =
      let renaming = S.Renaming.create () in
      let subst = US.subst us in
      let lit1 = ALF.apply_subst renaming subst (lit1,0) in
      let lit2 = ALF.apply_subst renaming subst (lit2,0) in
      (* same coefficient for the focused term *)
      let lit1, lit2 = ALF.scale lit1 lit2 in
      match lit1, lit2 with
      | ALF.Left (AL.Less, mf1, m1), ALF.Left (AL.Less, mf2, m2)
      | ALF.Right (AL.Less, m1, mf1), ALF.Right (AL.Less, m2, mf2) ->
        (* mf1 ≤ m1  or  mf2 ≤ m2  (symmetry with > if needed)
           so we deduce that if  m1-mf1.rest ≤ m2 - mf2.rest
           then the first literal implies the second, so we only
           keep the second one *)
        if (C.is_maxlit (c,0) subst ~idx:i || C.is_maxlit (c,0) subst ~idx:j)
        && (ALF.is_max ~ord lit1 || ALF.is_max ~ord lit2)
        then (
          let left = match lit1 with ALF.Left _ -> true | _ -> false in
          (* remove lit1, add the guard *)
          let other_lits = CCArray.except_idx (C.lits c) i in
          let other_lits = Lit.apply_subst_list renaming subst (other_lits,0) in
          (* build new literal *)
          let new_lit =
            if left
            then
              Lit.mk_rat_less
                (M.difference m1 (MF.rest mf1))
                (M.difference m2 (MF.rest mf2))
            else
              Lit.mk_rat_less
                (M.difference m2 (MF.rest mf2))
                (M.difference m1 (MF.rest mf1))
          in
          (* negate the literal to obtain a guard *)
          let new_lit = Lit.negate new_lit in
          let c_guard = Literal.of_unif_subst renaming us in
          let lits = new_lit :: c_guard @ other_lits in
          (* build clauses *)
          let proof =
            Proof.Step.inference ~tags:[Proof.Tag.T_lra]
              ~rule:(Proof.Rule.mk "canc_ineq_factoring")
              [C.proof_parent_subst renaming (c,0) subst] in
          let trail = C.trail c
          and penalty = C.penalty c in
          let new_c = C.create ~trail ~penalty lits proof in
          Util.debugf ~section 5 "@[<2>ineq factoring@ of @[%a@]@ gives @[%a@]@"
            (fun k->k C.pp c C.pp new_c);
          Util.incr_stat stat_rat_ineq_factoring;
          acc := new_c :: !acc
        )
      | _ -> ()
    in
    (* traverse the clause to find matching pairs *)
    let eligible = C.Eligible.(max c ** filter Lit.is_rat_less) in
    Lits.fold_rat ~eligible (C.lits c)
    |> Iter.iter
      (fun (lit1,pos1) ->
         let i = Lits.Pos.idx pos1 in
         let eligible' = C.Eligible.(filter Lit.is_rat_less) in
         Lits.fold_rat ~eligible:eligible' (C.lits c)
         |> Iter.iter
           (fun (lit2,pos2) ->
              let j = Lits.Pos.idx pos2 in
              match lit1, lit2 with
              | _ when i=j -> ()  (* need distinct lits *)
              | {AL.op=AL.Less; left=l1; right=r1},
                {AL.op=AL.Less; left=l2; right=r2} ->
                (* see whether we have   l1 < a.x + mf1  and  l2 < a.x + mf2 *)
                MF.unify_mm (r1,0) (r2,0)
                  (fun (mf1,mf2,subst) ->
                     let lit1 = ALF.mk_right AL.Less l1 mf1 in
                     let lit2 = ALF.mk_right AL.Less l2 mf2 in
                     _do_factoring ~subst lit1 lit2 i j
                  );
                (* see whether we have   a.x + mf1 < r1 and a.x + mf2 < r2  *)
                MF.unify_mm (l1,0) (l2,0)
                  (fun (mf1,mf2,subst) ->
                     let lit1 = ALF.mk_left AL.Less mf1 r1 in
                     let lit2 = ALF.mk_left AL.Less mf2 r2 in
                     _do_factoring ~subst lit1 lit2 i j
                  );
                ()
              | _ -> assert false
           )
      );
    Util.exit_prof prof_rat_ineq_factoring;
    !acc

  (** One-shot literal/clause removal.
      We use unit clauses to try to prove a literal absurd/tautological, possibly
      using {b several} instances of unit clauses.

      For instance, 0 ≤ f(x)  makes  0 ≤ f(a) + f(b) redundant, but subsumption
      is not able to detect it. *)

  (* allow traces of depth at most 3 *)
  let max_ineq_trivial_steps = 3

  (* rewrite a literal [l] into a smaller literal [l'], such that [l'] and
     the current set of unit clauses imply [l]; then compute the
     transitive closure of this relation. If we obtain a trivial
     literal, then [l] is redundant (we keep a trace of literals used).
     We use continuations to deal with the multiple choices. *)
  let rec _ineq_find_sufficient ~ord ~trace c lit k = match lit with
    | _ when AL.is_trivial lit -> k (trace,lit)
    | _ when List.length trace >= max_ineq_trivial_steps ->
      () (* need another step, but it would exceed the limit *)
    | {AL.op=AL.Less; _} when Iter.exists T.is_var (AL.Seq.terms lit) ->
      ()  (* no way we rewrite this into a tautology *)
    | {AL.op=AL.Less; _} ->
      Util.incr_stat stat_rat_trivial_ineq;
      Util.debugf ~section 5
        "(@[try_ineq_find_sufficient@ :lit `%a`@ :trace (@[%a@])@])"
        (fun k->k AL.pp lit (Util.pp_list C.pp) trace);
      AL.fold_terms ~vars:false ~which:`Max ~ord ~subterms:false lit
      |> Iter.iter
        (fun (t,pos) ->
           let plit = ALF.get_exn lit pos in
           let is_left = match pos with
             | Position.Left _ -> true
             | Position.Right _ -> false
             | _ -> assert false
           in
           (* try to eliminate [t] in passive lit [plit]*)
           PS.TermIndex.retrieve_generalizations (!_idx_unit_ineq,1) (t,0)
           |> Iter.iter
             (fun (_t',with_pos,subst) ->
                let active_clause = with_pos.C.WithPos.clause in
                let active_pos = with_pos.C.WithPos.pos in
                match Lits.View.get_rat (C.lits active_clause) active_pos with
                | None -> assert false
                | Some (ALF.Left (AL.Less, _, _) as alit') when is_left ->
                  let alit' = ALF.apply_subst Subst.Renaming.none subst (alit',1) in
                  if C.trail_subsumes active_clause c
                  && ALF.is_strictly_max ~ord alit'
                  then (
                    (* scale *)
                    let plit, _alit' = ALF.scale plit alit' in
                    let mf1', m2' =
                      match Lits.View.get_rat (C.lits active_clause) active_pos with
                      | Some (ALF.Left (_, mf1', m2')) -> mf1', m2'
                      | _ -> assert false
                    in
                    let mf1' = MF.apply_subst Subst.Renaming.none subst (mf1',1) in
                    let m2' = M.apply_subst Subst.Renaming.none subst (m2',1) in
                    (* from t+mf1 ≤ m2  and t+mf1' ≤ m2', we deduce
                       that if m2'-mf1' ≤ m2-mf1  then [lit] is redundant.
                       That is, the sufficient literal is
                       mf1 + m2' ≤ m2 + mf1'  (we replace [t] with [m2'-mf1']) *)
                    let new_plit =
                      ALF.replace plit (M.difference m2' (MF.rest mf1')) in
                    (* transitive closure *)
                    let trace = active_clause::trace in
                    _ineq_find_sufficient ~ord ~trace c new_plit k
                  )
                | Some (ALF.Right (AL.Less, _, _) as alit') when not is_left ->
                  (* symmetric case *)
                  let alit' = ALF.apply_subst Subst.Renaming.none subst (alit',1) in
                  if C.trail_subsumes active_clause c
                  && ALF.is_strictly_max ~ord alit'
                  then (
                    (* scale *)
                    let plit, _alit' = ALF.scale plit alit' in
                    let m1', mf2' =
                      match Lits.View.get_rat (C.lits active_clause) active_pos with
                      | Some (ALF.Right (_, m1', mf2')) -> m1', mf2'
                      | _ -> assert false
                    in
                    let mf2' = MF.apply_subst Subst.Renaming.none subst (mf2',1) in
                    let m1' = M.apply_subst Subst.Renaming.none subst (m1',1) in
                    let new_plit =
                      ALF.replace plit (M.difference m1' (MF.rest mf2')) in
                    (* transitive closure *)
                    let trace = active_clause::trace in
                    _ineq_find_sufficient ~ord ~trace c new_plit k
                  )
                | Some _ ->
                  ()   (* cannot make a sufficient literal *)
             )
        )
    | _ -> ()

  (* is a literal redundant w.r.t the current set of unit clauses *)
  let _ineq_is_redundant_by_unit c lit =
    match lit with
    | _ when Lit.is_trivial lit || Lit.is_absurd lit ->
      None  (* something more efficient will take care of it *)
    | Lit.Rat ({AL.op=AL.Less; _} as alit) ->
      let ord = Ctx.ord () in
      let traces =
        _ineq_find_sufficient ~ord ~trace:[] c alit
        |> Iter.head  (* one is enough *)
      in
      begin match traces with
        | Some (trace, _lit') ->
          assert (AL.is_trivial _lit');
          let trace = CCList.uniq ~eq:C.equal trace in
          Some trace
        | None -> None
      end
    | _ -> None

  let is_redundant_by_ineq c =
    Util.enter_prof prof_rat_trivial_ineq;
    let res =
      CCArray.exists
        (fun lit -> match _ineq_is_redundant_by_unit c lit with
           | None -> false
           | Some trace ->
             Util.debugf ~section 3
               "@[<2>clause @[%a@]@ trivial by inequations @[%a@]@]"
               (fun k->k C.pp c (CCFormat.list C.pp) trace);
             Util.incr_stat stat_rat_trivial_ineq_steps;
             true)
        (C.lits c)
    in
    Util.exit_prof prof_rat_trivial_ineq;
    res

  (* allow traces of depth at most 3 *)
  let max_ineq_demod_steps = 3

  (* rewrite a literal [l] into a smaller literal [l'], such that [l] and
     the current set of unit clauses imply [l']; then compute the
     transitive closure of this relation. If we obtain an absurd
     literal, then [l] is absurd (we keep a trace of literals used).
     We use continuations to deal with the multiple choices.

     Each step looks like: from [l == (t <= u) && l' == (l <= t)]
     we deduce [l <= u]. If at some point we deduce [⊥], we win.  *)
  let rec ineq_find_necessary_ ~ord ~trace c lit k = match lit with
    | _ when AL.is_absurd lit -> k (trace,lit)
    | _ when List.length trace >= max_ineq_demod_steps ->
      () (* need another step, but it would exceed the limit *)
    | {AL.op=AL.Less; _} when Iter.exists T.is_var (AL.Seq.terms lit) ->
      ()  (* too costly (will match too many things) *)
    | {AL.op=AL.Less; _} ->
      Util.incr_stat stat_rat_demod_ineq;
      Util.debugf ~section 5
        "(@[try_ineq_find_necessary@ :lit `%a`@ :trace (@[%a@])@])"
        (fun k->k AL.pp lit (Util.pp_list C.pp) trace);
      AL.fold_terms ~vars:false ~which:`Max ~ord ~subterms:false lit
      |> Iter.iter
        (fun (t,pos) ->
           let plit = ALF.get_exn lit pos in
           let is_left = match pos with
             | Position.Left _ -> true
             | Position.Right _ -> false
             | _ -> assert false
           in
           (* try to eliminate [t] in passive lit [plit]*)
           PS.TermIndex.retrieve_generalizations (!_idx_unit_ineq,1) (t,0)
           |> Iter.iter
             (fun (_t',with_pos,subst) ->
                let active_clause = with_pos.C.WithPos.clause in
                let active_pos = with_pos.C.WithPos.pos in
                match Lits.View.get_rat (C.lits active_clause) active_pos with
                | None -> assert false
                | Some (ALF.Left (AL.Less, _, _) as alit') when not is_left ->
                  let alit' = ALF.apply_subst Subst.Renaming.none subst (alit',1) in
                  if C.trail_subsumes active_clause c
                  && ALF.is_strictly_max ~ord alit'
                  then (
                    (* scale *)
                    let plit, _alit' = ALF.scale plit alit' in
                    let mf1', m2' =
                      match Lits.View.get_rat (C.lits active_clause) active_pos with
                      | Some (ALF.Left (_, mf1', m2')) -> mf1', m2'
                      | _ -> assert false
                    in
                    let mf1' = MF.apply_subst Subst.Renaming.none subst (mf1',1) in
                    let m2' = M.apply_subst Subst.Renaming.none subst (m2',1) in
                    (* from m1 ≤ t+mf2  and t+mf1' ≤ m2', we deduce
                       m1 + mf1' ≤ mf2 + m2'. If this literal is absurd
                       then so is [m1 ≤ t+mf2].
                       We replace [t] with [m2'-mf1'] *)
                    let new_plit =
                      ALF.replace plit (M.difference m2' (MF.rest mf1')) in
                    (* transitive closure *)
                    let trace = active_clause::trace in
                    ineq_find_necessary_ ~ord ~trace c new_plit k
                  )
                | Some (ALF.Right (AL.Less, _, _) as alit') when is_left ->
                  (* symmetric case *)
                  let alit' = ALF.apply_subst Subst.Renaming.none subst (alit',1) in
                  if C.trail_subsumes active_clause c
                  && ALF.is_strictly_max ~ord alit'
                  then (
                    (* scale *)
                    let plit, _alit' = ALF.scale plit alit' in
                    let m1', mf2' =
                      match Lits.View.get_rat (C.lits active_clause) active_pos with
                      | Some (ALF.Right (_, m1', mf2')) -> m1', mf2'
                      | _ -> assert false
                    in
                    let mf2' = MF.apply_subst Subst.Renaming.none subst (mf2',1) in
                    let m1' = M.apply_subst Subst.Renaming.none subst (m1',1) in
                    let new_plit =
                      ALF.replace plit (M.difference m1' (MF.rest mf2')) in
                    (* transitive closure *)
                    let trace = active_clause::trace in
                    ineq_find_necessary_ ~ord ~trace c new_plit k
                  )
                | Some _ ->
                  ()   (* cannot make a sufficient literal *)
             )
        )
    | _ -> ()

  (* is a literal absurd w.r.t the current set of unit clauses *)
  let _ineq_is_absurd_by_unit c lit =
    match lit with
    | _ when Lit.is_trivial lit || Lit.is_absurd lit ->
      None  (* something more efficient will take care of it *)
    | Lit.Rat ({AL.op=AL.Less; _} as alit) ->
      let ord = Ctx.ord () in
      let traces =
        ineq_find_necessary_ ~ord ~trace:[] c alit
        |> Iter.head  (* one is enough *)
      in
      begin match traces with
        | Some (trace, _lit') ->
          assert (AL.is_absurd _lit');
          let trace = CCList.uniq ~eq:C.equal trace in
          Some trace
        | None -> None
      end
    | _ -> None

  (* demodulate using inequalities *)
  let demod_ineq c : C.t SimplM.t =
    Util.enter_prof prof_rat_demod_ineq;
    let res =
      CCArray.findi
        (fun i lit -> match _ineq_is_absurd_by_unit c lit with
           | None -> None
           | Some trace ->
             Util.debugf ~section 3
               "@[<2>clause @[%a@]@ rewritten by inequations @[%a@]@]"
               (fun k->k C.pp c (CCFormat.list C.pp) trace);
             Util.incr_stat stat_rat_demod_ineq_steps;
             Some (i,trace))
        (C.lits c)
    in
    let res = match res with
      | None -> SimplM.return_same c
      | Some (i,cs) ->
        let lits = CCArray.except_idx (C.lits c) i in
        let proof = Proof.Step.simp ~tags:[Proof.Tag.T_lra]
            ~rule:(Proof.Rule.mk "rat.demod_ineq")
            (C.proof_parent c :: List.map C.proof_parent cs)
        in
        let c' = C.create lits proof ~penalty:(C.penalty c) ~trail:(C.trail c) in
        SimplM.return_new c'
    in
    Util.exit_prof prof_rat_demod_ineq;
    res

  (** {3 Others} *)

  let _has_rat c = CCArray.exists Lit.is_rat (C.lits c)

  module Simp = Simplex.MakeHelp(T)

  (* tautology check: take the linear system that is the negation
     of all a≠b and a≤b, and check its satisfiability *)
  let _is_tautology c =
    Util.enter_prof prof_rat_semantic_tautology;
    (* convert a monome into a rational monome + Q constant *)
    let conv m = M.coeffs m, M.const m in
    (* create a list of constraints for some arith lits *)
    let constraints =
      Lits.fold_rat ~eligible:C.Eligible.arith (C.lits c)
      |> Iter.fold
        (fun acc (lit,_) ->
           (* negate the literal and make a constraint out of it *)
           match lit with
           | {AL.op=AL.Less; left=m1; right=m2} ->
             (* m1 < m2 ----> m1-m2 > 0 ---> m1-m2 ≥ 0 by approx *)
             let m, c = conv (M.difference m1 m2) in
             (Simp.GreaterEq, m, Q.neg c) :: acc
           | _ -> acc)
        []
    in
    let simplex = Simp.add_constraints Simp.empty constraints in
    Util.exit_prof prof_rat_semantic_tautology;
    match Simp.ksolve simplex with
    | Simp.Unsatisfiable _ -> true (* negation unsatisfiable *)
    | Simp.Solution _ -> false

  (* cache the result because it's a bit expensive *)
  let is_tautology c =
    if C.get_flag flag_computed_tauto c
    then C.get_flag flag_tauto c
    else (
      (* compute whether [c] is an arith tautology *)
      let res = _has_rat c && _is_tautology c in
      C.set_flag flag_tauto c res;
      C.set_flag flag_computed_tauto c true;
      if res then
        Util.debugf ~section 4
          "@[<2>clause@ @[%a@]@ is an arith tautology@]" (fun k->k C.pp c);
      Util.incr_stat stat_rat_semantic_tautology;
      res
    )

  (* look for negated literals *)
  let convert_lit c: C.t SimplM.t =
    let type_ok t = Type.equal Type.rat (T.ty t) in
    let open CCOpt.Infix in
    let conv_lit i lit = match lit with
      | Lit.Equation (l, r, false) when type_ok l ->
        Monome.Rat.of_term l >>= fun m1 ->
        Monome.Rat.of_term r >|= fun m2 ->
        i, [Lit.mk_rat_less m1 m2; Lit.mk_rat_less m2 m1]
      | Equation (lhs, rhs, true) when T.equal rhs T.true_ || T.equal rhs T.false_ ->
        begin match T.view lhs, T.equal rhs T.true_ with
          | T.AppBuiltin (Builtin.Less, [_; l; r]), false when type_ok l ->
            Monome.Rat.of_term l >>= fun m1 ->
            Monome.Rat.of_term r >|= fun m2 ->
            (* ¬(l<r) --> l=r ∨ r<l *)
            i, [Lit.mk_rat_eq m1 m2; Lit.mk_rat_less m2 m1]
          | T.AppBuiltin (Builtin.Less, [_; l; r]), true when type_ok l ->
            Monome.Rat.of_term l >>= fun m1 ->
            Monome.Rat.of_term r >|= fun m2 ->
            i, [Lit.mk_rat_less m1 m2]
          | T.AppBuiltin (Builtin.Lesseq, [_; l; r]), true when type_ok l ->
            Monome.Rat.of_term l >>= fun m1 ->
            Monome.Rat.of_term r >|= fun m2 ->
            (* l≤r --> l=r ∨ l<r *)
            i, [Lit.mk_rat_eq m1 m2; Lit.mk_rat_less m1 m2]
          | T.AppBuiltin (Builtin.Lesseq, [_; l; r]), false when type_ok l ->
            Monome.Rat.of_term l >>= fun m1 ->
            Monome.Rat.of_term r >|= fun m2 ->
            (* ¬(l≤r) --> r<l *)
            i, [Lit.mk_rat_less m2 m1]
          | T.AppBuiltin (Builtin.Eq, [_; l; r]), true when type_ok l ->
            Monome.Rat.of_term l >>= fun m1 ->
            Monome.Rat.of_term r >|= fun m2 ->
            i, [Lit.mk_rat_eq m1 m2]
          | T.AppBuiltin (Builtin.Eq, [_; l; r]), false when type_ok l ->
            Monome.Rat.of_term l >>= fun m1 ->
            Monome.Rat.of_term r >|= fun m2 ->
            (* ¬(l=r) --> l<r ∨ r<l *)
            i, [Lit.mk_rat_less m1 m2; Lit.mk_rat_less m2 m1]
          | _ -> None
        end
      | _ -> None
    in
    begin match CCArray.findi conv_lit (C.lits c) with
      | None -> SimplM.return_same c
      | Some (i, new_lits) ->
        let lits =
          new_lits @ CCArray.except_idx (C.lits c) i
        and proof =
          Proof.Step.simp ~tags:[Proof.Tag.T_lra] ~rule:(Proof.Rule.mk "convert_lit")
            [C.proof_parent c]
        in
        let c' =
          C.create ~trail:(C.trail c) ~penalty:(C.penalty c) lits proof
        in
        Util.debugf ~section 5 "(@[convert@ :from %a@ :to %a@])"
          (fun k->k C.pp c C.pp c');
        SimplM.return_new c'
    end

  (** {6 Variable Elimination Procedure} *)

  let unshielded_vars lits =
    Literals.unshielded_vars lits
      ~filter:(fun var -> Type.equal (HVar.ty var) Type.rat)

  let _negate_lits = List.map Lit.negate

  module Elim_var = struct
    type t = {
      var: T.var;
      lower: Q.t M.t list; (* monomes smaller than x *)
      upper: Q.t M.t list; (* monomes bigger than x *)
      eq: Q.t M.t list; (* monomes equal to x *)
      side_lits: Literal.t list; (* other literals *)
      initial_lits: Literals.t;
    }

    let pp out (e:t) =
      let pp_m = CCFormat.within "`" "`" M.pp in
      let pp_m_l out l =
        Format.fprintf out "(@[<hv>%a@])" (Util.pp_list ~sep:" " pp_m) l
      in
      Format.fprintf out
        "(@[<v>:var %a@ :lower %a@ :upper %a@ :eq %a@ :side (@[%a@])@])"
        T.pp_var e.var
        pp_m_l e.lower
        pp_m_l e.upper
        pp_m_l e.eq
        (Util.pp_list ~sep:" " Literal.pp) e.side_lits

    (* quick and dirty CNF *)
    module Form = struct
      type form =
        | Atom of Literal.t
        | And of form list
        | Or of form list
        | True
        | False

      let atom l = Atom l
      let or_ = function [] -> False | [t] -> t | l -> Or l
      let and_ = function [] -> True | [t] -> t | l -> And l

      let rec cnf (f:form): Lit.t list list = match f with
        | Atom lit -> [[lit]]
        | True -> [[Lit.mk_tauto]]
        | False -> [[Lit.mk_absurd]]
        | And [] | Or [] -> assert false
        | And [f] | Or [f] -> cnf f
        | And l -> CCList.flat_map cnf l
        | Or l -> Util.map_product ~f:cnf l

      let rec pp out (f:form): unit = match f with
        | True -> CCFormat.string out "⊤"
        | False -> CCFormat.string out "⊥"
        | Atom lit -> Lit.pp out lit
        | Or l -> Format.fprintf out "(@[<hv>or@ %a@])" (Util.pp_list ~sep:" " pp) l
        | And l -> Format.fprintf out "(@[<hv>and@ %a@])" (Util.pp_list ~sep:" " pp) l
    end

    (* variable elimination. First, build formula; then perform CNF. *)
    let to_clauses (e:t): Literal.t list list =
      (* let i range over e.eq
             j range over e.lower
             k range over e.upper.
         produce:
         [∨_j ∨_k (m_j < m_k ∨ ∨_i (m_i = m_j ∧ m_i = m_k))]
      *)
      let form_l =
        let open CCList.Infix in
        e.lower >>= fun m_j ->
        e.upper >>= fun m_k ->
        let f_diseq = Form.atom (Lit.mk_rat_less m_j m_k) in
        let f_eq =
          e.eq >|= fun m_i ->
          Form.and_
            [ Form.atom (Lit.mk_rat_eq m_i m_j);
              Form.atom (Lit.mk_rat_eq m_i m_k);
            ]
        in
        CCList.return (Form.or_ (f_diseq :: f_eq))
      in
      let form = Form.or_ form_l in
      Util.debugf ~section 5
        "(@[<2>elim_var_non_cnf :var %a@ :clause %a@ :state %a@ :form %a@])"
        (fun k->k T.pp_var e.var Lits.pp e.initial_lits pp e Form.pp form);
      begin
        Form.cnf form
        |> List.rev_map (fun lits -> List.rev_append e.side_lits lits)
      end

    exception Make_err

    (* builder *)
    let make_exn (lits:Literals.t) (x:T.var): t =
      assert (not (Literals.is_shielded x lits));
      (* gather literals *)
      let lower = ref [] in
      let upper = ref [] in
      let eq = ref [] in
      let side = ref [] in
      let push_l = CCList.Ref.push in
      let t_x = T.var x in
      Array.iter
        (fun lit -> match lit with
           | Lit.Rat {Rat_lit.op; left=m1; right=m2} ->
             begin match M.find m1 t_x, M.find m2 t_x with
               | None, None -> push_l side lit
               | Some _, Some _ -> raise Make_err (* cancellations are possible *)
               | Some c1, None ->
                 let m = M.Rat.divide (M.difference m2 (M.remove m1 t_x)) c1 in
                 begin match op with
                   | Rat_lit.Equal -> push_l eq m
                   | Rat_lit.Less -> push_l upper m
                 end
               | None, Some c2 ->
                 let m = M.Rat.divide (M.difference m1 (M.remove m2 t_x)) c2 in
                 begin match op with
                   | Rat_lit.Equal -> push_l eq m
                   | Rat_lit.Less -> push_l lower m
                 end
             end
           | Lit.Equation (t, u, true) when T.equal t t_x ->
             push_l eq (M.Rat.singleton Q.one u)
           | Lit.Equation (t, u, true) when T.equal u t_x ->
             push_l eq (M.Rat.singleton Q.one t)
           | Lit.Equation (t, _, false) when T.equal t t_x -> raise Make_err
           | Lit.Equation (_, u, false) when T.equal u t_x -> raise Make_err
           | _ ->
             assert (not (Lit.var_occurs x lit)); (* shielding *)
             push_l side lit)
        lits;
      { var=x; lower= !lower; upper= !upper; eq= !eq;
        side_lits= !side; initial_lits=lits; }

    let make lits x : t option =
      try Some (make_exn lits x)
      with Make_err -> None
  end

  let eliminate_unshielded (c:C.t): C.t list option =
    let module E = Elim_var in
    let nvars = unshielded_vars (C.lits c) in
    begin match nvars with
      | [] -> None
      | x :: _ ->
        begin match E.make (C.lits c) x with
          | None -> None
          | Some e ->
            let clauses = E.to_clauses e in
            let proof =
              Proof.Step.simp [C.proof_parent c]
                ~tags:[Proof.Tag.T_lra]
                ~rule:(Proof.Rule.mkf "elim_var(%a)" T.pp_var x)
            in
            let new_c =
              List.map
                (fun lits ->
                   C.create lits proof
                     ~penalty:(C.penalty c) ~trail:(C.trail c))
                clauses
            in
            Util.debugf ~section 4
              "(@[<2>elim_var :var %a@ :clause %a@ :yields (@[<hv>%a@])@]@)"
              (fun k->k T.pp_var x C.pp c (Util.pp_list C.pp) new_c);
            Some new_c
        end
    end

  (** {2 Setup} *)

  (* print index into file *)
  let _print_idx file idx =
    CCIO.with_out file
      (fun oc ->
         let pp_leaf _ _ = () in
         let out = Format.formatter_of_out_channel oc in
         Format.fprintf out "@[<2>%a@]@." (PS.TermIndex.to_dot pp_leaf) idx;
         flush oc)

  let setup_dot_printers () =
    CCOpt.iter
      (fun f ->
         Signal.once Signals.on_dot_output
           (fun () -> _print_idx f !_idx_unit_eq))
      !dot_unit_;
    ()

  let register () =
    Util.debug ~section 2 "rat-arith: setup env";
    (* add inference rules *)
    Env.add_binary_inf "rat_sup_active" canc_sup_active;
    Env.add_binary_inf "rat_sup_passive" canc_sup_passive;
    Env.add_unary_inf "rat_cancellation" cancellation;
    Env.add_unary_inf "rat_eq_factoring" canc_equality_factoring;
    Env.add_binary_inf "rat_ineq_chaining" canc_ineq_chaining;
    Env.add_unary_inf "rat_ineq_factoring" canc_ineq_factoring;
    Env.add_multi_simpl_rule eliminate_unshielded;
    Env.add_unary_simplify canc_demodulation;
    Env.add_backward_simplify canc_backward_demodulation;
    Env.add_is_trivial is_tautology;
    Env.add_unary_simplify convert_lit;
    if !enable_trivial_ineq_ then (
      Env.add_redundant is_redundant_by_ineq;
    );
    if !enable_demod_ineq_ then (
      Env.add_active_simplify demod_ineq;
    );
    Env.add_multi_simpl_rule eliminate_unshielded;
    (* completeness? I don't think so *)
    Ctx.lost_completeness ();
    (* enable AC-property of sum *)
    (* FIXME: currently AC doesn't handle builtins
       if !_enable_ac then begin
       let sum = ID.Arith.sum in
       let ty = Signature.find_exn Signature.TPTP.Arith.full sum in
       let module A = Env.flex_get AC.key_ac in
       A.add sum ty;
       end;
    *)
    setup_dot_printers ();
    ()
end

let k_should_register = Flex_state.create_key ()
let k_has_rat = Flex_state.create_key ()

let extension =
  let env_action env =
    let module E = (val env : Env.S) in
    if E.flex_get k_should_register then (
      let module I = Make(E) in
      I.register ()
    ) else if E.flex_get k_has_rat then (
      (* arith not enabled, so we cannot solve the problem, do not answer "sat" *)
      E.Ctx.lost_completeness ();
    )
  and post_typing_action stmts state =
    let module PT = TypedSTerm in
    let has_rat =
      CCVector.to_seq stmts
      |> Iter.flat_map Stmt.Seq.to_seq
      |> Iter.flat_map
        (function
          | `ID _ -> Iter.empty
          | `Ty ty -> Iter.return ty
          | `Form t
          | `Term t -> PT.Seq.subterms t |> Iter.filter_map PT.ty)
      |> Iter.exists (PT.Ty.equal PT.Ty.rat)
    in
    let should_reg = !enable_rat_ && has_rat in
    Util.debugf ~section 2 "decision to register rat-arith: %B" (fun k->k should_reg);
    state
    |> Flex_state.add k_should_register should_reg
    |> Flex_state.add k_has_rat has_rat
  in
  { Extensions.default with
    Extensions.
    name="arith_rat";
    post_typing_actions=[post_typing_action];
    env_actions=[env_action];
  }

let () =
  Params.add_opts
    [ "--rat-no-semantic-tauto"
    , Arg.Clear enable_semantic_tauto_
    , " disable rational arithmetic semantic tautology check"
    ; "--rat-arith"
    , Arg.Set enable_rat_
    , " enable axiomatic rational arithmetic"
    ; "--no-arith"
    , Arg.Clear enable_rat_
    , " disable axiomatic rational arithmetic"
    ; "--rat-ac"
    , Arg.Set enable_ac_
    , " enable AC axioms for rational arithmetic (sum)"
    ; "--dot-rat-unit"
    , Arg.String (fun s -> dot_unit_ := Some s)
    , " print arith-rat-unit index into file"
    ];
  ()

OCaml

Innovation. Community. Security.