package libzipperposition

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file booleans.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672

(* This file is free software, part of Zipperposition. See file "license" for more details. *)

(** {1 boolean subterms} *)

open Logtk
open Libzipperposition

module T = Term

type selection_setting = Any | Minimal | Large
type reasoning_kind    = 
    BoolReasoningDisabled | BoolCasesInference | BoolCasesSimplification | BoolCasesKeepParent
  | BoolCasesEagerFar | BoolCasesEagerNear

let section = Util.Section.make ~parent:Const.section "booleans"


let k_bool_reasoning = Flex_state.create_key ()
let k_cased_term_selection = Flex_state.create_key ()
let k_quant_rename = Flex_state.create_key ()
let k_interpret_bool_funs = Flex_state.create_key ()
let k_cnf_non_simpl = Flex_state.create_key ()
let k_norm_bools = Flex_state.create_key () 
let k_solve_formulas = Flex_state.create_key ()

module type S = sig
  module Env : Env.S
  module C : module type of Env.C

  (** {6 Registration} *)

  val setup : unit -> unit
  (** Register rules in the environment *)
end


module Make(E : Env.S) : S with module Env = E = struct
  module Env = E
  module C = Env.C
  module Ctx = Env.Ctx
  module Fool = Fool.Make(Env)

  let (=~),(/~) = Literal.mk_eq, Literal.mk_neq
  let (@:) = T.app_builtin ~ty:Type.prop
  let no a = a =~ T.false_
  let yes a = a =~ T.true_
  let imply a b = Builtin.Imply @: [a;b]
  let const_true p = T.fun_ (List.hd @@ fst @@ Type.open_fun (T.ty p)) T.true_

  let true_not_false = [T.true_ /~ T.false_]
  let true_or_false a = [yes a; a =~ T.false_]
  let imp_true1 a b = [yes a; yes(imply a b)]
  let imp_true2 a b = [no b; yes(imply a b)]
  let imp_false a b = [no(imply a b); no a; yes b]
  let all_true p = [p /~ const_true p; yes(Builtin.ForallConst@:[p])]
  let all_false p = [no(Builtin.ForallConst@:[p]); p =~ const_true p]
  let eq_true x y = [x/~y; yes(Builtin.Eq@:[x;y])]
  let eq_false x y = [no(Builtin.Eq@:[x;y]); x=~y]
  let and_ a b = [Builtin.And @: [a;b] 
                  =~  imply (imply a (imply b T.false_)) T.false_]
  let or_ a b = [Builtin.Or @: [a;b] 
                 =~  imply (imply a T.false_) b] 

  let and_true a  = [Builtin.And @: [T.true_; a] =~ a]
  let and_false a  = [Builtin.And @: [T.false_; a] =~ T.false_]

  let exists t = 
    let t2bool = Type.arrow [t] Type.prop in
    [T.app_builtin ~ty:(Type.arrow [t2bool] Type.prop) Builtin.ExistsConst [] =~ T.fun_ t2bool
       (Builtin.Not @:[Builtin.ForallConst @:[T.fun_ t (Builtin.Not @:[T.app (T.bvar t2bool 1) [T.bvar t 0]])]])]

  let as_clause c = Env.C.create ~penalty:1 ~trail:Trail.empty c Proof.Step.trivial

  let create_clauses () = 
    let a = T.var (HVar.make ~ty:Type.prop 0) in
    [ [Builtin.And @:[T.true_; a] =~ a];
      [Builtin.And @:[T.false_; a] =~ T.false_];
      [Builtin.Or @:[T.true_; a] =~ T.true_];
      [Builtin.Or @:[T.false_; a] =~ a];
      [Builtin.Imply @:[T.true_; a] =~ a];
      [Builtin.Imply @:[T.false_; a] =~ T.true_];
      [Builtin.Not @:[T.true_] =~ T.false_];
      [Builtin.Not @:[T.false_] =~ T.true_]; ] 
    |> List.map as_clause |> Iter.of_list

  let bool_cases(c: C.t) : C.t list =
    let term_as_true = Term.Tbl.create 8 in
    let term_as_false = Term.Tbl.create 4 in
    let cased_term_selection = Env.flex_get k_cased_term_selection in
    let rec find_bools top t =
      let can_be_cased = Type.is_prop(T.ty t) && T.DB.is_closed t && (not top ||
                                                                      (* It is useful to case top level equality like 𝘵𝘦𝘳𝘮𝘴 
                                                                         because these are simplified into 𝘭𝘪𝘵𝘦𝘳𝘢𝘭𝘴. *)
                                                                      match T.view t with AppBuiltin((Eq|Neq|Equiv|Xor),_) -> true | _ -> false) in
      let is_quant = match T.view t with 
        | AppBuiltin(b,_) -> 
          Builtin.equal b Builtin.ForallConst || Builtin.equal b Builtin.ExistsConst
        | _ -> false in
      (* Add only propositions. *)
      let add = if can_be_cased then Term.Tbl.add term_as_true else fun _ _ -> () in
      let yes = if can_be_cased then yes else fun _ -> yes T.true_ in
      (* Stop recursion in combination of certain settings. *)
      let inner f x = 
        if is_quant || can_be_cased && cased_term_selection = Large 
        then () 
        else List.iter(f false) x in
      match T.view t with
      | DB _ | Var _ -> ()
      | Const _ -> add t (yes t)
      | Fun(_,b) -> find_bools false b
      | App(f,ps) -> add t (yes t); inner find_bools (f::ps)
      | AppBuiltin(f,ps) ->
        inner find_bools ps;
        match f with
        | Builtin.True | Builtin.False -> ()
        | Builtin.Eq | Builtin.Neq | Builtin.Equiv | Builtin.Xor ->
          begin match ps with 
            | [x;y] when (cased_term_selection != Minimal || Type.is_prop(T.ty x)) ->
              if f = Builtin.Neq || f = Builtin.Xor then(
                if can_be_cased then Term.Tbl.add term_as_false t (x =~ y);
                add t (x /~ y))
              else add t (x =~ y)
            | _ -> () end
        | Builtin.And | Builtin.Or | Builtin.Imply | Builtin.Not ->
          if cased_term_selection != Minimal then add t (yes t) else()
        | _ -> add t (yes t) 
    in
    Literals.Seq.terms(C.lits c) |> Iter.iter(find_bools true);
    let case polarity b b_lit clauses =
      let proof = Proof.Step.inference[C.proof_parent c]
          ~rule:(Proof.Rule.mk"bool_cases") ~tags:[Proof.Tag.T_ho]
      in
      C.create ~trail:(C.trail c) ~penalty:(C.penalty c)
        (b_lit :: Array.to_list(C.lits c |> Literals.map(T.replace ~old:b ~by:polarity)))
        proof :: clauses
    in
    Term.Tbl.fold(case T.false_) term_as_true [] @
    Term.Tbl.fold(case T.true_) term_as_false []


  let bool_case_simp(c: C.t) : C.t list option =
    let term_to_equations = Term.Tbl.create 8 in
    let cased_term_selection = Env.flex_get k_cased_term_selection in
    let rec find_bools top t =
      let can_be_cased = Type.is_prop(T.ty t) && T.DB.is_closed t && (not top ||
                                                                      (* It is useful to case top level equality like 𝘵𝘦𝘳𝘮𝘴 because these are simplified into 𝘭𝘪𝘵𝘦𝘳𝘢𝘭𝘴. *)
                                                                      match T.view t with AppBuiltin((Eq|Neq|Equiv|Xor),_) -> true | _ -> false) in
      let is_quant = match T.view t with 
        | AppBuiltin(b,_) -> 
          Builtin.equal b Builtin.ForallConst || Builtin.equal b Builtin.ExistsConst
        | _ -> false in
      (* Add only propositions. *)
      let add t x y = if can_be_cased then Term.Tbl.add term_to_equations t (x=~y, x/~y) in
      (* Stop recursion in combination of certain settings. *)
      let inner f x = 
        if is_quant || (can_be_cased && cased_term_selection = Large) 
        then () 
        else List.iter(f false) x in
      match T.view t with
      | DB _ | Var _ -> ()
      | Const _ -> add t t T.true_
      | Fun(_,b) -> find_bools false b
      | App(f,ps) -> add t t T.true_; inner find_bools (f::ps)
      | AppBuiltin(f,ps) ->
        inner find_bools ps;
        match f with
        | Builtin.True | Builtin.False -> ()
        | Builtin.Eq | Builtin.Neq | Builtin.Equiv | Builtin.Xor ->
          (match ps with 
           | [_;x;y]
           | [x;y] when (cased_term_selection != Minimal || Type.is_prop(T.ty x)) ->
             add t x y;
             if (f = Builtin.Neq || f = Builtin.Xor) && can_be_cased then
               Term.Tbl.replace term_to_equations t (Term.Tbl.find term_to_equations t |> CCPair.swap)
           | _ -> ())
        | Builtin.And | Builtin.Or | Builtin.Imply | Builtin.Not ->
          if cased_term_selection != Minimal then add t t T.true_ else()
        | _ -> add t t T.true_
    in
    if not @@ Iter.exists T.is_formula (C.Seq.terms c) then (
      (* first clausify, then get bool subterms *)
      Literals.Seq.terms(C.lits c) 
      |> Iter.iter(find_bools true));
    let res = 
      Term.Tbl.fold(fun b (b_true, b_false) clauses ->
          if cased_term_selection != Minimal ||
             Term.Seq.subterms b |> 
             Iter.for_all (fun st -> T.equal b st || 
                                     not (Type.is_prop (T.ty st))) then (
            let proof = Proof.Step.simp[C.proof_parent c]
                ~rule:(Proof.Rule.mk"bool_case_simp") ~tags:[Proof.Tag.T_ho]
            in
            C.create ~trail:(C.trail c) ~penalty:(C.penalty c)
              (b_true :: Array.to_list(C.lits c |> Literals.map(T.replace ~old:b ~by:T.false_)))
              proof ::
            C.create ~trail:(C.trail c) ~penalty:(C.penalty c)
              (b_false :: Array.to_list(C.lits c |> Literals.map(T.replace ~old:b ~by:T.true_)))
              proof ::
            clauses)
          else clauses) term_to_equations [] in
    if CCList.is_empty res then None
    else (
      (* CCFormat.printf "bool case simp: %a.\n" C.pp c; *)
      (* CCList.iteri (fun i nc -> CCFormat.printf "@[%d: @[%a@]@].\n" i C.pp nc) res; *)
      Some res)

  let simpl_bool_subterms c =
    let new_lits = Literals.map T.simplify_bools (C.lits c) in
    if Literals.equal (C.lits c) new_lits then (
      SimplM.return_same c
    ) else (
      let proof = Proof.Step.simp [C.proof_parent c] 
          ~rule:(Proof.Rule.mk "simplify boolean subterms") in
      let new_ = C.create ~trail:(C.trail c) ~penalty:(C.penalty c) 
          (Array.to_list new_lits) proof in
      SimplM.return_new new_
    )

  let normalize_bool_terms c =
    let new_lits = Literals.map T.normalize_bools (C.lits c) in
    if Literals.equal (C.lits c) new_lits then (
      SimplM.return_same c
    ) else (
      let proof = Proof.Step.simp [C.proof_parent c] 
          ~rule:(Proof.Rule.mk "normalize subterms") in
      let new_ = C.create ~trail:(C.trail c) ~penalty:(C.penalty c) 
          (Array.to_list new_lits) proof in
      SimplM.return_new new_
    )

  let normalize_equalities c =
    let lits = Array.to_list (C.lits c) in
    let normalized = List.map Literal.normalize_eq lits in
    if List.exists CCOpt.is_some normalized then (
      let new_lits = List.mapi (fun i l_opt -> 
          CCOpt.get_or ~default:(Array.get (C.lits c) i) l_opt) normalized in
      let proof = Proof.Step.inference [C.proof_parent c] 
          ~rule:(Proof.Rule.mk "simplify nested equalities")  in
      let new_c = C.create ~trail:(C.trail c) ~penalty:(C.penalty c) new_lits proof in
      SimplM.return_new new_c
    ) 
    else (
      SimplM.return_same c 
    )

  let cnf_otf c : C.t list option =   
    let idx = CCArray.find_idx (fun l -> 
        let eq = Literal.View.as_eqn l in
        match eq with 
        | Some (l,r,sign) -> 
          Type.is_prop (T.ty l) && 
          ((not (T.equal r T.true_) && not (T.equal r T.false_))
           || T.is_formula l || T.is_formula r)
        | None            -> false 
      ) (C.lits c) in

    let renaming_weight = 40 in
    let max_formula_weight = 
      C.Seq.terms c 
      |> Iter.filter T.is_formula
      |> Iter.map T.size
      |> Iter.max in
    let opts = 
      match max_formula_weight with
      | None -> [Cnf.DisableRenaming]
      | Some m -> if m < renaming_weight then [Cnf.DisableRenaming] else [] in

    match idx with 
    | Some _ ->
      let f = Literals.Conv.to_tst (C.lits c) in
      let proof = Proof.Step.simp ~rule:(Proof.Rule.mk "cnf_otf") ~tags:[Proof.Tag.T_ho] [C.proof_parent c] in
      let trail = C.trail c and penalty = C.penalty c in
      let stmt = Statement.assert_ ~proof f in
      let cnf_vec = Cnf.convert @@ CCVector.to_seq @@ 
        Cnf.cnf_of ~opts ~ctx:(Ctx.sk_ctx ()) stmt in
      CCVector.iter (fun cl -> 
          Statement.Seq.ty_decls cl
          |> Iter.iter (fun (id,ty) -> Ctx.declare id ty)) cnf_vec;

      let clauses = CCVector.map (C.of_statement ~convert_defs:true) cnf_vec
                    |> CCVector.to_list 
                    |> CCList.flatten
                    |> List.map (fun c -> 
                        C.create ~penalty  ~trail (CCArray.to_list (C.lits c)) proof) in
      List.iteri (fun i new_c -> 
          assert((C.proof_depth c) <= C.proof_depth new_c);) clauses;
      Some clauses
    | None -> None

  let cnf_infer cl = 
    CCOpt.get_or ~default:[] (cnf_otf cl)

  let interpret_boolean_functions c =
    (* Collects boolean functions only at top level, 
       and not the ones that are already a part of the quantifier *)
    let collect_tl_bool_funcs t k = 
      let rec aux t =
        match T.view t with
        | Var _  | Const _  | DB _ -> ()
        | Fun _ -> if Type.is_prop (Term.ty (snd @@ Term.open_fun t)) then k t
        | App (f, l) ->
          aux f;
          List.iter aux l
        | AppBuiltin (b,l) -> 
          if not @@ Builtin.is_quantifier b then List.iter aux l 
      in
      aux t in
    let interpret t i = 
      let ty_args, body = T.open_fun t in
      assert(Type.is_prop (Term.ty body));
      T.fun_l ty_args i 
    in
    let negate_bool_fun bool_fun =
      let ty_args, body = T.open_fun bool_fun in
      assert(Type.is_prop (Term.ty body));
      T.fun_l ty_args (T.Form.not_ body)
    in

    Iter.flat_map collect_tl_bool_funcs 
      (C.Seq.terms c
       |> Iter.filter (fun t -> not @@ T.is_fun t))
    |> Iter.sort_uniq ~cmp:Term.compare
    |> Iter.filter (fun t ->  
        let cached_t = Subst.FO.canonize_all_vars t in
        not (Term.Set.mem cached_t !Higher_order.prim_enum_terms))
    |> Iter.fold (fun res t -> 
        assert(T.DB.is_closed t);
        let proof = Proof.Step.inference[C.proof_parent c]
            ~rule:(Proof.Rule.mk"interpret boolean function") ~tags:[Proof.Tag.T_ho]
        in
        let as_forall = Literal.mk_prop (T.Form.forall t) false in
        let as_neg_forall = Literal.mk_prop (T.Form.forall (negate_bool_fun t)) false in
        let forall_cl = 
          C.create ~trail:(C.trail c) ~penalty:(C.penalty c)
            (as_forall :: Array.to_list(C.lits c |> Literals.map(T.replace ~old:t ~by:(interpret t T.true_))))
            proof in
        let forall_neg_cl = 
          C.create ~trail:(C.trail c) ~penalty:(C.penalty c)
            (as_neg_forall :: Array.to_list(C.lits c |> Literals.map(T.replace ~old:t ~by:(interpret t T.false_))))
            proof in

        Util.debugf ~section  1 "interpret bool: %a !!> %a.\n"  (fun k -> k C.pp c C.pp forall_cl);
        Util.debugf ~section  1 "interpret bool: %a !!~> %a.\n" (fun k -> k C.pp c C.pp forall_neg_cl);

        forall_cl :: forall_neg_cl :: res
      ) []

  let solve_bool_formulas cl =
    let module PUnif = PUnif.Make(struct let st = Env.flex_state () end) in
    let unifiers = CCList.flat_map (fun literal -> 
        match literal with 
        | Literal.Equation(lhs, rhs, false) when Type.is_prop (Term.ty lhs) ->
          PUnif.unify_scoped (lhs,0) (rhs,0)
          |> OSeq.filter_map CCFun.id
          |> OSeq.to_list
        | _ -> []
      ) (CCArray.to_list (C.lits cl)) in
    if CCList.is_empty unifiers then None
    else Some (List.map (fun subst -> 
        let subst = Unif_subst.subst subst in
        C.apply_subst (cl,0) subst) unifiers)

  let setup () =
    match Env.flex_get k_bool_reasoning with 
    | BoolReasoningDisabled -> ()
    | _ -> 
      (* Env.ProofState.PassiveSet.add (create_clauses ()); *)
      Env.add_basic_simplify simpl_bool_subterms;
      Env.add_basic_simplify normalize_equalities;
      if Env.flex_get k_norm_bools then (
        Env.add_basic_simplify normalize_bool_terms
      );
      Env.add_multi_simpl_rule Fool.rw_bool_lits;
      if Env.flex_get k_cnf_non_simpl then (
        Env.add_unary_inf "cnf otf inf" cnf_infer;
      ) else  Env.add_multi_simpl_rule cnf_otf;
      if Env.flex_get k_solve_formulas then (
        Env.add_multi_simpl_rule solve_bool_formulas
      );
      if (Env.flex_get k_interpret_bool_funs) then (
        Env.add_unary_inf "interpret boolean functions" interpret_boolean_functions;
      );

      if Env.flex_get k_bool_reasoning = BoolCasesInference then (
        Env.add_unary_inf "bool_cases" bool_cases;
      )
      else if Env.flex_get k_bool_reasoning = BoolCasesSimplification then (
        Env.set_single_step_multi_simpl_rule bool_case_simp;
      ) else if Env.flex_get k_bool_reasoning = BoolCasesKeepParent then (
        let keep_parent c  = CCOpt.get_or ~default:[] (bool_case_simp c) in
        Env.add_unary_inf "bool_cases_keep_parent" keep_parent;
      )
end


open CCFun
open Builtin
open Statement
open TypedSTerm
open CCList


let if_changed proof (mk: ?attrs:Logtk.Statement.attrs -> 'r) s f p =
  let fp = f s p in
  if fp = [p] then [s] else map(fun x -> mk ~proof:(proof s) x) fp

let map_propositions ~proof f =
  CCVector.flat_map_list(fun s -> match Statement.view s with
      | Assert p	-> if_changed proof assert_ s f p
      | Lemma ps	-> if_changed proof lemma s (map%f) ps
      | Goal p	-> if_changed proof goal s f p
      | NegatedGoal(ts, ps)	-> if_changed proof (neg_goal ~skolems:ts) s (map%f) ps
      | _ -> [s]
    )


let is_bool t = CCOpt.equal Ty.equal (Some prop) (ty t)
let is_T_F t = match view t with AppBuiltin((True|False),[]) -> true | _ -> false

(* Modify every subterm of t by f except those at the "top". Here top is true if subterm occures under a quantifier Æ in a context where it could participate to the clausification if the surrounding context of Æ was ignored. *)
let rec replaceTST f top t =
  let re = replaceTST f in
  let ty = ty_exn t in
  let transformer = if top then id else f in
  transformer 
    (match view t with
     | App(t,ts) -> 
       app_whnf ~ty (re false t) (map (re false) ts)
     | Ite(c,x,y) -> 
       ite (re false c) (re false x) (re false y)
     | Match(t, cases) -> 
       match_ (re false t) (map (fun (c,vs,e) -> (c,vs, re false e)) cases)
     | Let(binds, expr) -> 
       let_ (map(CCPair.map2 (re false)) binds) (re false expr)
     | Bind(b,x,t) -> 
       let top = Binder.equal b Binder.Forall || Binder.equal b Binder.Exists in
       bind ~ty b x (re top t)
     | AppBuiltin(b,ts) ->
       let logical = for_all is_bool ts in
       app_builtin ~ty b (map (re(top && logical)) ts)
     | Multiset ts -> 
       multiset ~ty (map (re false) ts)
     | _ -> t)


let name_quantifiers stmts =
  let proof s = Proof.Step.esa [Proof.Parent.from(Statement.as_proof_i s)]
      ~rule:(Proof.Rule.mk "Quantifier naming")
  in
  let new_stmts = CCVector.create() in
  let changed = ref false in
  let if_changed (mk: ?attrs:Logtk.Statement.attrs -> 'r) s r = 
    if !changed then (changed := false; mk ~proof:(proof s) r) else s in
  let if_changed_list (mk: ?attrs:Logtk.Statement.attrs -> 'l) s r = 
    if !changed then (changed := false; mk ~proof:(proof s) r) else s in
  let name_prop_Qs s = replaceTST(fun t -> match TypedSTerm.view t with
      | Bind(Binder.Forall,_,_) | Bind(Binder.Exists, _, _) ->
        changed := true;
        let vars = Var.Set.of_seq (TypedSTerm.Seq.free_vars t) |> Var.Set.to_list in
        let qid = ID.gensym() in
        let ty = app_builtin ~ty:tType Arrow (prop :: map Var.ty vars) in
        let q = const ~ty qid in
        let q_vars = app ~ty:prop q (map var vars) in
        let proof = Proof.Step.define_internal qid [Proof.Parent.from(Statement.as_proof_i s)] in
        let q_typedecl = ty_decl ~proof qid ty in
        let definition = 
          (* ∀ vars: q[vars] ⇔ t, where t is a quantifier formula and q is a new name for it. *)
          bind_list ~ty:prop Binder.Forall vars 
            (app_builtin ~ty:prop Builtin.Equiv [q_vars; t]) 
        in
        CCVector.push new_stmts q_typedecl;
        CCVector.push new_stmts (assert_ ~proof definition);
        q_vars
      | _ -> t) true
  in
  stmts |> CCVector.map(fun s ->
      match Statement.view s with
      | TyDecl(id,t)	-> s
      | Data ts	-> s
      | Def defs	-> s
      | Rewrite _	-> s
      | Assert p	-> if_changed assert_ s (name_prop_Qs s p)
      | Lemma ps	-> if_changed_list lemma s (map (name_prop_Qs s) ps)
      | Goal p	-> if_changed goal s (name_prop_Qs s p)
      | NegatedGoal(ts, ps)	-> if_changed_list (neg_goal ~skolems:ts) s (map (name_prop_Qs s) ps)
    ) |> CCVector.append new_stmts;
  CCVector.freeze new_stmts


let rec replace old by t =
  let r = replace old by in
  let ty = ty_exn t in
  if TypedSTerm.equal t old then by
  else match view t with
    | App(f,ps) -> app_whnf ~ty (r f) (map r ps)
    | AppBuiltin(f,ps) -> app_builtin ~ty f (map r ps)
    | Ite(c,x,y) -> ite (r c) (r x) (r y)
    | Let(bs,e) -> let_ (map (CCPair.map2 r) bs) (r e)
    | Bind(b,v,e) -> bind ~ty b v (r e)
    | _ -> t


exception Return of TypedSTerm.t
(* If f _ s = Some r for a subterm s of t, then r else t. *)
let with_subterm_or_id t f = try
    (Seq.subterms_with_bound t (fun(s, var_ctx) ->
         match f var_ctx s with
         | None -> ()
         | Some r -> raise(Return r)));
    t
  with Return r -> r


(* If p is non-constant subproposition closed wrt variables vs, then (p ⇒ c[p:=⊤]) ∧ (p ∨ c[p:=⊥]) or else c unmodified. *)
let case_bool vs c p =
  if is_bool p && not(is_T_F p) && p!=c && Var.Set.is_empty(Var.Set.diff (free_vars_set p) vs) then
    let ty = prop in
    app_builtin ~ty And [
      app_builtin ~ty Imply [p; replace p Form.true_ c];
      app_builtin ~ty Or [p; replace p Form.false_ c];
    ]
  else c


(* Apply repeatedly the transformation t[p] ↦ (p ⇒ t[⊤]) ∧ (¬p ⇒ t[⊥]) for each boolean parameter p≠⊤,⊥ that is closed in context where variables vs are bound. *)
let rec case_bools_wrt vs t =
  with_subterm_or_id t (fun _ s -> 
      match view s with
      | App(f,ps) ->
        let t' = fold_left (case_bool vs) t ps in
        if t==t' then None else Some(case_bools_wrt vs t')
      | _ -> None
    )

let eager_cases_far =
  let proof s = Proof.Step.esa [Proof.Parent.from(Statement.as_proof_i s)]
      ~rule:(Proof.Rule.mk "eager_cases_far")
  in
  map_propositions ~proof (fun _ t ->
      [with_subterm_or_id t (fun vs s -> match view s with
           | Bind((Forall|Exists) as q, v, b) ->
             let b' = case_bools_wrt (Var.Set.add vs v) b in
             if b==b' then None else Some(replace s (bind ~ty:prop q v b') t)
           | _ -> None)
       |> case_bools_wrt Var.Set.empty])


let eager_cases_near =
  let proof s = Proof.Step.esa [Proof.Parent.from(Statement.as_proof_i s)]
      ~rule:(Proof.Rule.mk "eager_cases_near")
  in
  let rec case_near t =
    with_subterm_or_id t (fun vs s ->
        match view s with
        | AppBuiltin((And|Or|Imply|Not|Equiv|Xor|ForallConst|ExistsConst),_)
        | Bind((Forall|Exists),_,_) -> None
        | AppBuiltin((Eq|Neq), [x;y]) when is_bool x -> None
        | _ when is_bool s ->
          let s' = case_bool vs s (with_subterm_or_id s (fun _ -> CCOpt.if_(fun x -> x!=s && is_bool x && not(is_T_F x)))) in
          if s==s' then None else Some(case_near(replace s s' t))
        | _ -> None)
  in
  map_propositions ~proof (fun _ p -> [case_near p])


open Term

let post_eager_cases =
  let proof s = Proof.Step.esa [Proof.Parent.from(Statement.as_proof_c s)]
      ~rule:(Proof.Rule.mk "post_eager_cases")
  in
  map_propositions ~proof (fun _ c ->
      let cased = ref Set.empty in
      fold_left(SLiteral.fold(fun res -> (* Loop over subterms of terms of literals of a clause. *)
          Seq.subterms_depth %> Iter.fold(fun res (s,d) ->
              if d = 0 || not(Type.is_prop(ty s)) || is_true_or_false s || is_var s || Set.mem s !cased
              then
                res
              else(
                cased := Set.add s !cased;
                let replace_s_by by = map(SLiteral.map ~f:(replace ~old:s ~by)) in
                flatten(map(fun c -> [
                      SLiteral.atom_true s :: replace_s_by false_ c; 
                      SLiteral.atom_false s :: replace_s_by true_ c
                    ]) res))
            ) res
        )) [c] c)

let _bool_reasoning = ref BoolReasoningDisabled
let _quant_rename = ref false


(* These two options run before CNF, 
   so (for now it is impossible to move them to Env
   since it is not even made at the moment) *)
let preprocess_booleans stmts = (match !_bool_reasoning with
    | BoolCasesEagerFar -> eager_cases_far
    | BoolCasesEagerNear -> eager_cases_near
    | _ -> id
  ) (if !_quant_rename then name_quantifiers stmts else stmts)

let preprocess_cnf_booleans stmts = match !_bool_reasoning with
  | BoolCasesEagerFar | BoolCasesEagerNear -> post_eager_cases stmts
  | _ -> stmts


let _cased_term_selection = ref Large
let _interpret_bool_funs = ref false
let _cnf_non_simpl = ref false
let _norm_bools = ref false 
let _solve_formulas = ref false


let extension =
  let register env =
    let module E = (val env : Env.S) in
    let module ET = Make(E) in
    E.flex_add k_bool_reasoning !_bool_reasoning;
    E.flex_add k_cased_term_selection !_cased_term_selection;
    E.flex_add k_quant_rename !_quant_rename;
    E.flex_add k_interpret_bool_funs !_interpret_bool_funs;
    E.flex_add k_cnf_non_simpl !_cnf_non_simpl;
    E.flex_add k_norm_bools !_norm_bools;
    E.flex_add k_solve_formulas !_solve_formulas;

    ET.setup ()
  in
  { Extensions.default with
    Extensions.name = "bool";
    env_actions=[register];
  }

let () =
  Options.add_opts
    [ "--boolean-reasoning", Arg.Symbol (["off"; "cases-inf"; "cases-simpl"; "cases-simpl-kp"; "cases-eager"; "cases-eager-near"], 
                                         fun s -> _bool_reasoning := 
                                             match s with 
                                             | "off" -> BoolReasoningDisabled
                                             | "cases-inf" -> BoolCasesInference
                                             | "cases-simpl" -> BoolCasesSimplification
                                             | "cases-simpl-kp" -> BoolCasesKeepParent
                                             | "cases-eager" -> BoolCasesEagerFar
                                             | "cases-eager-near" -> BoolCasesEagerNear
                                             | _ -> assert false), 
      " enable/disable boolean axioms";
      "--bool-subterm-selection", 
      Arg.Symbol(["A"; "M"; "L"], (fun opt -> _cased_term_selection := 
                                      match opt with "A"->Any | "M"->Minimal | "L"->Large
                                                   | _ -> assert false)), 
      " select boolean subterm selection criterion: A for any, M for minimal and L for large";
      "--quantifier-renaming"
    , Arg.Bool (fun v -> _quant_rename := v)
    , " turn the quantifier renaming on or off";
      "--disable-simplifying-cnf",
      Arg.Set _cnf_non_simpl,
      "implement cnf on-the-fly as an inference rule";
      "--interpret-bool-funs"
    , Arg.Bool (fun v -> _interpret_bool_funs := v)
    , " turn interpretation of boolean functions as forall or negation of forall on or off";
      "--normalize-bool-terms", Arg.Bool((fun v -> _norm_bools := v)),
      " normalize boolean subterms using their weight.";
      "--solve-formulas"
    , Arg.Bool (fun v -> _solve_formulas := v)
    , " solve phi != psi eagerly using unification, where phi and psi are formulas"
    ];
  Params.add_to_mode "ho-complete-basic" (fun () ->
      _bool_reasoning := BoolReasoningDisabled
    );
  Params.add_to_mode "fo-complete-basic" (fun () ->
      _bool_reasoning := BoolReasoningDisabled
    );
  Extensions.register extension
OCaml

Innovation. Community. Security.