package coq

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file structures.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(* Created by Amokrane Saïbi, Dec 1998 *)
(* Addition of products and sorts in canonical structures by Pierre
   Corbineau, Feb 2008 *)

(* This file registers properties of records: projections and
   canonical structures *)

open CErrors
open Util
open Pp
open Names
open Constr
open Mod_subst
open Reductionops

(*s A structure S is a non recursive inductive type with a single
   constructor (the name of which defaults to Build_S) *)

(* Table of structures.
   It maps to each structure name (of type [inductive]):
     - the name of its constructor;
     - the number of parameters;
     - for each true argument, some data about the corresponding projection:
         * its name (may be anonymous);
         * whether it is a true projection (as opposed to a constant function, LetIn);
         * whether it should be used as a canonical hint;
         * the constant realizing this projection (if any).
*)

module Structure = struct

type projection = {
  proj_name : Names.Name.t;
  proj_true : bool;
  proj_canonical : bool;
  proj_body : Names.Constant.t option;
}

type t = {
  name : Names.inductive;
  projections : projection list;
  nparams : int;
}

let make env name projections =
  let nparams = Inductiveops.inductive_nparams env name in
  { name; projections; nparams }

let structure_table =
  Summary.ref (Indmap.empty : t Indmap.t) ~name:"record-structs"
let projection_table =
  Summary.ref (Cmap.empty : t Cmap.t) ~name:"record-projs"

let register ({ name; projections; nparams } as s) =
  structure_table := Indmap.add name s !structure_table;
  projection_table :=
    List.fold_right (fun { proj_body } m ->
      Option.fold_right (fun proj -> Cmap.add proj s) proj_body m)
    projections !projection_table

let subst subst ({ name; projections; nparams } as s) =
  let subst_projection subst ({ proj_body } as p) =
    let proj_body = Option.Smart.map (subst_constant subst) proj_body in
    if proj_body == p.proj_body then p else
    { p with proj_body } in
  let projections = List.Smart.map (subst_projection subst) projections in
  let name = Mod_subst.subst_ind subst name in
  if projections == s.projections &&
     name == s.name
  then s
  else { name; projections; nparams }

let rebuild env s =
  let mib = Environ.lookup_mind (fst s.name) env in
  let nparams = mib.Declarations.mind_nparams in
  { s with nparams }

let find indsp = Indmap.find indsp !structure_table

let find_projections indsp =
  (find indsp).projections |>
  List.map (fun { proj_body } -> proj_body)

let find_from_projection cst = Cmap.find cst !projection_table

let projection_nparams cst = (Cmap.find cst !projection_table).nparams

let is_projection cst = Cmap.mem cst !projection_table

end

(************************************************************************)
(*s A canonical structure declares "canonical" conversion hints between *)
(*  the effective components of a structure and the projections of the  *)
(*  structure *)

(* Table of "object" definitions: for each object c,

  c := [x1:B1]...[xk:Bk](Build_R a1...am t1...t_n)

  If ti has the form (ci ui1...uir) where ci is a global reference (or
  a sort, or a product or a reference to a parameter) and if the
  corresponding projection Li of the structure R is defined, one
  declares a "conversion" between ci and Li.

    x1:B1..xk:Bk |- (Li a1..am (c x1..xk)) =_conv (ci ui1...uir)

  that maps the pair (Li,ci) to the following data

    o_ORIGIN = c (the constant name which this conversion rule is
                  synthesized from)
    o_DEF = c
    o_TABS = B1...Bk
    o_INJ = Some n        (when ci is a reference to the parameter xi)
    o_TPARAMS = a1...am
    o_NPARAMS = m
    o_TCOMP = ui1...uir

*)

type obj_typ = {
  o_ORIGIN : GlobRef.t;
  o_DEF : constr;
  o_CTX : Univ.AUContext.t;
  o_INJ : int option;      (* position of trivial argument if any *)
  o_TABS : constr list;    (* ordered *)
  o_TPARAMS : constr list; (* ordered *)
  o_NPARAMS : int;
  o_TCOMPS : constr list } (* ordered *)

module ValuePattern = struct

type t =
    Const_cs of GlobRef.t
  | Proj_cs of Names.Projection.Repr.t
  | Prod_cs
  | Sort_cs of Sorts.family
  | Default_cs

let equal env p1 p2 = match p1, p2 with
  | Const_cs gr1, Const_cs gr2 -> Environ.QGlobRef.equal env gr1 gr2
  | Proj_cs p1, Proj_cs p2 -> Environ.QProjection.Repr.equal env p1 p2
  | Prod_cs, Prod_cs -> true
  | Sort_cs s1, Sort_cs s2 -> Sorts.family_equal s1 s2
  | Default_cs, Default_cs -> true
  | _ -> false

let compare p1 p2 = match p1, p2 with
  | Const_cs gr1, Const_cs gr2 -> GlobRef.CanOrd.compare gr1 gr2
  | Proj_cs p1, Proj_cs p2 -> Projection.Repr.CanOrd.compare p1 p2
  | Prod_cs, Prod_cs -> 0
  | Sort_cs s1, Sort_cs s2 -> Sorts.family_compare s1 s2
  | Default_cs, Default_cs -> 0
  | _ -> pervasives_compare p1 p2

let rec of_constr env t =
  match kind t with
  | App (f,vargs) ->
    let patt, n, args = of_constr env f in
    patt, n, args @ Array.to_list vargs
  | Rel n -> Default_cs, Some n, []
  | Lambda (_, _, b) -> let patt, _, _ = of_constr env b in patt, None, []
  | Prod (_,_,_) -> Prod_cs, None, [t]
  | Proj (p, c) -> Proj_cs (Names.Projection.repr p), None, [c]
  | Sort s -> Sort_cs (Sorts.family s), None, []
  | _ -> Const_cs (fst @@ destRef t) , None, []

let print = function
    Const_cs c -> Nametab.pr_global_env Id.Set.empty c
  | Proj_cs p -> Nametab.pr_global_env Id.Set.empty (GlobRef.ConstRef (Names.Projection.Repr.constant p))
  | Prod_cs -> str "forall _, _"
  | Default_cs -> str "_"
  | Sort_cs s -> Sorts.pr_sort_family s

end

module PatMap = Map.Make(ValuePattern)

let object_table =
  Summary.ref (GlobRef.Map.empty : (constr * obj_typ) PatMap.t GlobRef.Map.t)
    ~name:"record-canonical-structs"

let keep_true_projections projs =
  let filter { Structure.proj_true ; proj_canonical; proj_body } = if proj_true then Some (proj_body, proj_canonical) else None in
  List.map_filter filter projs

let warn_projection_no_head_constant =
  CWarnings.create ~name:"projection-no-head-constant" ~category:"typechecker"
         (fun (sign,env,t,ref,proji_sp) ->
          let env = Termops.push_rels_assum sign env in
          let con_pp = Nametab.pr_global_env Id.Set.empty ref in
          let proji_sp_pp = Nametab.pr_global_env Id.Set.empty (GlobRef.ConstRef proji_sp) in
          let term_pp = Termops.Internal.print_constr_env env (Evd.from_env env) (EConstr.of_constr t) in
          strbrk "Projection value has no head constant: "
          ++ term_pp ++ strbrk " in canonical instance "
          ++ con_pp ++ str " of " ++ proji_sp_pp ++ strbrk ", ignoring it.")

(* Intended to always succeed *)
let compute_canonical_projections env ~warn (gref,ind) =
  let o_CTX = Environ.universes_of_global env gref in
  let o_DEF, c =
    match gref with
    | GlobRef.ConstRef con ->
        let u = Univ.make_abstract_instance o_CTX in
        mkConstU (con, u), Environ.constant_value_in env (con,u)
    | GlobRef.VarRef id ->
        mkVar id, Option.get (Environ.named_body id env)
    | GlobRef.ConstructRef _ | GlobRef.IndRef _ -> assert false
  in
  let sign,t = Reductionops.splay_lam env (Evd.from_env env) (EConstr.of_constr c) in
  let sign = List.map (on_snd EConstr.Unsafe.to_constr) sign in
  let t = EConstr.Unsafe.to_constr t in
  let o_TABS = List.rev_map snd sign in
  let args = snd (decompose_app t) in
  let { Structure.nparams = p; projections = lpj } =
    Structure.find ind in
  let o_TPARAMS, projs = List.chop p args in
  let o_NPARAMS = List.length o_TPARAMS in
  let lpj = keep_true_projections lpj in
  let nenv = Termops.push_rels_assum sign env in
  List.fold_left2 (fun acc (spopt, canonical) t ->
      let t = EConstr.Unsafe.to_constr (shrink_eta env (EConstr.of_constr t)) in
      if canonical
      then
        Option.cata (fun proji_sp ->
            match ValuePattern.of_constr nenv t with
            | patt, o_INJ, o_TCOMPS ->
              ((GlobRef.ConstRef proji_sp, (patt, t)),
               { o_ORIGIN = gref ; o_DEF ; o_CTX ; o_INJ ; o_TABS ; o_TPARAMS ; o_NPARAMS ; o_TCOMPS })
              :: acc
            | exception DestKO ->
              if warn then warn_projection_no_head_constant (sign, env, t, gref, proji_sp);
              acc
          ) acc spopt
      else acc
    ) [] lpj projs

let warn_redundant_canonical_projection =
  CWarnings.create ~name:"redundant-canonical-projection" ~category:"typechecker"
         (fun (hd_val,prj,new_can_s,old_can_s) ->
          strbrk "Ignoring canonical projection to " ++ hd_val
          ++ strbrk " by " ++ prj ++ strbrk " in "
          ++ new_can_s ++ strbrk ": redundant with " ++ old_can_s)

module Instance = struct

type t = GlobRef.t * inductive

let repr = fst

let subst subst (gref,ind as obj) =
  (* invariant: cst is an evaluable reference. Thus we can take *)
  (* the first component of subst_con.                                   *)
  match gref with
  | GlobRef.ConstRef cst ->
      let cst' = subst_constant subst cst in
      let ind' = subst_ind subst ind in
      if cst' == cst && ind' == ind then obj else (GlobRef.ConstRef cst',ind')
  | _ -> assert false

(*s High-level declaration of a canonical structure *)

let error_not_structure ref description =
  user_err ~hdr:"object_declare"
    (str"Could not declare a canonical structure " ++
       (Id.print (Nametab.basename_of_global ref) ++ str"." ++ spc() ++
          description))

let make env sigma ref =
  let vc =
    match ref with
    | GlobRef.ConstRef sp ->
        let u = Univ.make_abstract_instance (Environ.constant_context env sp) in
        begin match Environ.constant_opt_value_in env (sp, u) with
        | Some vc -> vc
        | None -> error_not_structure ref (str "Could not find its value in the global environment.") end
    | GlobRef.VarRef id ->
        begin match Environ.named_body id env with
        | Some b -> b
        | None -> error_not_structure ref (str "Could not find its value in the global environment.") end
    | GlobRef.IndRef _ | GlobRef.ConstructRef _ ->
        error_not_structure ref (str "Expected an instance of a record or structure.")
  in
  let body = snd (splay_lam env sigma (EConstr.of_constr vc)) in
  let body = EConstr.Unsafe.to_constr body in
  let f,args = match kind body with
    | App (f,args) -> f,args
    | _ ->
       error_not_structure ref (str "Expected a record or structure constructor applied to arguments.") in
  let indsp = match kind f with
    | Construct ((indsp,1),u) -> indsp
    | _ -> error_not_structure ref (str "Expected an instance of a record or structure.") in
  let s =
    try Structure.find indsp
    with Not_found ->
      error_not_structure ref
        (str "Could not find the record or structure " ++ Termops.Internal.print_constr_env env sigma (EConstr.mkInd indsp)) in
  let ntrue_projs = List.count (fun { Structure.proj_true = x } -> x) s.Structure.projections in
  if s.Structure.nparams + ntrue_projs > Array.length args then
    error_not_structure ref (str "Got too few arguments to the record or structure constructor.");
  (ref,indsp)

let register ~warn env sigma o =
    compute_canonical_projections env ~warn o |>
    List.iter (fun ((proj, (cs_pat, t)), s) ->
      let l = try GlobRef.Map.find proj !object_table with Not_found -> PatMap.empty in
      match PatMap.find cs_pat l with
      | exception Not_found ->
          object_table := GlobRef.Map.add proj (PatMap.add cs_pat (t, s) l) !object_table
      | _, cs ->
        if warn
        then
          let old_can_s = Termops.Internal.print_constr_env env sigma (EConstr.of_constr cs.o_DEF) in
          let new_can_s = Termops.Internal.print_constr_env env sigma (EConstr.of_constr s.o_DEF) in
          let prj = Nametab.pr_global_env Id.Set.empty proj in
          let hd_val = ValuePattern.print cs_pat in
          warn_redundant_canonical_projection (hd_val, prj, new_can_s, old_can_s)
      )

end

(** The canonical solution of a problem (proj,val) is a global
    [constant = fun abs : abstractions_ty => body] and
    [ body = RecodConstructor params canon_values ] and the canonical value
    corresponding to val is [val cvalue_arguments].
    It is possible that val is one of the [abs] abstractions, eg [Default_cs],
    and in that case [cvalue_abstraction = Some i] *)

module CanonicalSolution = struct
type t = {
  constant : EConstr.t;

  abstractions_ty : EConstr.t list;
  body : EConstr.t;

  nparams : int;
  params : EConstr.t list;
  cvalue_abstraction : int option;
  cvalue_arguments : EConstr.t list;
}

let find env sigma (proj,pat) =
  let t', { o_DEF = c; o_CTX = ctx; o_INJ=n; o_TABS = bs;
        o_TPARAMS = params; o_NPARAMS = nparams; o_TCOMPS = us } = PatMap.find pat (GlobRef.Map.find proj !object_table) in
  let us = List.map EConstr.of_constr us in
  let params = List.map EConstr.of_constr params in
  let u, ctx' = UnivGen.fresh_instance_from ctx None in
  let subst = Univ.make_inverse_instance_subst u in
  let c = EConstr.of_constr c in
  let c' = EConstr.Vars.subst_univs_level_constr subst c in
  let t' = EConstr.of_constr t' in
  let t' = EConstr.Vars.subst_univs_level_constr subst t' in
  let bs' = List.map (EConstr.of_constr %> EConstr.Vars.subst_univs_level_constr subst) bs in
  let params = List.map (fun c -> EConstr.Vars.subst_univs_level_constr subst c) params in
  let us = List.map (fun c -> EConstr.Vars.subst_univs_level_constr subst c) us in
  let sigma = Evd.merge_context_set Evd.univ_flexible sigma ctx' in
  sigma, { body = t'; constant = c'; abstractions_ty = bs'; nparams; params; cvalue_arguments = us; cvalue_abstraction = n }


let rec get_nth n = function
| [] -> raise Not_found
| arg :: args ->
  let len = Array.length arg in
  if n < len then arg.(n)
  else get_nth (n - len) args

let rec decompose_projection sigma c args =
  match EConstr.kind sigma c with
  | Meta mv -> decompose_projection sigma (Evd.meta_value sigma mv) args
  | Cast (c, _, _) -> decompose_projection sigma c args
  | App (c, arg) -> decompose_projection sigma c (arg :: args)
  | Const (c, u) ->
     let n = Structure.projection_nparams c in
     (* Check if there is some canonical projection attached to this structure *)
     let _ = GlobRef.Map.find (GlobRef.ConstRef c) !object_table in
     get_nth n args
  | Proj (p, c) ->
     let _ = GlobRef.Map.find (GlobRef.ConstRef (Names.Projection.constant p)) !object_table in
     c
  | _ -> raise Not_found

let is_open_canonical_projection env sigma c =
  let open EConstr in
  try
    let arg = decompose_projection sigma c [] in
    try
      let arg = whd_all env sigma arg in
      let hd = match EConstr.kind sigma arg with App (hd, _) -> hd | _ -> arg in
      not (isConstruct sigma hd)
    with Failure _ -> false
  with Not_found -> false

end

module CSTable = struct

type entry = {
  projection : Names.GlobRef.t;
  value : ValuePattern.t;
  solution : Names.GlobRef.t;
}

let canonical_entry_of_object projection value (_, { o_ORIGIN = solution }) =
  { projection; value; solution }

let entries () =
  GlobRef.Map.fold (fun p ol acc ->
    PatMap.fold (fun pat o acc -> canonical_entry_of_object p pat o :: acc) ol acc)
    !object_table []

let entries_for ~projection:p =
  try
    GlobRef.Map.find p !object_table |>
    PatMap.bindings |>
    List.map (fun (pat, o) -> canonical_entry_of_object p pat o)
  with Not_found -> []

end

module PrimitiveProjections = struct

let prim_table =
  Summary.ref (Cmap_env.empty : Names.Projection.Repr.t Cmap_env.t) ~name:"record-prim-projs"

let register p c =
  prim_table := Cmap_env.add c p !prim_table

let mem c = Cmap_env.mem c !prim_table

let find_opt c =
  try Some (Cmap_env.find c !prim_table) with Not_found -> None

end
OCaml

Innovation. Community. Security.