package coq

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file detyping.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

module CVars = Vars

open Pp
open CErrors
open Util
open Names
open Constr
open Context
open Term
open EConstr
open Vars
open Inductiveops
open Glob_term
open Glob_ops
open Termops
open Namegen
open Libnames
open Globnames
open Mod_subst
open Context.Rel.Declaration
open Ltac_pretype

type detyping_flags = {
  flg_lax : bool;
  flg_isgoal : bool;
}

(** Reimplementation of kernel case expansion functions in more lenient way *)
module RobustExpand :
sig
val return_clause : Environ.env -> Evd.evar_map -> Ind.t ->
  EInstance.t -> EConstr.t array -> EConstr.case_return -> rel_context * EConstr.t
val branch : Environ.env -> Evd.evar_map -> Construct.t ->
  EInstance.t -> EConstr.t array -> EConstr.case_branch -> rel_context * EConstr.t
end =
struct
open CVars
open Declarations
open Univ
open Constr

let instantiate_context u subst nas ctx =
  let rec instantiate i ctx = match ctx with
  | [] -> []
  | LocalAssum (_, ty) :: ctx ->
    let ctx = instantiate (pred i) ctx in
    let ty = substnl subst i (subst_instance_constr u ty) in
    LocalAssum (nas.(i), ty) :: ctx
  | LocalDef (_, ty, bdy) :: ctx ->
    let ctx = instantiate (pred i) ctx in
    let ty = substnl subst i (subst_instance_constr u ty) in
    let bdy = substnl subst i (subst_instance_constr u bdy) in
    LocalDef (nas.(i), ty, bdy) :: ctx
  in
  let () = if not (Int.equal (Array.length nas) (List.length ctx)) then raise Exit in
  instantiate (Array.length nas - 1) ctx

let return_clause env sigma ind u params (nas, p) =
  try
    let u = EConstr.Unsafe.to_instance u in
    let params = EConstr.Unsafe.to_constr_array params in
    let () = if not @@ Environ.mem_mind (fst ind) env then raise Exit in
    let mib = Environ.lookup_mind (fst ind) env in
    let mip = mib.mind_packets.(snd ind) in
    let paramdecl = subst_instance_context u mib.mind_params_ctxt in
    let paramsubst = subst_of_rel_context_instance paramdecl (Array.to_list params) in
    let realdecls, _ = List.chop mip.mind_nrealdecls mip.mind_arity_ctxt in
    let self =
      let args = Context.Rel.to_extended_vect mkRel 0 mip.mind_arity_ctxt in
      let inst = Instance.of_array (Array.init (Instance.length u) Level.var) in
      mkApp (mkIndU (ind, inst), args)
    in
    let realdecls = LocalAssum (Context.anonR, self) :: realdecls in
    let realdecls = instantiate_context u paramsubst nas realdecls in
    List.map EConstr.of_rel_decl realdecls, p
  with e when CErrors.noncritical e ->
    let dummy na = LocalAssum (na, EConstr.mkProp) in
    List.rev (Array.map_to_list dummy nas), p

let branch env sigma (ind, i) u params (nas, br) =
  try
    let u = EConstr.Unsafe.to_instance u in
    let params = EConstr.Unsafe.to_constr_array params in
    let () = if not @@ Environ.mem_mind (fst ind) env then raise Exit in
    let mib = Environ.lookup_mind (fst ind) env in
    let mip = mib.mind_packets.(snd ind) in
    let paramdecl = subst_instance_context u mib.mind_params_ctxt in
    let paramsubst = subst_of_rel_context_instance paramdecl (Array.to_list params) in
    let subst = paramsubst @ Inductive.ind_subst (fst ind) mib u in
    let (ctx, _) = mip.mind_nf_lc.(i - 1) in
    let ctx, _ = List.chop mip.mind_consnrealdecls.(i - 1) ctx in
    let ctx = instantiate_context u subst nas ctx in
    List.map EConstr.of_rel_decl ctx, br
  with e when CErrors.noncritical e ->
    let dummy na = LocalAssum (na, EConstr.mkProp) in
    List.rev (Array.map_to_list dummy nas), br

end

module Avoid :
sig
  type t
  val make : fast:bool -> Id.Set.t -> t
  val compute_name : Evd.evar_map -> let_in:bool -> pattern:bool ->
    detyping_flags -> t -> Name.t list * 'a -> Name.t ->
    EConstr.constr -> Name.t * t
  val next_name_away : detyping_flags -> Name.t -> t -> Id.t * t
end =
struct

open Nameops

type t =
| Nice of Id.Set.t
| Fast of Subscript.t Id.Map.t
  (** Overapproximation of the set of names to avoid. If [(id ↦ s) ∈ m] then for
      all subscript [s'] smaller than [s], [add_subscript id s'] needs to be
      avoided. *)

let make ~fast ids =
  if fast then
    let fold id accu =
      let id, ss = get_subscript id in
      let old_ss = try Id.Map.find id accu with Not_found -> Subscript.zero in
      if Subscript.compare ss old_ss <= 0 then accu else Id.Map.add id ss accu
    in
    let avoid = Id.Set.fold fold ids Id.Map.empty in
    Fast avoid
  else Nice ids

let fresh_id_in id avoid =
  let id, _ = get_subscript id in
  (* Find the first free subscript for that identifier *)
  let ss = try Subscript.succ (Id.Map.find id avoid) with Not_found -> Subscript.zero in
  let avoid = Id.Map.add id ss avoid in
  (add_subscript id ss, avoid)

let compute_name sigma ~let_in ~pattern flags avoid env na c =
match avoid with
| Nice avoid ->
  let flags =
    if flags.flg_isgoal then RenamingForGoal
    else if pattern then RenamingForCasesPattern (fst env, c)
    else RenamingElsewhereFor (fst env, c)
  in
  let na, avoid =
    if let_in then compute_displayed_let_name_in sigma flags avoid na c
    else compute_displayed_name_in sigma flags avoid na c
  in
  na, Nice avoid
| Fast avoid ->
  (* In fast mode, we use a dumber algorithm but algorithmically more
      efficient algorithm that doesn't iterate through the term to find the
      used constants and variables. *)
  let id = match na with
  | Name id -> id
  | Anonymous ->
    if flags.flg_isgoal then default_non_dependent_ident
    else if pattern then default_dependent_ident
    else default_non_dependent_ident
  in
  let id, avoid = fresh_id_in id avoid in
  (Name id, Fast avoid)

let next_name_away flags na avoid = match avoid with
| Nice avoid ->
  let id = next_name_away na avoid in
  id, Nice (Id.Set.add id avoid)
| Fast avoid ->
  let id = match na with
  | Anonymous -> default_non_dependent_ident
  | Name id -> id
  in
  let id, avoid = fresh_id_in id avoid in
  (id, Fast avoid)

end

let compute_name = Avoid.compute_name
let next_name_away = Avoid.next_name_away

type _ delay =
| Now : 'a delay
| Later : [ `thunk ] delay

(** Should we keep details of universes during detyping ? *)
let print_universes = ref false

(** If true, prints local context of evars, whatever print_arguments *)
let print_evar_arguments = ref false

let add_name decl (nenv, env) =
  add_name (get_name decl) nenv, push_rel decl env

(****************************************************************************)
(* Tools for printing of Cases                                              *)

let encode_inductive env r =
  let indsp = Nametab.global_inductive r in
  let constr_lengths = constructors_nrealargs env indsp in
  (indsp,constr_lengths)

(* Parameterization of the translation from constr to ast      *)

(* Tables for Cases printing under a "if" form, a "let" form,  *)

let has_two_constructors lc =
  Int.equal (Array.length lc) 2 (* & lc.(0) = 0 & lc.(1) = 0 *)

let isomorphic_to_tuple lc = Int.equal (Array.length lc) 1

let encode_bool env ({CAst.loc} as r) =
  let (x,lc) = encode_inductive env r in
  if not (has_two_constructors lc) then
    user_err ?loc ~hdr:"encode_if"
      (str "This type has not exactly two constructors.");
  x

let encode_tuple env ({CAst.loc} as r) =
  let (x,lc) = encode_inductive env r in
  if not (isomorphic_to_tuple lc) then
    user_err ?loc ~hdr:"encode_tuple"
      (str "This type cannot be seen as a tuple type.");
  x

module PrintingInductiveMake =
  functor (Test : sig
     val encode : Environ.env -> qualid -> inductive
     val member_message : Pp.t -> bool -> Pp.t
     val field : string
     val title : string
  end) ->
  struct
    type t = inductive
    module Set = Indset
    let encode = Test.encode
    let subst subst obj = subst_ind subst obj
    let printer ind = Nametab.pr_global_env Id.Set.empty (GlobRef.IndRef ind)
    let key = ["Printing";Test.field]
    let title = Test.title
    let member_message x = Test.member_message (printer x)
    let synchronous = true
  end

module PrintingCasesIf =
  PrintingInductiveMake (struct
    let encode = encode_bool
    let field = "If"
    let title = "Types leading to pretty-printing of Cases using a `if' form:"
    let member_message s b =
      str "Cases on elements of " ++ s ++
      str
        (if b then " are printed using a `if' form"
         else " are not printed using a `if' form")
  end)

module PrintingCasesLet =
  PrintingInductiveMake (struct
    let encode = encode_tuple
    let field = "Let"
    let title =
      "Types leading to a pretty-printing of Cases using a `let' form:"
    let member_message s b =
      str "Cases on elements of " ++ s ++
      str
        (if b then " are printed using a `let' form"
         else " are not printed using a `let' form")
  end)

module PrintingIf  = Goptions.MakeRefTable(PrintingCasesIf)
module PrintingLet = Goptions.MakeRefTable(PrintingCasesLet)

(* Flags.for printing or not wildcard and synthetisable types *)

let force_wildcard =
  Goptions.declare_bool_option_and_ref
    ~depr:false
    ~key:["Printing";"Wildcard"]
    ~value:true

let fast_name_generation =
  Goptions.declare_bool_option_and_ref
    ~depr:false
    ~key:["Fast";"Name";"Printing"]
    ~value:false

let synthetize_type =
  Goptions.declare_bool_option_and_ref
    ~depr:false
    ~key:["Printing";"Synth"]
    ~value:true

let reverse_matching =
  Goptions.declare_bool_option_and_ref
    ~depr:false
    ~key:["Printing";"Matching"]
    ~value:true

let print_primproj_params =
  Goptions.declare_bool_option_and_ref
    ~depr:false
    ~key:["Printing";"Primitive";"Projection";"Parameters"]
    ~value:false

(* Auxiliary function for MutCase printing *)
(* [computable] tries to tell if the predicate typing the result is inferable*)

let computable sigma (nas, ccl) =
    (* We first remove as many lambda as the arity, then we look
       if it remains a lambda for a dependent elimination.

       Lorsque le prédicat est dépendant de manière certaine, on
       ne déclare pas le prédicat synthétisable (même si la
       variable dépendante ne l'est pas effectivement) parce que
       sinon on perd la réciprocité de la synthèse (qui, lui,
       engendrera un prédicat non dépendant) *)

  noccur_between sigma 1 (Array.length nas) ccl

let lookup_name_as_displayed env sigma t s =
  let rec lookup avoid n c = match EConstr.kind sigma c with
    | Prod (name,_,c') ->
        (match compute_displayed_name_in sigma RenamingForGoal avoid name.binder_name c' with
           | (Name id,avoid') -> if Id.equal id s then Some n else lookup avoid' (n+1) c'
           | (Anonymous,avoid') -> lookup avoid' (n+1) (pop c'))
    | LetIn (name,_,_,c') ->
        (match Namegen.compute_displayed_name_in sigma RenamingForGoal avoid name.binder_name c' with
           | (Name id,avoid') -> if Id.equal id s then Some n else lookup avoid' (n+1) c'
           | (Anonymous,avoid') -> lookup avoid' (n+1) (pop c'))
    | Cast (c,_,_) -> lookup avoid n c
    | _ -> None
  in lookup (Environ.ids_of_named_context_val (Environ.named_context_val env)) 1 t

let lookup_index_as_renamed env sigma t n =
  let rec lookup n d c = match EConstr.kind sigma c with
    | Prod (name,_,c') ->
          (match Namegen.compute_displayed_name_in sigma RenamingForGoal Id.Set.empty name.binder_name c' with
               (Name _,_) -> lookup n (d+1) c'
             | (Anonymous,_) ->
                 if Int.equal n 0 then
                   Some (d-1)
                 else if Int.equal n 1 then
                   Some d
                 else
                   lookup (n-1) (d+1) c')
    | LetIn (name,_,_,c') ->
          (match Namegen.compute_displayed_name_in sigma RenamingForGoal Id.Set.empty name.binder_name c' with
             | (Name _,_) -> lookup n (d+1) c'
             | (Anonymous,_) ->
                 if Int.equal n 0 then
                   Some (d-1)
                 else if Int.equal n 1 then
                   Some d
                 else
                   lookup (n-1) (d+1) c'
          )
    | Cast (c,_,_) -> lookup n d c
    | _ -> if Int.equal n 0 then Some (d-1) else None
  in lookup n 1 t

(**********************************************************************)
(* Factorization of match patterns *)

let print_factorize_match_patterns =
  Goptions.declare_bool_option_and_ref
    ~depr:false
    ~key:["Printing";"Factorizable";"Match";"Patterns"]
    ~value:true

let print_allow_match_default_opt_name =
  ["Printing";"Allow";"Match";"Default";"Clause"]
let print_allow_match_default_clause =
  Goptions.declare_bool_option_and_ref
    ~depr:false
    ~key:print_allow_match_default_opt_name
    ~value:true

let rec join_eqns (ids,rhs as x) patll = function
  | ({CAst.loc; v=(ids',patl',rhs')} as eqn')::rest ->
     if not !Flags.raw_print && print_factorize_match_patterns () &&
        List.eq_set Id.equal ids ids' && glob_constr_eq rhs rhs'
     then
       join_eqns x (patl'::patll) rest
     else
       let eqn,rest = join_eqns x patll rest in
       eqn, eqn'::rest
  | [] ->
     patll, []

let number_of_patterns {CAst.v=(_ids,patll,_rhs)} = List.length patll

let is_default_candidate {CAst.v=(ids,_patll,_rhs)} = ids = []

let rec move_more_factorized_default_candidate_to_end eqn n = function
  | eqn' :: eqns ->
     let set,get = set_temporary_memory () in
     if is_default_candidate eqn' && set (number_of_patterns eqn') >= n then
       let isbest, dft, eqns = move_more_factorized_default_candidate_to_end eqn' (get ()) eqns in
       if isbest then false, dft, eqns else false, dft, eqn' :: eqns
     else
       let isbest, dft, eqns = move_more_factorized_default_candidate_to_end eqn n eqns in
       isbest, dft, eqn' :: eqns
  | [] -> true, Some eqn, []

let rec select_default_clause = function
  | eqn :: eqns ->
     let set,get = set_temporary_memory () in
     if is_default_candidate eqn && set (number_of_patterns eqn) > 1 then
       let isbest, dft, eqns = move_more_factorized_default_candidate_to_end eqn (get ()) eqns in
       if isbest then dft, eqns else dft, eqn :: eqns
     else
       let dft, eqns = select_default_clause eqns in dft, eqn :: eqns
  | [] -> None, []

let factorize_eqns eqns =
  let open CAst in
  let rec aux found = function
  | {loc;v=(ids,patl,rhs)}::rest ->
     let patll,rest = join_eqns (ids,rhs) [patl] rest in
     aux (CAst.make ?loc (ids,patll,rhs)::found) rest
  | [] ->
     found in
  let eqns = aux [] (List.rev eqns) in
  let mk_anon patl = List.map (fun _ -> DAst.make @@ PatVar Anonymous) patl in
  let open CAst in
  if not !Flags.raw_print && print_allow_match_default_clause () && eqns <> [] then
    match select_default_clause eqns with
    (* At least two clauses and the last one is disjunctive with no variables *)
    | Some {loc=gloc;v=([],patl::_::_,rhs)}, (_::_ as eqns) ->
      eqns@[CAst.make ?loc:gloc ([],[mk_anon patl],rhs)]
    (* Only one clause which is disjunctive with no variables: we keep at least one constructor *)
    (* so that it is not interpreted as a dummy "match" *)
    | Some {loc=gloc;v=([],patl::patl'::_,rhs)}, [] ->
      [CAst.make ?loc:gloc ([],[patl;mk_anon patl'],rhs)]
    | Some {v=((_::_,_,_ | _,([]|[_]),_))}, _ -> assert false
    | None, eqns -> eqns
  else
    eqns

(**********************************************************************)
(* Fragile algorithm to reverse pattern-matching compilation          *)

let update_name sigma na ((_,(e,_)),c) =
  match na with
  | Name _ when force_wildcard () && noccurn sigma (List.index Name.equal na e) c ->
      Anonymous
  | _ ->
      na

let decomp_branch flags e sigma (ctx, c) =
  let n = List.length ctx in
  let rec aux i nal (avoid, env as e) c =
    if Int.equal i 0 then (List.rev nal,(e,c))
    else
      let decl, c, let_in =
        match EConstr.kind sigma c with
        | Lambda (na,t,c) -> LocalAssum (na,t), c, true
        | LetIn (na,b,t,c) -> LocalDef (na,b,t), c, false
        | _ -> assert false
    in
    let na',avoid' = compute_name sigma ~let_in ~pattern:true flags avoid env (get_name decl) c in
    aux (i - 1) (na'::nal) (avoid', add_name (set_name na' decl) env) c
  in
  aux n [] e (EConstr.it_mkLambda_or_LetIn c ctx)

let rec build_tree na isgoal e sigma (ci, u, pms, cl) =
  let map i br =
    RobustExpand.branch (snd (snd e)) sigma (ci.ci_ind, i + 1) u pms br
  in
  let cl = Array.mapi map cl in
  let mkpat n rhs pl =
    let na = update_name sigma na rhs in
    na, DAst.make @@ PatCstr((ci.ci_ind,n+1),pl,na) in
  let cnl = ci.ci_pp_info.cstr_tags in
  List.flatten
    (List.init (Array.length cl)
      (fun i -> contract_branch isgoal e sigma (cnl.(i),mkpat i,cl.(i))))

and align_tree nal isgoal (e,c as rhs) sigma = match nal with
  | [] -> [Id.Set.empty,[],rhs]
  | na::nal ->
    match EConstr.kind sigma c with
    | Case (ci,u,pms,p,iv,c,cl) when
        eq_constr sigma c (mkRel (List.index Name.equal na (fst (snd e))))
        && not (Int.equal (Array.length cl) 0)
        && (* don't contract if p dependent *)
        computable sigma p (* FIXME: can do better *) ->
        let clauses = build_tree na isgoal e sigma (ci, u, pms, cl) in
        List.flatten
          (List.map (fun (ids,pat,rhs) ->
              let lines = align_tree nal isgoal rhs sigma in
              List.map (fun (ids',hd,rest) -> Id.Set.fold Id.Set.add ids ids',pat::hd,rest) lines)
            clauses)
    | _ ->
        let na = update_name sigma na rhs in
        let pat = DAst.make @@ PatVar na in
        let mat = align_tree nal isgoal rhs sigma in
        List.map (fun (ids,hd,rest) -> Nameops.Name.fold_right Id.Set.add na ids,pat::hd,rest) mat

and contract_branch isgoal e sigma (cdn,mkpat,rhs) =
  let nal,rhs = decomp_branch isgoal e sigma rhs in
  let mat = align_tree nal isgoal rhs sigma in
  List.map (fun (ids,hd,rhs) ->
      let na, pat = mkpat rhs hd in
      (Nameops.Name.fold_right Id.Set.add na ids, pat, rhs)) mat

(**********************************************************************)
(* Transform internal representation of pattern-matching into list of *)
(* clauses                                                            *)

let is_nondep_branch sigma (nas, ccl) =
  noccur_between sigma 1 (Array.length nas) ccl

let extract_nondep_branches b l =
  let rec strip l r =
    match DAst.get r, l with
      | r', [] -> r
      | GLambda (_,_,_,t), false::l -> strip l t
      | GLetIn (_,_,_,t), true::l -> strip l t
      (* FIXME: do we need adjustment? *)
      | _,_ -> assert false in
  strip l b

let it_destRLambda_or_LetIn_names l c =
  let rec aux l nal c =
    match DAst.get c, l with
      | _, [] -> (List.rev nal,c)
      | GLambda (na,_,_,c), false::l -> aux l (na::nal) c
      | GLetIn (na,_,_,c), true::l -> aux l (na::nal) c
      | _, true::l -> (* let-expansion *) aux l (Anonymous :: nal) c
      | _, false::l ->
          (* eta-expansion *)
          let next l =
            let x = next_ident_away default_dependent_ident l in
            (* Not efficient but unusual and no function to get free glob_vars *)
(* 	    if occur_glob_constr x c then next (x::l) else x in *)
            x
          in
          let x = next (free_glob_vars c) in
          let a = DAst.make @@ GVar x in
          aux l (Name x :: nal)
            (match DAst.get c with
              | GApp (p,l) -> DAst.make ?loc:c.CAst.loc @@ GApp (p,l@[a])
              | _ -> DAst.make @@ GApp (c,[a]))
  in aux l [] c

let detype_case computable detype detype_eqns avoid env sigma (ci, univs, params, p, iv, c, bl) =
  let synth_type = synthetize_type () in
  let tomatch = detype c in
  let tomatch = match iv with
    | NoInvert -> tomatch
    | CaseInvert {indices} ->
      (* XXX use holes instead of params? *)
      let t = mkApp (mkIndU (ci.ci_ind,univs), Array.append params indices) in
      DAst.make @@ GCast (tomatch, CastConv (detype t))
  in
  let alias, aliastyp, pred =
    if (not !Flags.raw_print) && synth_type && computable && not (Int.equal (Array.length bl) 0)
    then
      Anonymous, None, None
    else
      let (ctx, p) = RobustExpand.return_clause (snd env) sigma ci.ci_ind univs params p in
      let p = EConstr.it_mkLambda_or_LetIn p ctx in
      let p = detype p in
      let nl,typ = it_destRLambda_or_LetIn_names ci.ci_pp_info.ind_tags p in
      let n,typ = match DAst.get typ with
        | GLambda (x,_,t,c) -> x, c
        | _ -> Anonymous, typ in
      let aliastyp =
        if List.for_all (Name.equal Anonymous) nl then None
        else Some (CAst.make (ci.ci_ind,nl)) in
      n, aliastyp, Some typ
  in
  let constructs = Array.init (Array.length bl) (fun i -> (ci.ci_ind,i+1)) in
  let tag = let st = ci.ci_pp_info.style in
    try
      if !Flags.raw_print then
        RegularStyle
      else if st == LetPatternStyle then
        st
      else if PrintingLet.active ci.ci_ind then
        LetStyle
      else if PrintingIf.active ci.ci_ind then
        IfStyle
      else
        st
    with Not_found -> st
  in
  let constagsl = ci.ci_pp_info.cstr_tags in
  match tag, aliastyp with
  | LetStyle, None ->
      let map i br =
        let (ctx, body) = RobustExpand.branch (snd env) sigma (ci.ci_ind, i + 1) univs params br in
        EConstr.it_mkLambda_or_LetIn body ctx
      in
      let bl = Array.mapi map bl in
      let bl' = Array.map detype bl in
      let (nal,d) = it_destRLambda_or_LetIn_names constagsl.(0) bl'.(0) in
      GLetTuple (nal,(alias,pred),tomatch,d)
  | IfStyle, None ->
      if Array.for_all (fun br -> is_nondep_branch sigma br) bl then
        let map i br =
          let ctx, body = RobustExpand.branch (snd env) sigma (ci.ci_ind, i + 1) univs params br in
          EConstr.it_mkLambda_or_LetIn body ctx
        in
        let bl = Array.mapi map bl in
        let bl' = Array.map detype bl in
        let nondepbrs = Array.map2 extract_nondep_branches bl' constagsl in
        GIf (tomatch,(alias,pred), nondepbrs.(0), nondepbrs.(1))
      else
        let eqnl = detype_eqns constructs constagsl (ci, univs, params, bl) in
        GCases (tag,pred,[tomatch,(alias,aliastyp)],eqnl)
  | _ ->
      let eqnl = detype_eqns constructs constagsl (ci, univs, params, bl) in
      GCases (tag,pred,[tomatch,(alias,aliastyp)],eqnl)

let rec share_names detype flags n l avoid env sigma c t =
  match EConstr.kind sigma c, EConstr.kind sigma t with
    (* factorize even when not necessary to have better presentation *)
    | Lambda (na,t,c), Prod (na',t',c') ->
        let decl = LocalAssum (na,t) in
        let na = Nameops.Name.pick_annot na na' in
        let t' = detype flags avoid env sigma t in
        let id, avoid = next_name_away flags na.binder_name avoid in
        let env = add_name (set_name (Name id) decl) env in
        share_names detype flags (n-1) ((Name id,Explicit,None,t')::l) avoid env sigma c c'
    (* May occur for fix built interactively *)
    | LetIn (na,b,t',c), _ when n > 0 ->
        let decl = LocalDef (na,b,t') in
        let t'' = detype flags avoid env sigma t' in
        let b' = detype flags avoid env sigma b in
        let id, avoid = next_name_away flags na.binder_name avoid in
        let env = add_name (set_name (Name id) decl) env in
        share_names detype flags n ((Name id,Explicit,Some b',t'')::l) avoid env sigma c (lift 1 t)
    (* Only if built with the f/n notation or w/o let-expansion in types *)
    | _, LetIn (_,b,_,t) when n > 0 ->
        share_names detype flags n l avoid env sigma c (subst1 b t)
    (* If it is an open proof: we cheat and eta-expand *)
    | _, Prod (na',t',c') when n > 0 ->
        let decl = LocalAssum (na',t') in
        let t'' = detype flags avoid env sigma t' in
        let id, avoid = next_name_away flags na'.binder_name avoid in
        let env = add_name (set_name (Name id) decl) env in
        let appc = mkApp (lift 1 c,[|mkRel 1|]) in
        share_names detype flags (n-1) ((Name id,Explicit,None,t'')::l) avoid env sigma appc c'
    (* If built with the f/n notation: we renounce to share names *)
    | _ ->
        if n>0 then Feedback.msg_debug (strbrk "Detyping.detype: cannot factorize fix enough");
        let c = detype flags avoid env sigma c in
        let t = detype flags avoid env sigma t in
        (List.rev l,c,t)

let rec share_pattern_names detype n l avoid env sigma c t =
  let open Pattern in
  if n = 0 then
    let c = detype avoid env sigma c in
    let t = detype avoid env sigma t in
    (List.rev l,c,t)
  else match c, t with
    | PLambda (na,t,c), PProd (na',t',c') ->
        let na = match (na,na') with
            Name _, _ -> na
          | _, Name _ -> na'
          | _ -> na in
        let t' = detype avoid env sigma t in
        let id = Namegen.next_name_away na avoid in
        let avoid = Id.Set.add id avoid in
        let env = Name id :: env in
        share_pattern_names detype (n-1) ((Name id,Explicit,None,t')::l) avoid env sigma c c'
    | _ ->
        if n>0 then Feedback.msg_debug (strbrk "Detyping.detype: cannot factorize fix enough");
        let c = detype avoid env sigma c in
        let t = detype avoid env sigma t in
        (List.rev l,c,t)

let detype_fix detype flags avoid env sigma (vn,_ as nvn) (names,tys,bodies) =
  let def_avoid, def_env, lfi =
    Array.fold_left2
      (fun (avoid, env, l) na ty ->
         let id, avoid = next_name_away flags na.binder_name avoid in
         (avoid, add_name (set_name (Name id) (LocalAssum (na,ty))) env, id::l))
      (avoid, env, []) names tys in
  let n = Array.length tys in
  let v = Array.map3
    (fun c t i -> share_names detype flags (i+1) [] def_avoid def_env sigma c (lift n t))
    bodies tys vn in
  GRec(GFix (Array.map (fun i -> Some i) (fst nvn), snd nvn),Array.of_list (List.rev lfi),
       Array.map (fun (bl,_,_) -> bl) v,
       Array.map (fun (_,_,ty) -> ty) v,
       Array.map (fun (_,bd,_) -> bd) v)

let detype_cofix detype flags avoid env sigma n (names,tys,bodies) =
  let def_avoid, def_env, lfi =
    Array.fold_left2
      (fun (avoid, env, l) na ty ->
         let id, avoid = next_name_away flags na.binder_name avoid in
         (avoid, add_name (set_name (Name id) (LocalAssum (na,ty))) env, id::l))
      (avoid, env, []) names tys in
  let ntys = Array.length tys in
  let v = Array.map2
    (fun c t -> share_names detype flags 0 [] def_avoid def_env sigma c (lift ntys t))
    bodies tys in
  GRec(GCoFix n,Array.of_list (List.rev lfi),
       Array.map (fun (bl,_,_) -> bl) v,
       Array.map (fun (_,_,ty) -> ty) v,
       Array.map (fun (_,bd,_) -> bd) v)

let detype_level_name sigma l =
  if Univ.Level.is_sprop l then GSProp else
  if Univ.Level.is_prop l then GProp else
  if Univ.Level.is_set l then GSet else
    match UState.id_of_level (Evd.evar_universe_context sigma) l with
    | Some id -> GLocalUniv (CAst.make id)
    | None -> GUniv l

let detype_universe sigma u =
  List.map (on_fst (detype_level_name sigma)) (Univ.Universe.repr u)

let detype_sort sigma = function
  | SProp -> UNamed [GSProp,0]
  | Prop -> UNamed [GProp,0]
  | Set -> UNamed [GSet,0]
  | Type u ->
      (if !print_universes
       then UNamed (detype_universe sigma u)
       else UAnonymous {rigid=true})

type binder_kind = BProd | BLambda | BLetIn

(**********************************************************************)
(* Main detyping function                                             *)

let detype_level sigma l =
  UNamed (detype_level_name sigma l)

let detype_instance sigma l =
  if not !print_universes then None
  else
    let l = EInstance.kind sigma l in
    if Univ.Instance.is_empty l then None
    else Some (List.map (detype_level sigma) (Array.to_list (Univ.Instance.to_array l)))

let delay (type a) (d : a delay) (f : a delay -> _ -> _ -> _ -> _ -> _ -> a glob_constr_r) flags env avoid sigma t : a glob_constr_g =
  match d with
  | Now -> DAst.make (f d flags env avoid sigma t)
  | Later -> DAst.delay (fun () -> f d flags env avoid sigma t)

let rec detype d flags avoid env sigma t =
  delay d detype_r flags avoid env sigma t

and detype_r d flags avoid env sigma t =
  match EConstr.kind sigma (collapse_appl sigma t) with
    | Rel n ->
      (try match lookup_name_of_rel n (fst env) with
         | Name id   -> GVar id
         | Anonymous ->
           let s = "_ANONYMOUS_REL_"^(string_of_int n) in
           GVar (Id.of_string s)
       with Not_found ->
         let s = "_UNBOUND_REL_"^(string_of_int n)
         in GVar (Id.of_string s))
    | Meta n ->
        (* Meta in constr are not user-parsable and are mapped to Evar *)
        if n = Constr_matching.special_meta then
          (* Using a dash to be unparsable *)
          GEvar (CAst.make @@ Id.of_string_soft "CONTEXT-HOLE", [])
        else
          GEvar (CAst.make @@ Id.of_string_soft ("M" ^ string_of_int n), [])
    | Var id ->
        (* Discriminate between section variable and non-section variable *)
        (try let _ = Global.lookup_named id in GRef (GlobRef.VarRef id, None)
         with Not_found -> GVar id)
    | Sort s -> GSort (detype_sort sigma (ESorts.kind sigma s))
    | Cast (c1,REVERTcast,c2) when not !Flags.raw_print ->
        DAst.get (detype d flags avoid env sigma c1)
    | Cast (c1,k,c2) ->
        let d1 = detype d flags avoid env sigma c1 in
        let d2 = detype d flags avoid env sigma c2 in
    let cast = match k with
    | VMcast -> CastVM d2
    | NATIVEcast -> CastNative d2
    | _ -> CastConv d2
    in
        GCast(d1,cast)
    | Prod (na,ty,c) -> detype_binder d flags BProd avoid env sigma (LocalAssum (na,ty)) c
    | Lambda (na,ty,c) -> detype_binder d flags BLambda avoid env sigma (LocalAssum (na,ty)) c
    | LetIn (na,b,ty,c) -> detype_binder d flags BLetIn avoid env sigma (LocalDef (na,b,ty)) c
    | App (f,args) ->
      let mkapp f' args' =
        match DAst.get f' with
        | GApp (f',args'') ->
          GApp (f',args''@args')
        | _ -> GApp (f',args')
      in
      mkapp (detype d flags avoid env sigma f)
        (Array.map_to_list (detype d flags avoid env sigma) args)
    | Const (sp,u) -> GRef (GlobRef.ConstRef sp, detype_instance sigma u)
    | Proj (p,c) ->
      let noparams () =
        let pars = Projection.npars p in
        let hole = DAst.make @@ GHole(Evar_kinds.InternalHole,Namegen.IntroAnonymous,None) in
        let args = List.make pars hole in
        GApp (DAst.make @@ GRef (GlobRef.ConstRef (Projection.constant p), None),
              (args @ [detype d flags avoid env sigma c]))
      in
      if flags.flg_lax || !Flags.in_debugger || !Flags.in_toplevel then
        try noparams ()
        with _ ->
            (* lax mode, used by debug printers only *)
          GApp (DAst.make @@ GRef (GlobRef.ConstRef (Projection.constant p), None),
                [detype d flags avoid env sigma c])
      else
        if print_primproj_params () then
          try
            let c = Retyping.expand_projection (snd env) sigma p c [] in
            DAst.get (detype d flags avoid env sigma c)
          with Retyping.RetypeError _ -> noparams ()
        else noparams ()

    | Evar (evk,cl) ->
        let open Context.Named.Declaration in
        let bound_to_itself_or_letin decl c =
          match decl with
          | LocalDef _ -> true
          | LocalAssum (id,_) ->
             try let n = List.index Name.equal (Name id.binder_name) (fst env) in
                 isRelN sigma n c
             with Not_found -> isVarId sigma id.binder_name c
        in
      let id,l =
        try
          let id = match Evd.evar_ident evk sigma with
          | None -> Termops.evar_suggested_name evk sigma
          | Some id -> id
          in
          let l = Evd.evar_instance_array bound_to_itself_or_letin (Evd.find sigma evk) cl in
          let fvs,rels = List.fold_left (fun (fvs,rels) (_,c) -> match EConstr.kind sigma c with Rel n -> (fvs,Int.Set.add n rels) | Var id -> (Id.Set.add id fvs,rels) | _ -> (fvs,rels)) (Id.Set.empty,Int.Set.empty) l in
          let l = Evd.evar_instance_array (fun d c -> not !print_evar_arguments && (bound_to_itself_or_letin d c && not (isRel sigma c && Int.Set.mem (destRel sigma c) rels || isVar sigma c && (Id.Set.mem (destVar sigma c) fvs)))) (Evd.find sigma evk) cl in
          id,List.map (fun (id,c) -> (CAst.make id,c)) l
        with Not_found ->
          Id.of_string ("X" ^ string_of_int (Evar.repr evk)),
          (List.map (fun c -> (CAst.make @@ Id.of_string "__",c)) cl)
      in
        GEvar (CAst.make id,
               List.map (on_snd (detype d flags avoid env sigma)) l)
    | Ind (ind_sp,u) ->
        GRef (GlobRef.IndRef ind_sp, detype_instance sigma u)
    | Construct (cstr_sp,u) ->
        GRef (GlobRef.ConstructRef cstr_sp, detype_instance sigma u)
    | Case (ci,u,pms,p,iv,c,bl) ->
        let comp = computable sigma p in
        let case = (ci, u, pms, p, iv, c, bl) in
        detype_case comp (detype d flags avoid env sigma)
          (detype_eqns d flags avoid env sigma comp)
          avoid env sigma case
    | Fix (nvn,recdef) -> detype_fix (detype d) flags avoid env sigma nvn recdef
    | CoFix (n,recdef) -> detype_cofix (detype d) flags avoid env sigma n recdef
    | Int i -> GInt i
    | Float f -> GFloat f
    | Array(u,t,def,ty) ->
      let t = Array.map (detype d flags avoid env sigma) t in
      let def = detype d flags avoid env sigma def in
      let ty = detype d flags avoid env sigma ty in
      let u = detype_instance sigma u in
      GArray(u, t, def, ty)

and detype_eqns d flags avoid env sigma computable constructs consnargsl bl =
  try
    if !Flags.raw_print || not (reverse_matching ()) then raise Exit;
    let mat = build_tree Anonymous flags (avoid,env) sigma bl in
    List.map (fun (ids,pat,((avoid,env),c)) ->
        CAst.make (Id.Set.elements ids,[pat],detype d flags avoid env sigma c))
      mat
  with e when CErrors.noncritical e ->
    let (ci, u, pms, bl) = bl in
    Array.to_list
      (Array.map3 (detype_eqn d flags avoid env sigma u pms) constructs consnargsl bl)

and detype_eqn d flags avoid env sigma u pms constr construct_nargs br =
  let ctx, body = RobustExpand.branch (snd env) sigma constr u pms br in
  let branch = EConstr.it_mkLambda_or_LetIn body ctx in
  let make_pat decl avoid env b ids =
    if force_wildcard () && noccurn sigma 1 b then
      DAst.make @@ PatVar Anonymous,avoid,(add_name (set_name Anonymous decl) env),ids
    else
      let na,avoid' = compute_name sigma ~let_in:false ~pattern:true flags avoid env (get_name decl) b in
      DAst.make (PatVar na),avoid',(add_name (set_name na decl) env),add_vname ids na
  in
  let rec buildrec ids patlist avoid env n b =
    if Int.equal n 0 then
      CAst.make @@
        (Id.Set.elements ids,
         [DAst.make @@ PatCstr(constr, List.rev patlist,Anonymous)],
         detype d flags avoid env sigma b)
    else match EConstr.kind sigma b with
      | Lambda (x,t,b) ->
            let pat,new_avoid,new_env,new_ids = make_pat (LocalAssum (x,t)) avoid env b ids in
            buildrec new_ids (pat::patlist) new_avoid new_env (pred n) b

      | LetIn (x,b,t,b') ->
            let pat,new_avoid,new_env,new_ids = make_pat (LocalDef (x,b,t)) avoid env b' ids in
            buildrec new_ids (pat::patlist) new_avoid new_env (pred n) b'

      | _ -> assert false
  in
  buildrec Id.Set.empty [] avoid env (List.length ctx) branch

and detype_binder d flags bk avoid env sigma decl c =
  let na = get_name decl in
  let body = get_value decl in
  let ty = get_type decl in
  let na',avoid' = match bk with
  | BLetIn -> compute_name sigma ~let_in:true ~pattern:false flags avoid env na c
  | _ -> compute_name sigma ~let_in:false ~pattern:false flags avoid env na c in
  let r =  detype d flags avoid' (add_name (set_name na' decl) env) sigma c in
  match bk with
  | BProd   -> GProd (na',Explicit,detype d { flags with flg_isgoal = false } avoid env sigma ty, r)
  | BLambda -> GLambda (na',Explicit,detype d { flags with flg_isgoal = false } avoid env sigma ty, r)
  | BLetIn ->
      let c = detype d { flags with flg_isgoal = false } avoid env sigma (Option.get body) in
      (* Heuristic: we display the type if in Prop *)
      let s =
        if !Flags.in_debugger then InType
        else
          (* It can fail if ty is an evar, or if run inside ocamldebug or the
             OCaml toplevel since their printers don't have access to the proper sigma/env *)
          try Retyping.get_sort_family_of (snd env) sigma ty
          with Retyping.RetypeError _ -> InType
      in
      let t = if s != InProp  && not !Flags.raw_print then None else Some (detype d { flags with flg_isgoal = false } avoid env sigma ty) in
      GLetIn (na', c, t, r)

let detype_rel_context d flags where avoid env sigma sign =
  let where = Option.map (fun c -> EConstr.it_mkLambda_or_LetIn c sign) where in
  let rec aux avoid env = function
  | [] -> []
  | decl::rest ->
      let na = get_name decl in
      let t = get_type decl in
      let na',avoid' =
        match where with
        | None -> na,avoid
        | Some c ->
          compute_name sigma ~let_in:(is_local_def decl) ~pattern:false flags avoid env na c
      in
      let b = match decl with
              | LocalAssum _ -> None
              | LocalDef (_,b,_) -> Some b
      in
      let b' = Option.map (detype d flags avoid env sigma) b in
      let t' = detype d flags avoid env sigma t in
      (na',Explicit,b',t') :: aux avoid' (add_name (set_name na' decl) env) rest
  in aux avoid env (List.rev sign)

let detype_names isgoal avoid nenv env sigma t =
  let flags = { flg_isgoal = isgoal; flg_lax = false } in
  let avoid = Avoid.make ~fast:(fast_name_generation ()) avoid in
  detype Now flags avoid (nenv,env) sigma t
let detype d ?(lax=false) isgoal avoid env sigma t =
  let flags = { flg_isgoal = isgoal; flg_lax = lax } in
  let avoid = Avoid.make ~fast:(fast_name_generation ()) avoid in
  detype d flags avoid (names_of_rel_context env, env) sigma t

let detype_rel_context d ?(lax = false) where avoid env sigma sign =
  let flags = { flg_isgoal = false; flg_lax = lax } in
  let avoid = Avoid.make ~fast:(fast_name_generation ()) avoid in
  detype_rel_context d flags where avoid env sigma sign

let detype_closed_glob ?lax isgoal avoid env sigma t =
  let convert_id cl id =
    try Id.Map.find id cl.idents
    with Not_found -> id
  in
  let convert_name cl = function
    | Name id -> Name (convert_id cl id)
    | Anonymous -> Anonymous
  in
  let rec detype_closed_glob cl cg : Glob_term.glob_constr = DAst.map (function
    | GVar id ->
        (* if [id] is bound to a name. *)
        begin try
          GVar(Id.Map.find id cl.idents)
        (* if [id] is bound to a typed term *)
        with Not_found -> try
          (* assumes [detype] does not raise [Not_found] exceptions *)
          let (b,c) = Id.Map.find id cl.typed in
          (* spiwack: I'm not sure it is the right thing to do,
             but I'm computing the detyping environment like
             [Printer.pr_constr_under_binders_env] does. *)
          let assums = List.map (fun id -> LocalAssum (make_annot (Name id) Sorts.Relevant,(* dummy *) mkProp)) b in
          let env = push_rel_context assums env in
          DAst.get (detype Now ?lax isgoal avoid env sigma c)
        (* if [id] is bound to a [closed_glob_constr]. *)
        with Not_found -> try
          let {closure;term} = Id.Map.find id cl.untyped in
          DAst.get (detype_closed_glob closure term)
        (* Otherwise [id] stands for itself *)
        with Not_found ->
         GVar id
        end
    | GLambda (id,k,t,c) ->
        let id = convert_name cl id in
        GLambda(id,k,detype_closed_glob cl t, detype_closed_glob cl c)
    | GProd (id,k,t,c) ->
        let id = convert_name cl id in
        GProd(id,k,detype_closed_glob cl t, detype_closed_glob cl c)
    | GLetIn (id,b,t,e) ->
        let id = convert_name cl id in
        GLetIn(id,detype_closed_glob cl b, Option.map (detype_closed_glob cl) t, detype_closed_glob cl e)
    | GLetTuple (ids,(n,r),b,e) ->
        let ids = List.map (convert_name cl) ids in
        let n = convert_name cl n in
        GLetTuple (ids,(n,r),detype_closed_glob cl b, detype_closed_glob cl e)
    | GCases (sty,po,tml,eqns) ->
        let (tml,eqns) =
          Glob_ops.map_pattern_binders (fun na -> convert_name cl na) tml eqns
        in
        let (tml,eqns) =
          Glob_ops.map_pattern (fun c -> detype_closed_glob cl c) tml eqns
        in
        GCases(sty,po,tml,eqns)
    | c ->
        DAst.get (Glob_ops.map_glob_constr (detype_closed_glob cl) cg)
    ) cg
  in
  detype_closed_glob t.closure t.term

(**********************************************************************)
(* Module substitution: relies on detyping                            *)

let rec subst_cases_pattern subst = DAst.map (function
  | PatVar _ as pat -> pat
  | PatCstr (((kn,i),j),cpl,n) as pat ->
      let kn' = subst_mind subst kn
      and cpl' = List.Smart.map (subst_cases_pattern subst) cpl in
        if kn' == kn && cpl' == cpl then pat else
          PatCstr (((kn',i),j),cpl',n)
  )

let (f_subst_genarg, subst_genarg_hook) = Hook.make ()

let rec subst_glob_constr env subst = DAst.map (function
  | GRef (ref,u) as raw ->
    let ref',t = subst_global subst ref in
    if ref' == ref then raw else (match t with
        | None -> GRef (ref', u)
        | Some t ->
          let evd = Evd.from_env env in
          let t = t.Univ.univ_abstracted_value in (* XXX This seems dangerous *)
          DAst.get (detype Now false Id.Set.empty env evd (EConstr.of_constr t)))

  | GSort _
  | GVar _
  | GEvar _
  | GInt _
  | GFloat _
  | GPatVar _ as raw -> raw

  | GApp (r,rl) as raw ->
      let r' = subst_glob_constr env subst r
      and rl' = List.Smart.map (subst_glob_constr env subst) rl in
        if r' == r && rl' == rl then raw else
          GApp(r',rl')

  | GLambda (n,bk,r1,r2) as raw ->
      let r1' = subst_glob_constr env subst r1 and r2' = subst_glob_constr env subst r2 in
        if r1' == r1 && r2' == r2 then raw else
          GLambda (n,bk,r1',r2')

  | GProd (n,bk,r1,r2) as raw ->
      let r1' = subst_glob_constr env subst r1 and r2' = subst_glob_constr env subst r2 in
        if r1' == r1 && r2' == r2 then raw else
          GProd (n,bk,r1',r2')

  | GLetIn (n,r1,t,r2) as raw ->
      let r1' = subst_glob_constr env subst r1 in
      let r2' = subst_glob_constr env subst r2 in
      let t' = Option.Smart.map (subst_glob_constr env subst) t in
        if r1' == r1 && t == t' && r2' == r2 then raw else
          GLetIn (n,r1',t',r2')

  | GCases (sty,rtno,rl,branches) as raw ->
    let open CAst in
      let rtno' = Option.Smart.map (subst_glob_constr env subst) rtno
      and rl' = List.Smart.map (fun (a,x as y) ->
        let a' = subst_glob_constr env subst a in
        let (n,topt) = x in
        let topt' = Option.Smart.map
          (fun ({loc;v=((sp,i),y)} as t) ->
            let sp' = subst_mind subst sp in
            if sp == sp' then t else CAst.(make ?loc ((sp',i),y))) topt in
        if a == a' && topt == topt' then y else (a',(n,topt'))) rl
      and branches' = List.Smart.map
                        (fun ({loc;v=(idl,cpl,r)} as branch) ->
                           let cpl' =
                             List.Smart.map (subst_cases_pattern subst) cpl
                           and r' = subst_glob_constr env subst r in
                             if cpl' == cpl && r' == r then branch else
                               CAst.(make ?loc (idl,cpl',r')))
                        branches
      in
        if rtno' == rtno && rl' == rl && branches' == branches then raw else
          GCases (sty,rtno',rl',branches')

  | GLetTuple (nal,(na,po),b,c) as raw ->
      let po' = Option.Smart.map (subst_glob_constr env subst) po
      and b' = subst_glob_constr env subst b
      and c' = subst_glob_constr env subst c in
        if po' == po && b' == b && c' == c then raw else
          GLetTuple (nal,(na,po'),b',c')

  | GIf (c,(na,po),b1,b2) as raw ->
      let po' = Option.Smart.map (subst_glob_constr env subst) po
      and b1' = subst_glob_constr env subst b1
      and b2' = subst_glob_constr env subst b2
      and c' = subst_glob_constr env subst c in
        if c' == c && po' == po && b1' == b1 && b2' == b2 then raw else
          GIf (c',(na,po'),b1',b2')

  | GRec (fix,ida,bl,ra1,ra2) as raw ->
      let ra1' = Array.Smart.map (subst_glob_constr env subst) ra1
      and ra2' = Array.Smart.map (subst_glob_constr env subst) ra2 in
      let bl' = Array.Smart.map
        (List.Smart.map (fun (na,k,obd,ty as dcl) ->
          let ty' = subst_glob_constr env subst ty in
          let obd' = Option.Smart.map (subst_glob_constr env subst) obd in
          if ty'==ty && obd'==obd then dcl else (na,k,obd',ty')))
        bl in
        if ra1' == ra1 && ra2' == ra2 && bl'==bl then raw else
          GRec (fix,ida,bl',ra1',ra2')

  | GHole (knd, naming, solve) as raw ->
    let nknd = match knd with
    | Evar_kinds.ImplicitArg (ref, i, b) ->
      let nref, _ = subst_global subst ref in
      if nref == ref then knd else Evar_kinds.ImplicitArg (nref, i, b)
    | _ -> knd
    in
    let nsolve = Option.Smart.map (Hook.get f_subst_genarg subst) solve in
    if nsolve == solve && nknd == knd then raw
    else GHole (nknd, naming, nsolve)

  | GCast (r1,k) as raw ->
      let r1' = subst_glob_constr env subst r1 in
      let k' = smartmap_cast_type (subst_glob_constr env subst) k in
      if r1' == r1 && k' == k then raw else GCast (r1',k')

  | GArray (u,t,def,ty) as raw ->
      let def' = subst_glob_constr env subst def
      and t' = Array.Smart.map (subst_glob_constr env subst) t
      and ty' = subst_glob_constr env subst ty
      in
        if def' == def && t' == t && ty' == ty then raw else
          GArray(u,t',def',ty')

  )
OCaml

Innovation. Community. Security.