package coq

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file entries.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

open Names
open Constr

(** This module defines the entry types for global declarations. This
   information is entered in the environments. This includes global
   constants/axioms, mutual inductive definitions, modules and module
   types *)

type universes_entry =
  | Monomorphic_entry of Univ.ContextSet.t
  | Polymorphic_entry of Name.t array * Univ.UContext.t

type variance_entry = Univ.Variance.t option array

type 'a in_universes_entry = 'a * universes_entry

(** {6 Declaration of inductive types. } *)

(** Assume the following definition in concrete syntax:
{v Inductive I1 (x1:X1) ... (xn:Xn) : A1 := c11 : T11 | ... | c1n1 : T1n1
...
with      Ip (x1:X1) ... (xn:Xn) : Ap := cp1 : Tp1 | ... | cpnp : Tpnp. v}

then, in i{^ th} block, [mind_entry_params] is [xn:Xn;...;x1:X1];
[mind_entry_arity] is [Ai], defined in context [x1:X1;...;xn:Xn];
[mind_entry_lc] is [Ti1;...;Tini], defined in context [[A'1;...;A'p;x1:X1;...;xn:Xn]] where [A'i] is [Ai] generalized over [[x1:X1;...;xn:Xn]].
*)

type one_inductive_entry = {
  mind_entry_typename : Id.t;
  mind_entry_arity : constr;
  mind_entry_consnames : Id.t list;
  mind_entry_lc : constr list }

type mutual_inductive_entry = {
  mind_entry_record : (Id.t array option) option;
  (** Some (Some ids): primitive records with ids the binder name of each
      record in their respective projections. Not used by the kernel.
      Some None: non-primitive record *)
  mind_entry_finite : Declarations.recursivity_kind;
  mind_entry_params : Constr.rel_context;
  mind_entry_inds : one_inductive_entry list;
  mind_entry_universes : universes_entry;
  mind_entry_template : bool; (* Use template polymorphism *)
  mind_entry_variance : variance_entry option;
  (* [None] if non-cumulative, otherwise associates each universe of
     the entry to [None] if to be inferred or [Some v] if to be
     checked. *)
  mind_entry_private : bool option;
}

(** {6 Constants (Definition/Axiom) } *)

type definition_entry = {
  const_entry_body : constr;
  (* List of section variables *)
  const_entry_secctx : Id.Set.t option;
  (* State id on which the completion of type checking is reported *)
  const_entry_feedback : Stateid.t option;
  const_entry_type : types option;
  const_entry_universes : universes_entry;
  const_entry_inline_code : bool }

type section_def_entry = {
  secdef_body : constr;
  secdef_secctx : Id.Set.t option;
  secdef_feedback : Stateid.t option;
  secdef_type : types option;
}

type 'a opaque_entry = {
  opaque_entry_body   : 'a;
  (* List of section variables *)
  opaque_entry_secctx : Id.Set.t;
  (* State id on which the completion of type checking is reported *)
  opaque_entry_feedback : Stateid.t option;
  opaque_entry_type        : types;
  opaque_entry_universes   : universes_entry;
}

type inline = int option (* inlining level, None for no inlining *)

type parameter_entry =
    Id.Set.t option * types in_universes_entry * inline

type primitive_entry = {
  prim_entry_type : types in_universes_entry option;
  prim_entry_content : CPrimitives.op_or_type;
}

type 'a proof_output = constr Univ.in_universe_context_set * 'a
type 'a const_entry_body = 'a proof_output Future.computation

type constant_entry =
  | DefinitionEntry : definition_entry -> constant_entry
  | ParameterEntry : parameter_entry -> constant_entry
  | PrimitiveEntry : primitive_entry -> constant_entry

(** {6 Modules } *)

type module_struct_entry = Declarations.module_alg_expr

type module_params_entry =
  (MBId.t * module_struct_entry) list (** older first *)

type module_type_entry = module_params_entry * module_struct_entry

type module_entry =
  | MType of module_params_entry * module_struct_entry
  | MExpr of
      module_params_entry * module_struct_entry * module_struct_entry option
OCaml

Innovation. Community. Security.