package coq

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file notation.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(*i*)
open CErrors
open Util
open Pp
open Names
open Constr
open Libnames
open Globnames
open Constrexpr
open Notation_term
open Glob_term
open Glob_ops
open Context.Named.Declaration
open NumTok

(*i*)

(*s A scope is a set of notations; it includes

  - a set of ML interpreters/parsers for positive (e.g. 0, 1, 15, ...) and
    negative numbers (e.g. -0, -2, -13, ...). These interpreters may
    fail if a number has no interpretation in the scope (e.g. there is
    no interpretation for negative numbers in [nat]); interpreters both for
    terms and patterns can be set; these interpreters are in permanent table
    [number_interpreter_tab]
  - a set of ML printers for expressions denoting numbers parsable in
    this scope
  - a set of interpretations for infix (more generally distfix) notations
  - an optional pair of delimiters which, when occurring in a syntactic
    expression, set this scope to be the current scope
*)

let notation_entry_eq s1 s2 = match (s1,s2) with
| InConstrEntry, InConstrEntry -> true
| InCustomEntry s1, InCustomEntry s2 -> String.equal s1 s2
| (InConstrEntry | InCustomEntry _), _ -> false

let notation_entry_level_eq s1 s2 = match (s1,s2) with
| InConstrEntrySomeLevel, InConstrEntrySomeLevel -> true
| InCustomEntryLevel (s1,n1), InCustomEntryLevel (s2,n2) -> String.equal s1 s2 && n1 = n2
| (InConstrEntrySomeLevel | InCustomEntryLevel _), _ -> false

let notation_with_optional_scope_eq inscope1 inscope2 = match (inscope1,inscope2) with
 | LastLonelyNotation, LastLonelyNotation -> true
 | NotationInScope s1, NotationInScope s2 -> String.equal s1 s2
 | (LastLonelyNotation | NotationInScope _), _ -> false

let notation_eq (from1,ntn1) (from2,ntn2) =
  notation_entry_eq from1 from2 && String.equal ntn1 ntn2

let pair_eq f g (x1, y1) (x2, y2) = f x1 x2 && g y1 y2

let notation_binder_source_eq s1 s2 = match s1, s2 with
| NtnParsedAsIdent,  NtnParsedAsIdent -> true
| NtnParsedAsName,  NtnParsedAsName -> true
| NtnParsedAsPattern b1, NtnParsedAsPattern b2 -> b1 = b2
| NtnBinderParsedAsConstr bk1, NtnBinderParsedAsConstr bk2 -> bk1 = bk2
| NtnParsedAsBinder,  NtnParsedAsBinder -> true
| (NtnParsedAsIdent | NtnParsedAsName | NtnParsedAsPattern _ | NtnBinderParsedAsConstr _ | NtnParsedAsBinder), _ -> false

let ntpe_eq t1 t2 = match t1, t2 with
| NtnTypeConstr, NtnTypeConstr -> true
| NtnTypeBinder s1, NtnTypeBinder s2 -> notation_binder_source_eq s1 s2
| NtnTypeConstrList, NtnTypeConstrList -> true
| NtnTypeBinderList, NtnTypeBinderList -> true
| (NtnTypeConstr | NtnTypeBinder _ | NtnTypeConstrList | NtnTypeBinderList), _ -> false

let var_attributes_eq (_, ((entry1, sc1), tp1)) (_, ((entry2, sc2), tp2)) =
  notation_entry_level_eq entry1 entry2 &&
  pair_eq (Option.equal String.equal) (List.equal String.equal) sc1 sc2 &&
  ntpe_eq tp1 tp2

let interpretation_eq (vars1, t1 as x1) (vars2, t2 as x2) =
  x1 == x2 ||
  List.equal var_attributes_eq vars1 vars2 &&
  Notation_ops.eq_notation_constr (List.map fst vars1, List.map fst vars2) t1 t2

let pr_notation (from,ntn) = qstring ntn ++ match from with InConstrEntry -> mt () | InCustomEntry s -> str " in custom " ++ str s

module NotationOrd =
  struct
    type t = notation
    let compare = pervasives_compare
  end

module NotationSet = Set.Make(NotationOrd)
module NotationMap = CMap.Make(NotationOrd)

module SpecificNotationOrd =
  struct
    type t = specific_notation
    let compare = pervasives_compare
  end

module SpecificNotationSet = Set.Make(SpecificNotationOrd)
module SpecificNotationMap = CMap.Make(SpecificNotationOrd)

(**********************************************************************)
(* Scope of symbols *)

type delimiters = string
type notation_location = (DirPath.t * DirPath.t) * string

type notation_data = {
  not_interp : interpretation;
  not_location : notation_location;
  not_deprecation : Deprecation.t option;
}

type activation = bool

type extra_printing_notation_data =
  (activation * notation_data) list

type parsing_notation_data =
  | NoParsingData
  | OnlyParsingData of activation * notation_data
  | ParsingAndPrintingData of
      activation (* for parsing*) *
      activation (* for printing *) *
      notation_data (* common data for both *)

type scope = {
  notations: (parsing_notation_data * extra_printing_notation_data) NotationMap.t;
  delimiters: delimiters option
}

(* Scopes table: scope_name -> symbol_interpretation *)
let scope_map = ref String.Map.empty

(* Delimiter table : delimiter -> scope_name *)
let delimiters_map = ref String.Map.empty

let empty_scope = {
  notations = NotationMap.empty;
  delimiters = None
}

let default_scope = "" (* empty name, not available from outside *)

let init_scope_map () =
  scope_map := String.Map.add default_scope empty_scope !scope_map

(**********************************************************************)
(* Operations on scopes *)

let warn_undeclared_scope =
  CWarnings.create ~name:"undeclared-scope" ~category:"deprecated"
                   (fun (scope) ->
                    strbrk "Declaring a scope implicitly is deprecated; use in advance an explicit "
                    ++ str "\"Declare Scope " ++ str scope ++ str ".\".")

let declare_scope scope =
  try let _ = String.Map.find scope !scope_map in ()
  with Not_found ->
    scope_map := String.Map.add scope empty_scope !scope_map

let error_unknown_scope ~info sc =
  user_err ~hdr:"Notation" ~info
    (str "Scope " ++ str sc ++ str " is not declared.")

let find_scope ?(tolerant=false) scope =
  try String.Map.find scope !scope_map
  with Not_found as exn ->
    let _, info = Exninfo.capture exn in
    if tolerant then
      (* tolerant mode to be turn off after deprecation phase *)
      begin
        warn_undeclared_scope scope;
        scope_map := String.Map.add scope empty_scope !scope_map;
        empty_scope
      end
    else
      error_unknown_scope ~info scope

let check_scope ?(tolerant=false) scope =
  let _ = find_scope ~tolerant scope in ()

let ensure_scope scope = check_scope ~tolerant:true scope

let find_scope scope = find_scope scope

(* [sc] might be here a [scope_name] or a [delimiter]
   (now allowed after Open Scope) *)

let normalize_scope sc =
  try let _ = String.Map.find sc !scope_map in sc
  with Not_found ->
    try
      let sc = String.Map.find sc !delimiters_map in
      let _ = String.Map.find sc !scope_map in sc
    with Not_found as exn ->
      let _, info = Exninfo.capture exn in
      error_unknown_scope ~info sc

(**********************************************************************)
(* The global stack of scopes                                         *)

type scope_item = OpenScopeItem of scope_name | LonelyNotationItem of notation
type scopes = scope_item list

let scope_eq s1 s2 = match s1, s2 with
| OpenScopeItem s1, OpenScopeItem s2 -> String.equal s1 s2
| LonelyNotationItem s1, LonelyNotationItem s2 -> notation_eq s1 s2
| OpenScopeItem _, LonelyNotationItem _
| LonelyNotationItem _, OpenScopeItem _ -> false

let scope_stack = ref []

let current_scopes () = !scope_stack

let scope_is_open_in_scopes sc l =
  List.exists (function OpenScopeItem sc' -> String.equal sc sc' | _ -> false) l

let scope_is_open sc = scope_is_open_in_scopes sc (!scope_stack)

(* TODO: push nat_scope, z_scope, ... in scopes summary *)

(* Exportation of scopes *)
let open_scope i (_,(local,op,sc)) =
  if Int.equal i 1 then
    scope_stack :=
      if op then sc :: !scope_stack
      else List.except scope_eq sc !scope_stack

let cache_scope o =
  open_scope 1 o

let subst_scope (subst,sc) = sc

open Libobject

let discharge_scope (_,(local,_,_ as o)) =
  if local then None else Some o

let classify_scope (local,_,_ as o) =
  if local then Dispose else Substitute o

let inScope : bool * bool * scope_item -> obj =
  declare_object {(default_object "SCOPE") with
      cache_function = cache_scope;
      open_function = simple_open open_scope;
      subst_function = subst_scope;
      discharge_function = discharge_scope;
      classify_function = classify_scope }

let open_close_scope (local,opening,sc) =
  Lib.add_anonymous_leaf (inScope (local,opening,OpenScopeItem (normalize_scope sc)))

let empty_scope_stack = []

let push_scope sc scopes = OpenScopeItem sc :: scopes

let push_scopes = List.fold_right push_scope

let make_current_scopes (tmp_scope,scopes) =
  Option.fold_right push_scope tmp_scope (push_scopes scopes !scope_stack)

(**********************************************************************)
(* Delimiters *)

let declare_delimiters scope key =
  let sc = find_scope scope in
  let newsc = { sc with delimiters = Some key } in
  begin match sc.delimiters with
    | None -> scope_map := String.Map.add scope newsc !scope_map
    | Some oldkey when String.equal oldkey key -> ()
    | Some oldkey ->
        (* FIXME: implement multikey scopes? *)
        Flags.if_verbose Feedback.msg_info
          (str "Overwriting previous delimiting key " ++ str oldkey ++ str " in scope " ++ str scope);
        scope_map := String.Map.add scope newsc !scope_map
  end;
  try
    let oldscope = String.Map.find key !delimiters_map in
    if String.equal oldscope scope then ()
    else begin
      Flags.if_verbose Feedback.msg_info (str "Hiding binding of key " ++ str key ++ str " to " ++ str oldscope);
      delimiters_map := String.Map.add key scope !delimiters_map
    end
  with Not_found -> delimiters_map := String.Map.add key scope !delimiters_map

let remove_delimiters scope =
  let sc = find_scope scope in
  let newsc = { sc with delimiters = None } in
  match sc.delimiters with
    | None -> CErrors.user_err  (str "No bound key for scope " ++ str scope ++ str ".")
    | Some key ->
       scope_map := String.Map.add scope newsc !scope_map;
       try
         let _ = ignore (String.Map.find key !delimiters_map) in
         delimiters_map := String.Map.remove key !delimiters_map
       with Not_found as exn ->
         let _, info = Exninfo.capture exn in
         (* XXX info *)
         CErrors.anomaly ~info (str "A delimiter for scope [scope] should exist")

let find_delimiters_scope ?loc key =
  try String.Map.find key !delimiters_map
  with Not_found ->
    user_err ?loc ~hdr:"find_delimiters"
      (str "Unknown scope delimiting key " ++ str key ++ str ".")

(* Uninterpretation tables *)

type interp_rule =
  | NotationRule of specific_notation
  | SynDefRule of KerName.t

(* We define keys for glob_constr and aconstr to split the syntax entries
   according to the key of the pattern (adapted from Chet Murthy by HH) *)

type key =
  | RefKey of GlobRef.t
  | Oth

let key_compare k1 k2 = match k1, k2 with
| RefKey gr1, RefKey gr2 -> GlobRef.CanOrd.compare gr1 gr2
| RefKey _, Oth -> -1
| Oth, RefKey _ -> 1
| Oth, Oth -> 0

module KeyOrd = struct type t = key let compare = key_compare end
module KeyMap = Map.Make(KeyOrd)

type notation_applicative_status =
  | AppBoundedNotation of int
  | AppUnboundedNotation
  | NotAppNotation

type notation_rule = interp_rule * interpretation * notation_applicative_status

let notation_rule_eq (rule1,pat1,s1 as x1) (rule2,pat2,s2 as x2) =
  x1 == x2 || (rule1 = rule2 && interpretation_eq pat1 pat2 && s1 = s2)

let adjust_application c1 c2 =
  match c1, c2 with
  | NApp (t1, a1), (NList (_,_,NApp (_, a2),_,_) | NApp (_, a2)) when List.length a1 >= List.length a2 ->
      NApp (t1, List.firstn (List.length a2) a1)
  | NApp (t1, a1), _ ->
      t1
  | _ -> c1

let strictly_finer_interpretation_than (_,(_,(vars1,c1),_)) (_,(_,(vars2,c2),_)) =
  let c1 = adjust_application c1 c2 in
  Notation_ops.strictly_finer_notation_constr (List.map fst vars1, List.map fst vars2) c1 c2

let keymap_add key interp map =
  let old = try KeyMap.find key map with Not_found -> [] in
  (* strictly finer interpretation are kept in front *)
  let strictly_finer, rest = List.partition (fun c -> strictly_finer_interpretation_than c interp) old in
  KeyMap.add key (strictly_finer @ interp :: rest) map

let keymap_remove key interp map =
  let old = try KeyMap.find key map with Not_found -> [] in
  KeyMap.add key (List.remove_first (fun (_,rule) -> notation_rule_eq interp rule) old) map

let keymap_find key map =
  try KeyMap.find key map
  with Not_found -> []

(* Scopes table : interpretation -> scope_name *)
(* Boolean = for cases pattern also *)
let notations_key_table = ref (KeyMap.empty : (bool * notation_rule) list KeyMap.t)

let glob_prim_constr_key c = match DAst.get c with
  | GRef (ref, _) -> Some (canonical_gr ref)
  | GApp (c, _) ->
    begin match DAst.get c with
    | GRef (ref, _) -> Some (canonical_gr ref)
    | _ -> None
    end
  | _ -> None

let glob_constr_keys c = match DAst.get c with
  | GApp (c, _) ->
    begin match DAst.get c with
    | GRef (ref, _) -> [RefKey (canonical_gr ref); Oth]
    | _ -> [Oth]
    end
  | GRef (ref,_) -> [RefKey (canonical_gr ref)]
  | _ -> [Oth]

let cases_pattern_key c = match DAst.get c with
  | PatCstr (ref,_,_) -> RefKey (canonical_gr (GlobRef.ConstructRef ref))
  | _ -> Oth

let notation_constr_key = function (* Rem: NApp(NRef ref,[]) stands for @ref *)
  | NApp (NRef (ref,_),args) -> RefKey(canonical_gr ref), AppBoundedNotation (List.length args)
  | NList (_,_,NApp (NRef (ref,_),args),_,_)
  | NBinderList (_,_,NApp (NRef (ref,_),args),_,_) ->
      RefKey (canonical_gr ref), AppBoundedNotation (List.length args)
  | NRef (ref,_) -> RefKey(canonical_gr ref), NotAppNotation
  | NApp (NList (_,_,NApp (NRef (ref,_),args),_,_), args') ->
      RefKey (canonical_gr ref), AppBoundedNotation (List.length args + List.length args')
  | NApp (NList (_,_,NApp (_,args),_,_), args') ->
      Oth, AppBoundedNotation (List.length args + List.length args')
  | NApp (_,args) -> Oth, AppBoundedNotation (List.length args)
  | NList (_,_,NApp (NVar x,_),_,_) when x = Notation_ops.ldots_var -> Oth, AppUnboundedNotation
  | _ -> Oth, NotAppNotation

(** Dealing with precedences *)

type level = notation_entry * entry_level * entry_relative_level list
  (* first argument is InCustomEntry s for custom entries *)

let entry_relative_level_eq t1 t2 = match t1, t2 with
| LevelLt n1, LevelLt n2 -> Int.equal n1 n2
| LevelLe n1, LevelLe n2 -> Int.equal n1 n2
| LevelSome, LevelSome -> true
| (LevelLt _ | LevelLe _ | LevelSome), _ -> false

let level_eq (s1, l1, t1) (s2, l2, t2) =
  notation_entry_eq s1 s2 && Int.equal l1 l2 && List.equal entry_relative_level_eq t1 t2

let notation_level_map = Summary.ref ~name:"notation_level_map" NotationMap.empty

let declare_notation_level ntn level =
  try
    let _ = NotationMap.find ntn !notation_level_map in
    anomaly (str "Notation " ++ pr_notation ntn ++ str " is already assigned a level.")
  with Not_found ->
  notation_level_map := NotationMap.add ntn level !notation_level_map

let level_of_notation ntn =
  NotationMap.find ntn !notation_level_map


(**********************************************************************)
(* Interpreting numbers (not in summary because functional objects)   *)

type required_module = full_path * string list
type rawnum = NumTok.Signed.t

type prim_token_uid = string

type 'a prim_token_interpreter = ?loc:Loc.t -> 'a -> glob_constr
type 'a prim_token_uninterpreter = any_glob_constr -> 'a option

type 'a prim_token_interpretation =
  'a prim_token_interpreter * 'a prim_token_uninterpreter

module InnerPrimToken = struct

  type interpreter =
    | RawNumInterp of (?loc:Loc.t -> rawnum -> glob_constr)
    | BigNumInterp of (?loc:Loc.t -> Z.t -> glob_constr)
    | StringInterp of (?loc:Loc.t -> string -> glob_constr)

  let interp_eq f f' = match f,f' with
    | RawNumInterp f, RawNumInterp f' -> f == f'
    | BigNumInterp f, BigNumInterp f' -> f == f'
    | StringInterp f, StringInterp f' -> f == f'
    | _ -> false

  let do_interp ?loc interp primtok =
    match primtok, interp with
    | Number n, RawNumInterp interp -> interp ?loc n
    | Number n, BigNumInterp interp ->
      (match NumTok.Signed.to_bigint n with
       | Some n -> interp ?loc n
       | None -> raise Not_found)
    | String s, StringInterp interp -> interp ?loc s
    | (Number _ | String _),
      (RawNumInterp _ | BigNumInterp _ | StringInterp _) -> raise Not_found

  type uninterpreter =
    | RawNumUninterp of (any_glob_constr -> rawnum option)
    | BigNumUninterp of (any_glob_constr -> Z.t option)
    | StringUninterp of (any_glob_constr -> string option)

  let uninterp_eq f f' = match f,f' with
    | RawNumUninterp f, RawNumUninterp f' -> f == f'
    | BigNumUninterp f, BigNumUninterp f' -> f == f'
    | StringUninterp f, StringUninterp f' -> f == f'
    | _ -> false

  let mkNumber n =
    Number (NumTok.Signed.of_bigint CDec n)

  let mkString = function
    | None -> None
    | Some s -> if Unicode.is_utf8 s then Some (String s) else None

  let do_uninterp uninterp g = match uninterp with
    | RawNumUninterp u -> Option.map (fun (s,n) -> Number (s,n)) (u g)
    | BigNumUninterp u -> Option.map mkNumber (u g)
    | StringUninterp u -> mkString (u g)

end

(* The following two tables of (un)interpreters will *not* be
   synchronized.  But their indexes will be checked to be unique.
   These tables contain primitive token interpreters which are
   registered in plugins, such as string and ascii syntax.  It is
   essential that only plugins add to these tables, and that
   vernacular commands do not.  See
   https://github.com/coq/coq/issues/8401 for details of what goes
   wrong when vernacular commands add to these tables. *)
let prim_token_interpreters =
  (Hashtbl.create 7 : (prim_token_uid, InnerPrimToken.interpreter) Hashtbl.t)

let prim_token_uninterpreters =
  (Hashtbl.create 7 : (prim_token_uid, InnerPrimToken.uninterpreter) Hashtbl.t)

(*******************************************************)
(* Number notation interpretation                      *)
type prim_token_notation_error =
  | UnexpectedTerm of Constr.t
  | UnexpectedNonOptionTerm of Constr.t

exception PrimTokenNotationError of string * Environ.env * Evd.evar_map * prim_token_notation_error

type numnot_option =
  | Nop
  | Warning of NumTok.UnsignedNat.t
  | Abstract of NumTok.UnsignedNat.t

type int_ty =
  { dec_uint : Names.inductive;
    dec_int : Names.inductive;
    hex_uint : Names.inductive;
    hex_int : Names.inductive;
    uint : Names.inductive;
    int : Names.inductive }

type z_pos_ty =
  { z_ty : Names.inductive;
    pos_ty : Names.inductive }

type number_ty =
  { int : int_ty;
    decimal : Names.inductive;
    hexadecimal : Names.inductive;
    number : Names.inductive }

type pos_neg_int63_ty =
  { pos_neg_int63_ty : Names.inductive }

type target_kind =
  | Int of int_ty (* Coq.Init.Number.int + uint *)
  | UInt of int_ty (* Coq.Init.Number.uint *)
  | Z of z_pos_ty (* Coq.Numbers.BinNums.Z and positive *)
  | Int63 of pos_neg_int63_ty (* Coq.Numbers.Cyclic.Int63.PrimInt63.pos_neg_int63 *)
  | Number of number_ty (* Coq.Init.Number.number + uint + int *)

type string_target_kind =
  | ListByte
  | Byte

type option_kind = Option | Direct
type 'target conversion_kind = 'target * option_kind

(** A postprocessing translation [to_post] can be done after execution
   of the [to_ty] interpreter. The reverse translation is performed
   before the [of_ty] uninterpreter.

   [to_post] is an array of [n] lists [l_i] of tuples [(f, t,
   args)]. When the head symbol of the translated term matches one of
   the [f] in the list [l_0] it is replaced by [t] and its arguments
   are translated acording to [args] where [ToPostCopy] means that the
   argument is kept unchanged and [ToPostAs k] means that the
   argument is recursively translated according to [l_k].
   [ToPostHole] introduces an additional implicit argument hole
   (in the reverse translation, the corresponding argument is removed).
   [ToPostCheck r] behaves as [ToPostCopy] except in the reverse
   translation which fails if the copied term is not [r].
   When [n] is null, no translation is performed. *)
type to_post_arg = ToPostCopy | ToPostAs of int | ToPostHole | ToPostCheck of GlobRef.t
type ('target, 'warning) prim_token_notation_obj =
  { to_kind : 'target conversion_kind;
    to_ty : GlobRef.t;
    to_post : ((GlobRef.t * GlobRef.t * to_post_arg list) list) array;
    of_kind : 'target conversion_kind;
    of_ty : GlobRef.t;
    ty_name : Libnames.qualid; (* for warnings / error messages *)
    warning : 'warning }

type number_notation_obj = (target_kind, numnot_option) prim_token_notation_obj
type string_notation_obj = (string_target_kind, unit) prim_token_notation_obj

module PrimTokenNotation = struct
(** * Code shared between Number notation and String notation *)
(** Reduction

    The constr [c] below isn't necessarily well-typed, since we
    built it via an [mkApp] of a conversion function on a term
    that starts with the right constructor but might be partially
    applied.

    At least [c] is known to be evar-free, since it comes from
    our own ad-hoc [constr_of_glob] or from conversions such
    as [coqint_of_rawnum].

    It is important to fully normalize the term, *including inductive
    parameters of constructors*; see
    https://github.com/coq/coq/issues/9840 for details on what goes
    wrong if this does not happen, e.g., from using the vm rather than
    cbv.
*)

let eval_constr env sigma (c : Constr.t) =
  let c = EConstr.of_constr c in
  let c' = Tacred.compute env sigma c in
  EConstr.Unsafe.to_constr c'

let eval_constr_app env sigma c1 c2 =
  eval_constr env sigma (mkApp (c1,[| c2 |]))

exception NotAValidPrimToken

(** The uninterp function below work at the level of [glob_constr]
    which is too low for us here. So here's a crude conversion back
    to [constr] for the subset that concerns us.

    Note that if you update [constr_of_glob], you should update the
    corresponding number notation *and* string notation doc in
    doc/sphinx/user-extensions/syntax-extensions.rst that describes
    what it means for a term to be ground / to be able to be
    considered for parsing. *)

let constr_of_globref allow_constant env sigma = function
  | GlobRef.ConstructRef c ->
     let sigma,c = Evd.fresh_constructor_instance env sigma c in
     sigma,mkConstructU c
  | GlobRef.IndRef c ->
     let sigma,c = Evd.fresh_inductive_instance env sigma c in
     sigma,mkIndU c
  | GlobRef.ConstRef c when allow_constant || Environ.is_primitive_type env c ->
     let sigma,c = Evd.fresh_constant_instance env sigma c in
     sigma,mkConstU c
  | _ -> raise NotAValidPrimToken

let rec constr_of_glob allow_constant to_post post env sigma g = match DAst.get g with
  | Glob_term.GRef (r, _) ->
      let o = List.find_opt (fun (_,r',_) -> GlobRef.equal r r') post in
      begin match o with
      | None -> constr_of_globref allow_constant env sigma r
      | Some (r, _, a) ->
         (* [g] is not a GApp so check that [post]
            does not expect any actual argument
            (i.e., [a] contains only ToPostHole since they mean "ignore arg") *)
         if List.exists ((<>) ToPostHole) a then raise NotAValidPrimToken;
         constr_of_globref true env sigma r
      end
  | Glob_term.GApp (gc, gcl) ->
      let o = match DAst.get gc with
        | Glob_term.GRef (r, _) -> List.find_opt (fun (_,r',_) -> GlobRef.equal r r') post
        | _ -> None in
      begin match o with
      | None ->
         let sigma,c = constr_of_glob allow_constant to_post post env sigma gc in
         let sigma,cl = List.fold_left_map (constr_of_glob allow_constant to_post post env) sigma gcl in
         sigma,mkApp (c, Array.of_list cl)
      | Some (r, _, a) ->
         let sigma,c = constr_of_globref true env sigma r in
         let rec aux sigma a gcl = match a, gcl with
           | [], [] -> sigma,[]
           | ToPostCopy :: a, gc :: gcl ->
              let sigma,c = constr_of_glob allow_constant [||] [] env sigma gc in
              let sigma,cl = aux sigma a gcl in
              sigma, c :: cl
           | ToPostCheck r :: a, gc :: gcl ->
              let () = match DAst.get gc with
                | Glob_term.GRef (r', _) when GlobRef.equal r r' -> ()
                | _ -> raise NotAValidPrimToken in
              let sigma,c = constr_of_glob true [||] [] env sigma gc in
              let sigma,cl = aux sigma a gcl in
              sigma, c :: cl
           | ToPostAs i :: a, gc :: gcl ->
              let sigma,c = constr_of_glob allow_constant to_post to_post.(i) env sigma gc in
              let sigma,cl = aux sigma a gcl in
              sigma, c :: cl
           | ToPostHole :: post, _ :: gcl -> aux sigma post gcl
           | [], _ :: _ | _ :: _, [] -> raise NotAValidPrimToken
         in
         let sigma,cl = aux sigma a gcl in
         sigma,mkApp (c, Array.of_list cl)
      end
  | Glob_term.GInt i -> sigma, mkInt i
  | Glob_term.GFloat f -> sigma, mkFloat f
  | Glob_term.GArray (_,t,def,ty) ->
      let sigma, u' = Evd.fresh_array_instance env sigma in
      let sigma, def' = constr_of_glob allow_constant to_post post env sigma def in
      let sigma, t' = Array.fold_left_map (constr_of_glob allow_constant to_post post env) sigma t in
      let sigma, ty' = constr_of_glob allow_constant to_post post env sigma ty in
       sigma, mkArray (u',t',def',ty')
  | Glob_term.GSort gs ->
      let sigma,c = Evd.fresh_sort_in_family sigma (Glob_ops.glob_sort_family gs) in
      sigma,mkSort c
  | _ ->
      raise NotAValidPrimToken

let constr_of_glob to_post env sigma (Glob_term.AnyGlobConstr g) =
  let post = match to_post with [||] -> [] | _ -> to_post.(0) in
  constr_of_glob false to_post post env sigma g

let rec glob_of_constr token_kind ?loc env sigma c = match Constr.kind c with
  | App (c, ca) ->
      let c = glob_of_constr token_kind ?loc env sigma c in
      let cel = List.map (glob_of_constr token_kind ?loc env sigma) (Array.to_list ca) in
      DAst.make ?loc (Glob_term.GApp (c, cel))
  | Construct (c, _) -> DAst.make ?loc (Glob_term.GRef (GlobRef.ConstructRef c, None))
  | Const (c, _) -> DAst.make ?loc (Glob_term.GRef (GlobRef.ConstRef c, None))
  | Ind (ind, _) -> DAst.make ?loc (Glob_term.GRef (GlobRef.IndRef ind, None))
  | Var id -> DAst.make ?loc (Glob_term.GRef (GlobRef.VarRef id, None))
  | Int i -> DAst.make ?loc (Glob_term.GInt i)
  | Float f -> DAst.make ?loc (Glob_term.GFloat f)
  | Array (u,t,def,ty) ->
      let def' = glob_of_constr token_kind ?loc env sigma def
      and t' = Array.map (glob_of_constr token_kind ?loc env sigma) t
      and ty' = glob_of_constr token_kind ?loc env sigma ty in
      DAst.make ?loc (Glob_term.GArray (None,t',def',ty'))
  | Sort Sorts.SProp -> DAst.make ?loc (Glob_term.GSort (Glob_term.UNamed [Glob_term.GSProp, 0]))
  | Sort Sorts.Prop -> DAst.make ?loc (Glob_term.GSort (Glob_term.UNamed [Glob_term.GProp, 0]))
  | Sort Sorts.Set -> DAst.make ?loc (Glob_term.GSort (Glob_term.UNamed [Glob_term.GSet, 0]))
  | Sort (Sorts.Type _) -> DAst.make ?loc (Glob_term.GSort (Glob_term.UAnonymous {rigid=true}))
  | _ -> Loc.raise ?loc (PrimTokenNotationError(token_kind,env,sigma,UnexpectedTerm c))

let no_such_prim_token uninterpreted_token_kind ?loc ty =
  CErrors.user_err ?loc
   (str ("Cannot interpret this "^uninterpreted_token_kind^" as a value of type ") ++
    pr_qualid ty)

let rec postprocess token_kind ?loc ty to_post post g =
  let g', gl = match DAst.get g with Glob_term.GApp (g, gl) -> g, gl | _ -> g, [] in
  let o =
    match DAst.get g' with
    | Glob_term.GRef (r, None) ->
       List.find_opt (fun (r',_,_) -> GlobRef.equal r r') post
    | _ -> None in
  match o with None -> g | Some (_, r, a) ->
  let rec f n a gl = match a, gl with
    | [], [] -> []
    | ToPostHole :: a, gl ->
       let e = Evar_kinds.ImplicitArg (r, (n, None), true) in
       let h = DAst.make ?loc (Glob_term.GHole (e, Namegen.IntroAnonymous, None)) in
       h :: f (n+1) a gl
    | (ToPostCopy | ToPostCheck _) :: a, g :: gl -> g :: f (n+1) a gl
    | ToPostAs c :: a, g :: gl ->
       postprocess token_kind ?loc ty to_post to_post.(c) g :: f (n+1) a gl
    | [], _::_ | _::_, [] ->
       no_such_prim_token token_kind ?loc ty
  in
  let gl = f 1 a gl in
  let g = DAst.make ?loc (Glob_term.GRef (r, None)) in
  DAst.make ?loc (Glob_term.GApp (g, gl))

let glob_of_constr token_kind ty ?loc env sigma to_post c =
  let g = glob_of_constr token_kind ?loc env sigma c in
  match to_post with [||] -> g | _ ->
    postprocess token_kind ?loc ty to_post to_post.(0) g

let interp_option uninterpreted_token_kind token_kind ty ?loc env sigma to_post c =
  match Constr.kind c with
  | App (_Some, [| _; c |]) -> glob_of_constr token_kind ty ?loc env sigma to_post c
  | App (_None, [| _ |]) -> no_such_prim_token uninterpreted_token_kind ?loc ty
  | x -> Loc.raise ?loc (PrimTokenNotationError(token_kind,env,sigma,UnexpectedNonOptionTerm c))

let uninterp_option c =
  match Constr.kind c with
  | App (_Some, [| _; x |]) -> x
  | _ -> raise NotAValidPrimToken

let uninterp to_raw o n =
  let env = Global.env () in
  let sigma = Evd.from_env env in
  let sigma,of_ty = Evd.fresh_global env sigma o.of_ty in
  let of_ty = EConstr.Unsafe.to_constr of_ty in
  try
    let sigma,n = constr_of_glob o.to_post env sigma n in
    let c = eval_constr_app env sigma of_ty n in
    let c = if snd o.of_kind == Direct then c else uninterp_option c in
    Some (to_raw (fst o.of_kind, c))
  with
  | Type_errors.TypeError _ | Pretype_errors.PretypeError _ -> None (* cf. eval_constr_app *)
  | NotAValidPrimToken -> None (* all other functions except NumTok.Signed.of_bigint *)

end

let z_two = Z.of_int 2

(** Conversion from bigint to int63 *)
let int63_of_pos_bigint i = Uint63.of_int64 (Z.to_int64 i)

module Numbers = struct
(** * Number notation *)
open PrimTokenNotation

let warn_large_num =
  CWarnings.create ~name:"large-number" ~category:"numbers"
    (fun ty ->
      strbrk "Stack overflow or segmentation fault happens when " ++
      strbrk "working with large numbers in " ++ pr_qualid ty ++
      strbrk " (threshold may vary depending" ++
      strbrk " on your system limits and on the command executed).")

let warn_abstract_large_num =
  CWarnings.create ~name:"abstract-large-number" ~category:"numbers"
    (fun (ty,f) ->
      strbrk "To avoid stack overflow, large numbers in " ++
      pr_qualid ty ++ strbrk " are interpreted as applications of " ++
      Nametab.pr_global_env (Termops.vars_of_env (Global.env ())) f ++ strbrk ".")

(***********************************************************************)

(** ** Conversion between Coq [Decimal.int] and internal raw string *)

(** Decimal.Nil has index 1, then Decimal.D0 has index 2 .. Decimal.D9 is 11 *)

let digit_of_char c =
  assert ('0' <= c && c <= '9' || 'a' <= c && c <= 'f');
  if c <= '9' then Char.code c - Char.code '0' + 2
  else Char.code c - Char.code 'a' + 12

let char_of_digit n =
  assert (2<=n && n<=17);
  if n <= 11 then Char.chr (n-2 + Char.code '0')
  else Char.chr (n-12 + Char.code 'a')

let coquint_of_rawnum inds c n =
  let uint = match c with CDec -> inds.dec_uint | CHex -> inds.hex_uint in
  let nil = mkConstruct (uint,1) in
  match n with None -> nil | Some n ->
  let str = NumTok.UnsignedNat.to_string n in
  let str = match c with
    | CDec -> str
    | CHex -> String.sub str 2 (String.length str - 2) in  (* cut "0x" *)
  let rec do_chars s i acc =
    if i < 0 then acc
    else
      let dg = mkConstruct (uint, digit_of_char s.[i]) in
      do_chars s (i-1) (mkApp(dg,[|acc|]))
  in
  do_chars str (String.length str - 1) nil

let coqint_of_rawnum inds c (sign,n) =
  let ind = match c with CDec -> inds.dec_int | CHex -> inds.hex_int in
  let uint = coquint_of_rawnum inds c (Some n) in
  let pos_neg = match sign with SPlus -> 1 | SMinus -> 2 in
  mkApp (mkConstruct (ind, pos_neg), [|uint|])

let coqnumber_of_rawnum inds c n =
  let ind = match c with CDec -> inds.decimal | CHex -> inds.hexadecimal in
  let i, f, e = NumTok.Signed.to_int_frac_and_exponent n in
  let i = coqint_of_rawnum inds.int c i in
  let f = coquint_of_rawnum inds.int c f in
  match e with
  | None -> mkApp (mkConstruct (ind, 1), [|i; f|])  (* (D|Hexad)ecimal *)
  | Some e ->
    let e = coqint_of_rawnum inds.int CDec e in
    mkApp (mkConstruct (ind, 2), [|i; f; e|])  (* (D|Hexad)ecimalExp *)

let mkDecHex ind c n = match c with
  | CDec -> mkApp (mkConstruct (ind, 1), [|n|])  (* (UInt|Int|)Decimal *)
  | CHex -> mkApp (mkConstruct (ind, 2), [|n|])  (* (UInt|Int|)Hexadecimal *)

let coqnumber_of_rawnum inds n =
  let c = NumTok.Signed.classify n in
  let n = coqnumber_of_rawnum inds c n in
  mkDecHex inds.number c n

let coquint_of_rawnum inds n =
  let c = NumTok.UnsignedNat.classify n in
  let n = coquint_of_rawnum inds c (Some n) in
  mkDecHex inds.uint c n

let coqint_of_rawnum inds n =
  let c = NumTok.SignedNat.classify n in
  let n = coqint_of_rawnum inds c n in
  mkDecHex inds.int c n

let rawnum_of_coquint cl c =
  let rec of_uint_loop c buf =
    match Constr.kind c with
    | Construct ((_,1), _) (* Nil *) -> ()
    | App (c, [|a|]) ->
       (match Constr.kind c with
        | Construct ((_,n), _) (* D0 to Df *) ->
           let () = Buffer.add_char buf (char_of_digit n) in
           of_uint_loop a buf
        | _ -> raise NotAValidPrimToken)
    | _ -> raise NotAValidPrimToken
  in
  let buf = Buffer.create 64 in
  if cl = CHex then (Buffer.add_char buf '0'; Buffer.add_char buf 'x');
  let () = of_uint_loop c buf in
  if Int.equal (Buffer.length buf) (match cl with CDec -> 0 | CHex -> 2) then
    (* To avoid ambiguities between Nil and (D0 Nil), we choose
       to not display Nil alone as "0" *)
    raise NotAValidPrimToken
  else NumTok.UnsignedNat.of_string (Buffer.contents buf)

let rawnum_of_coqint cl c =
  match Constr.kind c with
  | App (c,[|c'|]) ->
     (match Constr.kind c with
      | Construct ((_,1), _) (* Pos *) -> (SPlus,rawnum_of_coquint cl c')
      | Construct ((_,2), _) (* Neg *) -> (SMinus,rawnum_of_coquint cl c')
      | _ -> raise NotAValidPrimToken)
  | _ -> raise NotAValidPrimToken

let rawnum_of_coqnumber cl c =
  let of_ife i f e =
    let n = rawnum_of_coqint cl i in
    let f = try Some (rawnum_of_coquint cl f) with NotAValidPrimToken -> None in
    let e = match e with None -> None | Some e -> Some (rawnum_of_coqint CDec e) in
    NumTok.Signed.of_int_frac_and_exponent n f e in
  match Constr.kind c with
  | App (_,[|i; f|]) -> of_ife i f None
  | App (_,[|i; f; e|]) -> of_ife i f (Some e)
  | _ -> raise NotAValidPrimToken

let destDecHex c = match Constr.kind c with
  | App (c,[|c'|]) ->
     (match Constr.kind c with
      | Construct ((_,1), _) (* (UInt|Int|)Decimal *) -> CDec, c'
      | Construct ((_,2), _) (* (UInt|Int|)Hexadecimal *) -> CHex, c'
      | _ -> raise NotAValidPrimToken)
  | _ -> raise NotAValidPrimToken

let rawnum_of_coqnumber c =
  let cl, c = destDecHex c in
  rawnum_of_coqnumber cl c

let rawnum_of_coquint c =
  let cl, c = destDecHex c in
  rawnum_of_coquint cl c

let rawnum_of_coqint c =
  let cl, c = destDecHex c in
  rawnum_of_coqint cl c

(***********************************************************************)

(** ** Conversion between Coq [Z] and internal bigint *)

(** First, [positive] from/to bigint *)

let rec pos_of_bigint posty n =
  match Z.div_rem n z_two with
  | (q, rem) when rem = Z.zero ->
      let c = mkConstruct (posty, 2) in (* xO *)
      mkApp (c, [| pos_of_bigint posty q |])
  | (q, _) when not (Z.equal q Z.zero) ->
      let c = mkConstruct (posty, 1) in (* xI *)
      mkApp (c, [| pos_of_bigint posty q |])
  | (q, _) ->
      mkConstruct (posty, 3) (* xH *)

let rec bigint_of_pos c = match Constr.kind c with
  | Construct ((_, 3), _) -> (* xH *) Z.one
  | App (c, [| d |]) ->
      begin match Constr.kind c with
      | Construct ((_, n), _) ->
          begin match n with
          | 1 -> (* xI *) Z.add Z.one (Z.mul z_two (bigint_of_pos d))
          | 2 -> (* xO *) Z.mul z_two (bigint_of_pos d)
          | n -> assert false (* no other constructor of type positive *)
          end
      | x -> raise NotAValidPrimToken
      end
  | x -> raise NotAValidPrimToken

(** Now, [Z] from/to bigint *)

let z_of_bigint { z_ty; pos_ty } n =
  if Z.(equal n zero) then
    mkConstruct (z_ty, 1) (* Z0 *)
  else
    let (s, n) =
      if Z.(leq zero n) then (2, n) (* Zpos *)
      else (3, Z.neg n) (* Zneg *)
    in
    let c = mkConstruct (z_ty, s) in
    mkApp (c, [| pos_of_bigint pos_ty n |])

let bigint_of_z z = match Constr.kind z with
  | Construct ((_, 1), _) -> (* Z0 *) Z.zero
  | App (c, [| d |]) ->
      begin match Constr.kind c with
      | Construct ((_, n), _) ->
          begin match n with
          | 2 -> (* Zpos *) bigint_of_pos d
          | 3 -> (* Zneg *) Z.neg (bigint_of_pos d)
          | n -> assert false (* no other constructor of type Z *)
          end
      | _ -> raise NotAValidPrimToken
      end
  | _ -> raise NotAValidPrimToken

(** Now, [Int63] from/to bigint *)

let int63_of_pos_bigint ?loc n =
  let i = int63_of_pos_bigint n in
  mkInt i

let error_overflow ?loc n =
  CErrors.user_err ?loc ~hdr:"interp_int63" Pp.(str "overflow in int63 literal: " ++ str (Z.to_string n))

let coqpos_neg_int63_of_bigint ?loc ind (sign,n) =
  let uint = int63_of_pos_bigint ?loc n in
  let pos_neg = match sign with SPlus -> 1 | SMinus -> 2 in
  mkApp (mkConstruct (ind, pos_neg), [|uint|])

let interp_int63 ?loc ind n =
  let sign = if Z.(compare n zero >= 0) then SPlus else SMinus in
  let an = Z.abs n in
  if Z.(lt an (pow z_two 63))
  then coqpos_neg_int63_of_bigint ?loc ind (sign,an)
  else error_overflow ?loc n

let bigint_of_int63 c =
  match Constr.kind c with
  | Int i -> Z.of_int64 (Uint63.to_int64 i)
  | _ -> raise NotAValidPrimToken

let bigint_of_coqpos_neg_int63 c =
  match Constr.kind c with
  | App (c,[|c'|]) ->
     (match Constr.kind c with
      | Construct ((_,1), _) (* Pos *) -> bigint_of_int63 c'
      | Construct ((_,2), _) (* Neg *) -> Z.neg (bigint_of_int63 c')
      | _ -> raise NotAValidPrimToken)
  | _ -> raise NotAValidPrimToken

let interp o ?loc n =
  begin match o.warning, n with
  | Warning threshold, n when NumTok.Signed.is_bigger_int_than n threshold ->
     warn_large_num o.ty_name
  | _ -> ()
  end;
  let c = match fst o.to_kind, NumTok.Signed.to_int n with
    | Int int_ty, Some n ->
       coqint_of_rawnum int_ty n
    | UInt int_ty, Some (SPlus, n) ->
       coquint_of_rawnum int_ty n
    | Z z_pos_ty, Some n ->
       z_of_bigint z_pos_ty (NumTok.SignedNat.to_bigint n)
    | Int63 pos_neg_int63_ty, Some n ->
       interp_int63 ?loc pos_neg_int63_ty.pos_neg_int63_ty (NumTok.SignedNat.to_bigint n)
    | (Int _ | UInt _ | Z _ | Int63 _), _ ->
       no_such_prim_token "number" ?loc o.ty_name
    | Number number_ty, _ -> coqnumber_of_rawnum number_ty n
  in
  let env = Global.env () in
  let sigma = Evd.from_env env in
  let sigma,to_ty = Evd.fresh_global env sigma o.to_ty in
  let to_ty = EConstr.Unsafe.to_constr to_ty in
  match o.warning, snd o.to_kind with
  | Abstract threshold, Direct when NumTok.Signed.is_bigger_int_than n threshold ->
     warn_abstract_large_num (o.ty_name,o.to_ty);
     assert (Array.length o.to_post = 0);
     glob_of_constr "number" o.ty_name ?loc env sigma o.to_post (mkApp (to_ty,[|c|]))
  | _ ->
     let res = eval_constr_app env sigma to_ty c in
     match snd o.to_kind with
     | Direct -> glob_of_constr "number" o.ty_name ?loc env sigma o.to_post res
     | Option -> interp_option "number" "number" o.ty_name ?loc env sigma o.to_post res

let uninterp o n =
  PrimTokenNotation.uninterp
    begin function
      | (Int _, c) -> NumTok.Signed.of_int (rawnum_of_coqint c)
      | (UInt _, c) -> NumTok.Signed.of_nat (rawnum_of_coquint c)
      | (Z _, c) -> NumTok.Signed.of_bigint CDec (bigint_of_z c)
      | (Int63 _, c) -> NumTok.Signed.of_bigint CDec (bigint_of_coqpos_neg_int63 c)
      | (Number _, c) -> rawnum_of_coqnumber c
    end o n
end

module Strings = struct
(** * String notation *)
open PrimTokenNotation

let qualid_of_ref n =
  n |> Coqlib.lib_ref |> Nametab.shortest_qualid_of_global Id.Set.empty

let q_list () = qualid_of_ref "core.list.type"
let q_byte () = qualid_of_ref "core.byte.type"

let unsafe_locate_ind q =
  match Nametab.locate q with
  | GlobRef.IndRef i -> i
  | _ -> raise Not_found

let locate_list () = unsafe_locate_ind (q_list ())
let locate_byte () = unsafe_locate_ind (q_byte ())

(***********************************************************************)

(** ** Conversion between Coq [list Byte.byte] and internal raw string *)

let coqbyte_of_char_code byte c =
  mkConstruct (byte, 1 + c)

let coqbyte_of_string ?loc byte s =
  let p =
    if Int.equal (String.length s) 1 then int_of_char s.[0]
    else
      let n =
        if Int.equal (String.length s) 3 && is_digit s.[0] && is_digit s.[1] && is_digit s.[2]
        then int_of_string s else 256 in
      if n < 256 then n else
       user_err ?loc ~hdr:"coqbyte_of_string"
         (str "Expects a single character or a three-digit ASCII code.") in
  coqbyte_of_char_code byte p

let coqbyte_of_char byte c = coqbyte_of_char_code byte (Char.code c)

let make_ascii_string n =
  if n>=32 && n<=126 then String.make 1 (char_of_int n)
  else Printf.sprintf "%03d" n

let char_code_of_coqbyte c =
  match Constr.kind c with
  | Construct ((_,c), _) -> c - 1
  | _ -> raise NotAValidPrimToken

let string_of_coqbyte c = make_ascii_string (char_code_of_coqbyte c)

let coqlist_byte_of_string byte_ty list_ty str =
  let cbyte = mkInd byte_ty in
  let nil = mkApp (mkConstruct (list_ty, 1), [|cbyte|]) in
  let cons x xs = mkApp (mkConstruct (list_ty, 2), [|cbyte; x; xs|]) in
  let rec do_chars s i acc =
    if i < 0 then acc
    else
      let b = coqbyte_of_char byte_ty s.[i] in
      do_chars s (i-1) (cons b acc)
  in
  do_chars str (String.length str - 1) nil

(* N.B. We rely on the fact that [nil] is the first constructor and [cons] is the second constructor, for [list] *)
let string_of_coqlist_byte c =
  let rec of_coqlist_byte_loop c buf =
    match Constr.kind c with
    | App (_nil, [|_ty|]) -> ()
    | App (_cons, [|_ty;b;c|]) ->
      let () = Buffer.add_char buf (Char.chr (char_code_of_coqbyte b)) in
      of_coqlist_byte_loop c buf
    | _ -> raise NotAValidPrimToken
  in
  let buf = Buffer.create 64 in
  let () = of_coqlist_byte_loop c buf in
  Buffer.contents buf

let interp o ?loc n =
  let byte_ty = locate_byte () in
  let list_ty = locate_list () in
  let c = match fst o.to_kind with
    | ListByte -> coqlist_byte_of_string byte_ty list_ty n
    | Byte -> coqbyte_of_string ?loc byte_ty n
  in
  let env = Global.env () in
  let sigma = Evd.from_env env in
  let sigma,to_ty = Evd.fresh_global env sigma o.to_ty in
  let to_ty = EConstr.Unsafe.to_constr to_ty in
  let res = eval_constr_app env sigma to_ty c in
  match snd o.to_kind with
  | Direct -> glob_of_constr "string" o.ty_name ?loc env sigma o.to_post res
  | Option -> interp_option "string" "string" o.ty_name ?loc env sigma o.to_post res

let uninterp o n =
  PrimTokenNotation.uninterp
    begin function
      | (ListByte, c) -> string_of_coqlist_byte c
      | (Byte, c) -> string_of_coqbyte c
    end o n
end

(* A [prim_token_infos], which is synchronized with the document
   state, either contains a unique id pointing to an unsynchronized
   prim token function, or a number notation object describing how to
   interpret and uninterpret.  We provide [prim_token_infos] because
   we expect plugins to provide their own interpretation functions,
   rather than going through number notations, which are available as
   a vernacular. *)

type prim_token_interp_info =
    Uid of prim_token_uid
  | NumberNotation of number_notation_obj
  | StringNotation of string_notation_obj

type prim_token_infos = {
  pt_local : bool; (** Is this interpretation local? *)
  pt_scope : scope_name; (** Concerned scope *)
  pt_interp_info : prim_token_interp_info; (** Unique id "pointing" to (un)interp functions, OR a number notation object describing (un)interp functions *)
  pt_required : required_module; (** Module that should be loaded first *)
  pt_refs : GlobRef.t list; (** Entry points during uninterpretation *)
  pt_in_match : bool (** Is this prim token legal in match patterns ? *)
}

(* Table from scope_name to backtrack-able informations about interpreters
   (in particular interpreter unique id). *)
let prim_token_interp_infos =
  ref (String.Map.empty : (required_module * prim_token_interp_info) String.Map.t)

(* Table from global_reference to backtrack-able informations about
   prim_token uninterpretation (in particular uninterpreter unique id). *)
let prim_token_uninterp_infos =
  ref (GlobRef.Map.empty : ((scope_name * (prim_token_interp_info * bool)) list) GlobRef.Map.t)

let hashtbl_check_and_set allow_overwrite uid f h eq =
  match Hashtbl.find h uid with
   | exception Not_found -> Hashtbl.add h uid f
   | _ when allow_overwrite -> Hashtbl.add h uid f
   | g when eq f g -> ()
   | _ ->
      user_err ~hdr:"prim_token_interpreter"
       (str "Unique identifier " ++ str uid ++
        str " already used to register a number or string (un)interpreter.")

let register_gen_interpretation allow_overwrite uid (interp, uninterp) =
  hashtbl_check_and_set
    allow_overwrite uid interp prim_token_interpreters InnerPrimToken.interp_eq;
  hashtbl_check_and_set
    allow_overwrite uid uninterp prim_token_uninterpreters InnerPrimToken.uninterp_eq

let register_rawnumeral_interpretation ?(allow_overwrite=false) uid (interp, uninterp) =
  register_gen_interpretation allow_overwrite uid
    (InnerPrimToken.RawNumInterp interp, InnerPrimToken.RawNumUninterp uninterp)

let register_bignumeral_interpretation ?(allow_overwrite=false) uid (interp, uninterp) =
  register_gen_interpretation allow_overwrite uid
    (InnerPrimToken.BigNumInterp interp, InnerPrimToken.BigNumUninterp uninterp)

let register_string_interpretation ?(allow_overwrite=false) uid (interp, uninterp) =
  register_gen_interpretation allow_overwrite uid
    (InnerPrimToken.StringInterp interp, InnerPrimToken.StringUninterp uninterp)

let cache_prim_token_interpretation (_,infos) =
  let ptii = infos.pt_interp_info in
  let sc = infos.pt_scope in
  check_scope ~tolerant:true sc;
  prim_token_interp_infos :=
    String.Map.add sc (infos.pt_required,ptii) !prim_token_interp_infos;
  let add_uninterp r =
    let l = try GlobRef.Map.find r !prim_token_uninterp_infos with Not_found -> [] in
    prim_token_uninterp_infos :=
      GlobRef.Map.add r ((sc,(ptii,infos.pt_in_match)) :: l)
        !prim_token_uninterp_infos in
  List.iter add_uninterp infos.pt_refs

let subst_prim_token_interpretation (subs,infos) =
  { infos with
    pt_refs = List.map (subst_global_reference subs) infos.pt_refs }

let classify_prim_token_interpretation infos =
    if infos.pt_local then Dispose else Substitute infos

let open_prim_token_interpretation i o =
  if Int.equal i 1 then cache_prim_token_interpretation o

let inPrimTokenInterp : prim_token_infos -> obj =
  declare_object {(default_object "PRIM-TOKEN-INTERP") with
     open_function  = simple_open open_prim_token_interpretation;
     cache_function = cache_prim_token_interpretation;
     subst_function = subst_prim_token_interpretation;
     classify_function = classify_prim_token_interpretation}

let enable_prim_token_interpretation infos =
  Lib.add_anonymous_leaf (inPrimTokenInterp infos)

(** Compatibility.
    Avoid the next two functions, they will now store unnecessary
    objects in the library segment. Instead, combine
    [register_*_interpretation] and [enable_prim_token_interpretation]
    (the latter inside a [Mltop.declare_cache_obj]).
*)

let fresh_string_of =
  let count = ref 0 in
  fun root -> count := !count+1; (string_of_int !count)^"_"^root

let declare_numeral_interpreter ?(local=false) sc dir interp (patl,uninterp,b) =
  let uid = fresh_string_of sc in
  register_bignumeral_interpretation uid (interp,uninterp);
  enable_prim_token_interpretation
    { pt_local = local;
      pt_scope = sc;
      pt_interp_info = Uid uid;
      pt_required = dir;
      pt_refs = List.map_filter glob_prim_constr_key patl;
      pt_in_match = b }
let declare_string_interpreter ?(local=false) sc dir interp (patl,uninterp,b) =
  let uid = fresh_string_of sc in
  register_string_interpretation uid (interp,uninterp);
  enable_prim_token_interpretation
    { pt_local = local;
      pt_scope = sc;
      pt_interp_info = Uid uid;
      pt_required = dir;
      pt_refs = List.map_filter glob_prim_constr_key patl;
      pt_in_match = b }


let check_required_module ?loc sc (sp,d) =
  try let _ = Nametab.global_of_path sp in ()
  with Not_found as exn ->
    let _, info = Exninfo.capture exn in
    match d with
    | [] ->
      user_err ?loc ~info ~hdr:"prim_token_interpreter"
        (str "Cannot interpret in " ++ str sc ++ str " because " ++ pr_path sp ++
         str " could not be found in the current environment.")
    | _ ->
      user_err ?loc ~info ~hdr:"prim_token_interpreter"
        (str "Cannot interpret in " ++ str sc ++ str " without requiring first module " ++
         str (List.last d) ++ str ".")

(* Look if some notation or number printer in [scope] can be used in
   the scope stack [scopes], and if yes, using delimiters or not *)

let find_with_delimiters = function
  | LastLonelyNotation -> None
  | NotationInScope scope ->
      match (String.Map.find scope !scope_map).delimiters with
        | Some key -> Some (Some scope, Some key)
        | None -> None
        | exception Not_found -> None

let rec find_without_delimiters find (ntn_scope,ntn) = function
  | OpenScopeItem scope :: scopes ->
      (* Is the expected ntn/numpr attached to the most recently open scope? *)
      begin match ntn_scope with
      | NotationInScope scope' when String.equal scope scope' ->
        Some (None,None)
      | _ ->
        (* If the most recently open scope has a notation/number printer
           but not the expected one then we need delimiters *)
        if find scope then
          find_with_delimiters ntn_scope
        else
          find_without_delimiters find (ntn_scope,ntn) scopes
      end
  | LonelyNotationItem ntn' :: scopes ->
      begin match ntn with
      | Some ntn'' when notation_eq ntn' ntn'' ->
        begin match ntn_scope with
        | LastLonelyNotation ->
          (* If the first notation with same string in the visibility stack
             is the one we want to print, then it can be used without
             risking a collision *)
           Some (None, None)
        | NotationInScope _ ->
          (* A lonely notation is liable to hide the scoped notation
             to print, we check if the lonely notation is active to
             know if the delimiter of the scoped notationis needed *)
          if find default_scope then
            find_with_delimiters ntn_scope
          else
            find_without_delimiters find (ntn_scope,ntn) scopes
        end
      | _ ->
        (* A lonely notation which does not interfere with the notation to use *)
        find_without_delimiters find (ntn_scope,ntn) scopes
      end
  | [] ->
      (* Can we switch to [scope]? Yes if it has defined delimiters *)
      find_with_delimiters ntn_scope

(* The mapping between notations and their interpretation *)

let pr_optional_scope = function
  | LastLonelyNotation -> mt ()
  | NotationInScope scope -> spc () ++ strbrk "in scope" ++ spc () ++ str scope

let warn_notation_overridden =
  CWarnings.create ~name:"notation-overridden" ~category:"parsing"
                   (fun (scope,ntn) ->
                    str "Notation" ++ spc () ++ pr_notation ntn ++ spc ()
                    ++ strbrk "was already used" ++ pr_optional_scope scope ++ str ".")

let warn_deprecation_overridden =
  CWarnings.create ~name:"notation-overridden" ~category:"parsing"
                 (fun ((scope,ntn),old,now) ->
                  match old, now with
                  | None, None -> assert false
                  | None, Some _ ->
                    (str "Notation" ++ spc () ++ pr_notation ntn ++ pr_optional_scope scope ++ spc ()
                    ++ strbrk "is now marked as deprecated" ++ str ".")
                  | Some _, None ->
                    (str "Cancelling previous deprecation of notation" ++ spc () ++
                     pr_notation ntn ++ pr_optional_scope scope ++ str ".")
                  | Some _, Some _ ->
                    (str "Amending deprecation of notation" ++ spc () ++
                     pr_notation ntn ++ pr_optional_scope scope ++ str "."))

type notation_use =
  | OnlyPrinting
  | OnlyParsing
  | ParsingAndPrinting

let warn_override_if_needed (scopt,ntn) overridden data old_data =
  if overridden then warn_notation_overridden (scopt,ntn)
  else
    if data.not_deprecation <> old_data.not_deprecation then
      warn_deprecation_overridden ((scopt,ntn),old_data.not_deprecation,data.not_deprecation)

let check_parsing_override (scopt,ntn) data = function
  | OnlyParsingData (_,old_data) ->
    let overridden = not (interpretation_eq data.not_interp old_data.not_interp) in
    warn_override_if_needed (scopt,ntn) overridden data old_data;
    None
  | ParsingAndPrintingData (_,on_printing,old_data) ->
    let overridden = not (interpretation_eq data.not_interp old_data.not_interp) in
    warn_override_if_needed (scopt,ntn) overridden data old_data;
    if on_printing then Some old_data.not_interp else None
  | NoParsingData -> None

let check_printing_override (scopt,ntn) data parsingdata printingdata =
  let parsing_update = match parsingdata with
  | OnlyParsingData _ | NoParsingData -> parsingdata
  | ParsingAndPrintingData (_,on_printing,old_data) ->
    let overridden = not (interpretation_eq data.not_interp old_data.not_interp) in
    warn_override_if_needed (scopt,ntn) overridden data old_data;
    if overridden then NoParsingData else parsingdata in
  let exists = List.exists (fun (on_printing,old_data) ->
    let exists = interpretation_eq data.not_interp old_data.not_interp in
    if exists && data.not_deprecation <> old_data.not_deprecation then
      warn_deprecation_overridden ((scopt,ntn),old_data.not_deprecation,data.not_deprecation);
    exists) printingdata in
  parsing_update, exists

let remove_uninterpretation rule (metas,c as pat) =
  let (key,n) = notation_constr_key c in
  notations_key_table := keymap_remove key ((rule,pat,n)) !notations_key_table

let declare_uninterpretation ?(also_in_cases_pattern=true) rule (metas,c as pat) =
  let (key,n) = notation_constr_key c in
  notations_key_table := keymap_add key (also_in_cases_pattern,(rule,pat,n)) !notations_key_table

let update_notation_data (scopt,ntn) use data table =
  let (parsingdata,printingdata) =
    try NotationMap.find ntn table with Not_found -> (NoParsingData, []) in
  match use with
  | OnlyParsing ->
    let printing_update = check_parsing_override (scopt,ntn) data parsingdata in
    NotationMap.add ntn (OnlyParsingData (true,data), printingdata) table, printing_update
  | ParsingAndPrinting ->
    let printing_update = check_parsing_override (scopt,ntn) data parsingdata in
    NotationMap.add ntn (ParsingAndPrintingData (true,true,data), printingdata) table, printing_update
  | OnlyPrinting ->
    let parsingdata, exists = check_printing_override (scopt,ntn) data parsingdata printingdata in
    let printingdata = if exists then printingdata else (true,data) :: printingdata in
    NotationMap.add ntn (parsingdata, printingdata) table, None

let rec find_interpretation ntn find = function
  | [] -> raise Not_found
  | OpenScopeItem scope :: scopes ->
      (try let n = find scope in (n,Some scope)
       with Not_found -> find_interpretation ntn find scopes)
  | LonelyNotationItem ntn'::scopes when notation_eq ntn' ntn ->
      (try let n = find default_scope in (n,None)
       with Not_found ->
         (* e.g. because single notation only for constr, not cases_pattern *)
         find_interpretation ntn find scopes)
  | LonelyNotationItem _::scopes ->
      find_interpretation ntn find scopes

let find_notation ntn sc =
  match fst (NotationMap.find ntn (find_scope sc).notations) with
  | OnlyParsingData (true,data) | ParsingAndPrintingData (true,_,data) -> data
  | _ -> raise Not_found

let notation_of_prim_token = function
  | Constrexpr.Number (SPlus,n) -> InConstrEntry, NumTok.Unsigned.sprint n
  | Constrexpr.Number (SMinus,n) -> InConstrEntry, "- "^NumTok.Unsigned.sprint n
  | String _ -> raise Not_found

let find_prim_token check_allowed ?loc p sc =
  (* Try for a user-defined numerical notation *)
  try
    let n = find_notation (notation_of_prim_token p) sc in
    let (_,c) = n.not_interp in
    let df = n.not_location in
    let pat = Notation_ops.glob_constr_of_notation_constr ?loc c in
    check_allowed pat;
    pat, df
  with Not_found ->
  (* Try for a primitive numerical notation *)
  let (spdir,info) = String.Map.find sc !prim_token_interp_infos in
  check_required_module ?loc sc spdir;
  let interp = match info with
    | Uid uid -> Hashtbl.find prim_token_interpreters uid
    | NumberNotation o -> InnerPrimToken.RawNumInterp (Numbers.interp o)
    | StringNotation o -> InnerPrimToken.StringInterp (Strings.interp o)
  in
  let pat = InnerPrimToken.do_interp ?loc interp p in
  check_allowed pat;
  pat, ((dirpath (fst spdir),DirPath.empty),"")

let interp_prim_token_gen ?loc g p local_scopes =
  let scopes = make_current_scopes local_scopes in
  let p_as_ntn = try notation_of_prim_token p with Not_found -> InConstrEntry,"" in
  try
    let (pat,loc), sc = find_interpretation p_as_ntn (find_prim_token ?loc g p) scopes in
    pat, (loc,sc)
  with Not_found as exn ->
    let _, info = Exninfo.capture exn in
    user_err ?loc ~info ~hdr:"interp_prim_token"
    ((match p with
      | Number _ ->
         str "No interpretation for number " ++ pr_notation (notation_of_prim_token p)
      | String s -> str "No interpretation for string " ++ qs s) ++ str ".")

let interp_prim_token ?loc =
  interp_prim_token_gen ?loc (fun _ -> ())

let rec check_allowed_ref_in_pat looked_for = DAst.(with_val (function
  | GVar _ | GHole _ -> ()
  | GRef (g,_) -> looked_for g
  | GApp (f, l) ->
    begin match DAst.get f with
    | GRef (g, _) ->
      looked_for g; List.iter (check_allowed_ref_in_pat looked_for) l
    | _ -> raise Not_found
    end
  | _ -> raise Not_found))

let interp_prim_token_cases_pattern_expr ?loc looked_for p =
  interp_prim_token_gen ?loc (check_allowed_ref_in_pat looked_for) p

let warn_deprecated_notation =
  Deprecation.create_warning ~object_name:"Notation" ~warning_name:"deprecated-notation"
    pr_notation

let interp_notation ?loc ntn local_scopes =
  let scopes = make_current_scopes local_scopes in
  try
    let (n,sc) = find_interpretation ntn (find_notation ntn) scopes in
    Option.iter (fun d -> warn_deprecated_notation ?loc (ntn,d)) n.not_deprecation;
    n.not_interp, (n.not_location, sc)
  with Not_found as exn ->
    let _, info = Exninfo.capture exn in
    user_err ?loc ~info
      (str "Unknown interpretation for notation " ++ pr_notation ntn ++ str ".")

let uninterp_notations c =
  List.map_append (fun key -> List.map snd (keymap_find key !notations_key_table))
    (glob_constr_keys c)

let filter_also_for_pattern =
  List.map_filter (function (true,x) -> Some x | _ -> None)

let uninterp_cases_pattern_notations c =
  filter_also_for_pattern (keymap_find (cases_pattern_key c) !notations_key_table)

let uninterp_ind_pattern_notations ind =
  filter_also_for_pattern (keymap_find (RefKey (canonical_gr (GlobRef.IndRef ind))) !notations_key_table)

let has_active_parsing_rule_in_scope ntn sc =
  try
    match NotationMap.find ntn (String.Map.find sc !scope_map).notations with
    | OnlyParsingData (active,_),_ | ParsingAndPrintingData (active,_,_),_ -> active
    | _ -> false
  with Not_found -> false

let is_printing_active_in_scope (scope,ntn) pat =
  let sc = match scope with NotationInScope sc -> sc | LastLonelyNotation -> default_scope in
  let is_active extra =
    try
      let (_,(active,_)) = List.extract_first (fun (active,d) -> interpretation_eq d.not_interp pat) extra in
      active
    with Not_found -> false in
  try
    match NotationMap.find ntn (String.Map.find sc !scope_map).notations with
    | ParsingAndPrintingData (_,active,d), extra ->
       if interpretation_eq d.not_interp pat then active
       else is_active extra
    | _, extra -> is_active extra
  with Not_found -> false

let is_printing_inactive_rule rule pat =
  match rule with
  | NotationRule (scope,ntn) ->
    not (is_printing_active_in_scope (scope,ntn) pat)
  | SynDefRule kn ->
    try let _ = Nametab.path_of_syndef kn in false with Not_found -> true

let availability_of_notation (ntn_scope,ntn) scopes =
  find_without_delimiters (has_active_parsing_rule_in_scope ntn) (ntn_scope,Some ntn) (make_current_scopes scopes)

(* We support coercions from a custom entry at some level to an entry
   at some level (possibly the same), and from and to the constr entry. E.g.:

   Notation "[ expr ]" := expr (expr custom group at level 1).
   Notation "( x )" := x (in custom group at level 0, x at level 1).
   Notation "{ x }" := x (in custom group at level 0, x constr).

   Supporting any level is maybe overkill in that coercions are
   commonly from the lowest level of the source entry to the highest
   level of the target entry. *)

type entry_coercion = (notation_with_optional_scope * notation) list

module EntryCoercionOrd =
 struct
  type t = notation_entry * notation_entry
   let compare = pervasives_compare
 end

module EntryCoercionMap = Map.Make(EntryCoercionOrd)

let entry_coercion_map : (((entry_level option * entry_level option) * entry_coercion) list EntryCoercionMap.t) ref =
  ref EntryCoercionMap.empty

let level_ord lev lev' =
  match lev, lev' with
  | None, _ -> true
  | _, None -> true
  | Some n, Some n' -> n <= n'

let rec search nfrom nto = function
  | [] -> raise Not_found
  | ((pfrom,pto),coe)::l ->
    if level_ord pfrom nfrom && level_ord nto pto then coe else search nfrom nto l

let make_notation_entry_level entry level =
  match entry with
  | InConstrEntry -> InConstrEntrySomeLevel
  | InCustomEntry s -> InCustomEntryLevel (s,level)

let decompose_notation_entry_level = function
  | InConstrEntrySomeLevel -> InConstrEntry, None
  | InCustomEntryLevel (s,n) -> InCustomEntry s, Some n

let availability_of_entry_coercion entry entry' =
  let entry, lev = decompose_notation_entry_level entry in
  let entry', lev' = decompose_notation_entry_level entry' in
  if notation_entry_eq entry entry' && level_ord lev' lev then Some []
  else
    try Some (search lev lev' (EntryCoercionMap.find (entry,entry') !entry_coercion_map))
    with Not_found -> None

let better_path ((lev1,lev2),path) ((lev1',lev2'),path') =
  (* better = shorter and lower source and higher target *)
  level_ord lev1 lev1' && level_ord lev2' lev2 && List.length path <= List.length path'

let shorter_path (_,path) (_,path') =
  List.length path <= List.length path'

let rec insert_coercion_path path = function
  | [] -> [path]
  | path'::paths as allpaths ->
      (* If better or equal we keep the more recent one *)
      if better_path path path' then path::paths
      else if better_path path' path then allpaths
      else if shorter_path path path' then path::allpaths
      else path'::insert_coercion_path path paths

let declare_entry_coercion (scope,(entry,key)) lev entry' =
  let entry', lev' = decompose_notation_entry_level entry' in
  (* Transitive closure *)
  let toaddleft =
    EntryCoercionMap.fold (fun (entry'',entry''') paths l ->
        List.fold_right (fun ((lev'',lev'''),path) l ->
        if notation_entry_eq entry entry''' && level_ord lev lev''' &&
           not (notation_entry_eq entry' entry'')
        then ((entry'',entry'),((lev'',lev'),path@[(scope,(entry,key))]))::l else l) paths l)
      !entry_coercion_map [] in
  let toaddright =
    EntryCoercionMap.fold (fun (entry'',entry''') paths l ->
        List.fold_right (fun ((lev'',lev'''),path) l ->
        if entry' = entry'' && level_ord lev'' lev' && entry <> entry'''
        then ((entry,entry'''),((lev,lev'''),path@[(scope,(entry,key))]))::l else l) paths l)
      !entry_coercion_map [] in
  entry_coercion_map :=
    List.fold_right (fun (pair,path) ->
        let olds = try EntryCoercionMap.find pair !entry_coercion_map with Not_found -> [] in
        EntryCoercionMap.add pair (insert_coercion_path path olds))
      (((entry,entry'),((lev,lev'),[(scope,(entry,key))]))::toaddright@toaddleft)
      !entry_coercion_map

let entry_has_global_map = ref String.Map.empty

let declare_custom_entry_has_global s n =
  try
    let p = String.Map.find s !entry_has_global_map in
    user_err (str "Custom entry " ++ str s ++
              str " has already a rule for global references at level " ++ int p ++ str ".")
  with Not_found ->
    entry_has_global_map := String.Map.add s n !entry_has_global_map

let entry_has_global = function
  | InConstrEntrySomeLevel -> true
  | InCustomEntryLevel (s,n) ->
     try String.Map.find s !entry_has_global_map <= n with Not_found -> false

let entry_has_ident_map = ref String.Map.empty

let declare_custom_entry_has_ident s n =
  try
    let p = String.Map.find s !entry_has_ident_map in
    user_err (str "Custom entry " ++ str s ++
              str " has already a rule for global references at level " ++ int p ++ str ".")
  with Not_found ->
    entry_has_ident_map := String.Map.add s n !entry_has_ident_map

let entry_has_ident = function
  | InConstrEntrySomeLevel -> true
  | InCustomEntryLevel (s,n) ->
     try String.Map.find s !entry_has_ident_map <= n with Not_found -> false

type entry_coercion_kind =
  | IsEntryCoercion of notation_entry_level
  | IsEntryGlobal of string * int
  | IsEntryIdent of string * int

let declare_notation (scopt,ntn) pat df ~use ~also_in_cases_pattern coe deprecation =
  (* Register the interpretation *)
  let scope = match scopt with NotationInScope s -> s | LastLonelyNotation -> default_scope in
  let sc = find_scope scope in
  let notdata = {
    not_interp = pat;
    not_location = df;
    not_deprecation = deprecation;
  } in
  let notation_update,printing_update = update_notation_data (scopt,ntn) use notdata sc.notations in
  let sc = { sc with notations = notation_update } in
  scope_map := String.Map.add scope sc !scope_map;
  (* Update the uninterpretation cache *)
  begin match printing_update with
  | Some pat -> remove_uninterpretation (NotationRule (scopt,ntn)) pat
  | None -> ()
  end;
  if use <> OnlyParsing then declare_uninterpretation ~also_in_cases_pattern (NotationRule (scopt,ntn)) pat;
  (* Register visibility of lonely notations *)
  begin match scopt with
  | LastLonelyNotation -> scope_stack := LonelyNotationItem ntn :: !scope_stack
  | NotationInScope _ -> ()
  end;
  (* Declare a possible coercion *)
  begin match coe with
   | Some (IsEntryCoercion entry) ->
     let (_,level,_) = level_of_notation ntn in
     let level = match fst ntn with
       | InConstrEntry -> None
       | InCustomEntry _ -> Some level
     in
     declare_entry_coercion (scopt,ntn) level entry
   | Some (IsEntryGlobal (entry,n)) -> declare_custom_entry_has_global entry n
   | Some (IsEntryIdent (entry,n)) -> declare_custom_entry_has_ident entry n
   | None -> ()
  end

let availability_of_prim_token n printer_scope local_scopes =
  let f scope =
    try
      let uid = snd (String.Map.find scope !prim_token_interp_infos) in
      let open InnerPrimToken in
      match n, uid with
      | Constrexpr.Number _, NumberNotation _ -> true
      | _, NumberNotation _ -> false
      | String _, StringNotation _ -> true
      | _, StringNotation _ -> false
      | _, Uid uid ->
        let interp = Hashtbl.find prim_token_interpreters uid in
        match n, interp with
        | Constrexpr.Number _, (RawNumInterp _ | BigNumInterp _) -> true
        | String _, StringInterp _ -> true
        | _ -> false
    with Not_found -> false
  in
  let scopes = make_current_scopes local_scopes in
  Option.map snd (find_without_delimiters f (NotationInScope printer_scope,None) scopes)

let rec find_uninterpretation need_delim def find = function
  | [] ->
      List.find_map
        (fun (sc,_,_) -> try Some (find need_delim sc) with Not_found -> None)
        def
  | OpenScopeItem scope :: scopes ->
      (try find need_delim scope
       with Not_found -> find_uninterpretation need_delim def find scopes)  (* TODO: here we should also update the need_delim list with all regular notations in scope [scope] that could shadow a number notation *)
  | LonelyNotationItem ntn::scopes ->
      find_uninterpretation (ntn::need_delim) def find scopes

let uninterp_prim_token c local_scopes =
  match glob_prim_constr_key c with
  | None -> raise Notation_ops.No_match
  | Some r ->
     let uninterp (sc,(info,_)) =
       try
         let uninterp = match info with
           | Uid uid -> Hashtbl.find prim_token_uninterpreters uid
           | NumberNotation o -> InnerPrimToken.RawNumUninterp (Numbers.uninterp o)
           | StringNotation o -> InnerPrimToken.StringUninterp (Strings.uninterp o)
         in
         match InnerPrimToken.do_uninterp uninterp (AnyGlobConstr c) with
         | None -> None
         | Some n -> Some (sc,n)
       with Not_found -> None in
     let add_key (sc,n) =
       Option.map (fun k -> sc,n,k) (availability_of_prim_token n sc local_scopes) in
     let l =
       try GlobRef.Map.find r !prim_token_uninterp_infos
       with Not_found -> raise Notation_ops.No_match in
     let l = List.map_filter uninterp l in
     let l = List.map_filter add_key l in
     let find need_delim sc =
       let _,n,k = List.find (fun (sc',_,_) -> String.equal sc' sc) l in
       if k <> None then n,k else
         let hidden =
           List.exists
             (fun n' -> notation_eq n' (notation_of_prim_token n))
             need_delim in
         if not hidden then n,k else
           match (String.Map.find sc !scope_map).delimiters with
           | Some k -> n,Some k
           | None -> raise Not_found
     in
     let scopes = make_current_scopes local_scopes in
     try find_uninterpretation [] l find scopes
     with Not_found -> match l with (_,n,k)::_ -> n,k | [] -> raise Notation_ops.No_match

let uninterp_prim_token_cases_pattern c local_scopes =
  match glob_constr_of_closed_cases_pattern (Global.env()) c with
  | exception Not_found -> raise Notation_ops.No_match
  | na,c -> let (sc,n) = uninterp_prim_token c local_scopes in (na,sc,n)

(* Miscellaneous *)

let isNVar_or_NHole = function NVar _ | NHole _ -> true | _ -> false

(**********************************************************************)
(* Mapping classes to scopes *)

open Coercionops

type scope_class = cl_typ

let scope_class_compare : scope_class -> scope_class -> int =
  cl_typ_ord

let compute_scope_class env sigma t =
  let (cl,_,_) = find_class_type env sigma t in
  cl

module ScopeClassOrd =
struct
  type t = scope_class
  let compare = scope_class_compare
end

module ScopeClassMap = Map.Make(ScopeClassOrd)

let initial_scope_class_map : scope_name ScopeClassMap.t =
  ScopeClassMap.empty

let scope_class_map = ref initial_scope_class_map

let declare_scope_class sc cl =
  scope_class_map := ScopeClassMap.add cl sc !scope_class_map

let find_scope_class cl =
  ScopeClassMap.find cl !scope_class_map

let find_scope_class_opt = function
  | None -> None
  | Some cl -> try Some (find_scope_class cl) with Not_found -> None

(**********************************************************************)
(* Special scopes associated to arguments of a global reference *)

let rec compute_arguments_classes env sigma t =
  match EConstr.kind sigma (Reductionops.whd_betaiotazeta env sigma t) with
    | Prod (na, t, u) ->
        let env = EConstr.push_rel (Context.Rel.Declaration.LocalAssum (na, t)) env in
        let cl = try Some (compute_scope_class env sigma t) with Not_found -> None in
        cl :: compute_arguments_classes env sigma u
    | _ -> []

let compute_arguments_scope_full env sigma t =
  let cls = compute_arguments_classes env sigma t in
  let scs = List.map find_scope_class_opt cls in
  scs, cls

let compute_arguments_scope env sigma t = fst (compute_arguments_scope_full env sigma t)

let compute_type_scope env sigma t =
  find_scope_class_opt (try Some (compute_scope_class env sigma t) with Not_found -> None)

let current_type_scope_name () =
   find_scope_class_opt (Some CL_SORT)

let scope_class_of_class (x : cl_typ) : scope_class =
  x

(** Updating a scope list, thanks to a list of argument classes
    and the current Bind Scope base. When some current scope
    have been manually given, the corresponding argument class
    is emptied below, so this manual scope will be preserved. *)

let update_scope cl sco =
  match find_scope_class_opt cl with
  | None -> sco
  | sco' -> sco'

let rec update_scopes cls scl = match cls, scl with
  | [], _ -> scl
  | _, [] -> List.map find_scope_class_opt cls
  | cl :: cls, sco :: scl -> update_scope cl sco :: update_scopes cls scl

let arguments_scope = ref GlobRef.Map.empty

type arguments_scope_discharge_request =
  | ArgsScopeAuto
  | ArgsScopeManual
  | ArgsScopeNoDischarge

let load_arguments_scope _ (_,(_,r,n,scl,cls)) =
  List.iter (Option.iter check_scope) scl;
  let initial_stamp = ScopeClassMap.empty in
  arguments_scope := GlobRef.Map.add r (scl,cls,initial_stamp) !arguments_scope

let cache_arguments_scope o =
  load_arguments_scope 1 o

let subst_scope_class env subst cs =
  try Some (subst_cl_typ env subst cs) with Not_found -> None

let subst_arguments_scope (subst,(req,r,n,scl,cls)) =
  let r' = fst (subst_global subst r) in
  let subst_cl ocl = match ocl with
    | None -> ocl
    | Some cl ->
        let env = Global.env () in
        match subst_scope_class env subst cl with
        | Some cl'  as ocl' when cl' != cl -> ocl'
        | _ -> ocl in
  let cls' = List.Smart.map subst_cl cls in
  (ArgsScopeNoDischarge,r',n,scl,cls')

let discharge_arguments_scope (_,(req,r,n,l,_)) =
  if req == ArgsScopeNoDischarge || (isVarRef r && Lib.is_in_section r) then None
  else
    let n =
      try
        let vars = Lib.variable_section_segment_of_reference r in
        vars |> List.filter is_local_assum |> List.length
      with
        Not_found (* Not a ref defined in this section *) -> 0 in
    Some (req,r,n,l,[])

let classify_arguments_scope (req,_,_,_,_ as obj) =
  if req == ArgsScopeNoDischarge then Dispose else Substitute obj

let rebuild_arguments_scope sigma (req,r,n,l,_) =
  match req with
    | ArgsScopeNoDischarge -> assert false
    | ArgsScopeAuto ->
      let env = Global.env () in (*FIXME?*)
      let typ = EConstr.of_constr @@ fst (Typeops.type_of_global_in_context env r) in
      let scs,cls = compute_arguments_scope_full env sigma typ in
      (req,r,List.length scs,scs,cls)
    | ArgsScopeManual ->
      (* Add to the manually given scopes the one found automatically
         for the extra parameters of the section. Discard the classes
         of the manually given scopes to avoid further re-computations. *)
      let env = Global.env () in (*FIXME?*)
      let typ = EConstr.of_constr @@ fst (Typeops.type_of_global_in_context env r) in
      let l',cls = compute_arguments_scope_full env sigma typ in
      let l1 = List.firstn n l' in
      let cls1 = List.firstn n cls in
      (req,r,0,l1@l,cls1)

type arguments_scope_obj =
    arguments_scope_discharge_request * GlobRef.t *
    (* Used to communicate information from discharge to rebuild *)
    (* set to 0 otherwise *) int *
    scope_name option list * scope_class option list

let inArgumentsScope : arguments_scope_obj -> obj =
  declare_object {(default_object "ARGUMENTS-SCOPE") with
      cache_function = cache_arguments_scope;
      load_function = load_arguments_scope;
      subst_function = subst_arguments_scope;
      classify_function = classify_arguments_scope;
      discharge_function = discharge_arguments_scope;
      (* XXX: Should we pass the sigma here or not, see @herbelin's comment in 6511 *)
      rebuild_function = rebuild_arguments_scope Evd.empty }

let is_local local ref = local || isVarRef ref && Lib.is_in_section ref

let declare_arguments_scope_gen req r n (scl,cls) =
  Lib.add_anonymous_leaf (inArgumentsScope (req,r,n,scl,cls))

let declare_arguments_scope local r scl =
  let req = if is_local local r then ArgsScopeNoDischarge else ArgsScopeManual in
  (* We empty the list of argument classes to disable further scope
     re-computations and keep these manually given scopes. *)
  declare_arguments_scope_gen req r 0 (scl,[])

let find_arguments_scope r =
  try
    let (scl,cls,stamp) = GlobRef.Map.find r !arguments_scope in
    let cur_stamp = !scope_class_map in
    if stamp == cur_stamp then scl
    else
      (* Recent changes in the Bind Scope base, we re-compute the scopes *)
      let scl' = update_scopes cls scl in
      arguments_scope := GlobRef.Map.add r (scl',cls,cur_stamp) !arguments_scope;
      scl'
  with Not_found -> []

let declare_ref_arguments_scope sigma ref =
  let env = Global.env () in (* FIXME? *)
  let typ = EConstr.of_constr @@ fst @@ Typeops.type_of_global_in_context env ref in
  let (scs,cls as o) = compute_arguments_scope_full env sigma typ in
  declare_arguments_scope_gen ArgsScopeAuto ref (List.length scs) o

(********************************)
(* Encoding notations as string *)

type symbol =
  | Terminal of string
  | NonTerminal of Id.t
  | SProdList of Id.t * symbol list
  | Break of int

let rec symbol_eq s1 s2 = match s1, s2 with
  | Terminal s1, Terminal s2 -> String.equal s1 s2
  | NonTerminal id1, NonTerminal id2 -> Id.equal id1 id2
  | SProdList (id1, l1), SProdList (id2, l2) ->
    Id.equal id1 id2 && List.equal symbol_eq l1 l2
  | Break i1, Break i2 -> Int.equal i1 i2
  | _ -> false

let rec string_of_symbol = function
  | NonTerminal _ -> ["_"]
  | Terminal "_" -> ["'_'"]
  | Terminal s -> [s]
  | SProdList (_,l) ->
     let l = List.flatten (List.map string_of_symbol l) in "_"::l@".."::l@["_"]
  | Break _ -> []

let make_notation_key from symbols =
  (from,String.concat " " (List.flatten (List.map string_of_symbol symbols)))

let decompose_notation_key (from,s) =
  let len = String.length s in
  let rec decomp_ntn dirs n =
    if n>=len then List.rev dirs else
    let pos =
      try
        String.index_from s n ' '
      with Not_found -> len
    in
    let tok =
      match String.sub s n (pos-n) with
      | "_" -> NonTerminal (Id.of_string "_")
      | s -> Terminal (String.drop_simple_quotes s) in
    decomp_ntn (tok::dirs) (pos+1)
  in
    from, decomp_ntn [] 0

(************)
(* Printing *)

let pr_delimiters_info = function
  | None -> str "No delimiting key"
  | Some key -> str "Delimiting key is " ++ str key

let classes_of_scope sc =
  ScopeClassMap.fold (fun cl sc' l -> if String.equal sc sc' then cl::l else l) !scope_class_map []

let pr_scope_class = pr_class

let pr_scope_classes sc =
  let l = classes_of_scope sc in
  match l with
  | [] -> mt ()
  | _ :: ll ->
    let opt_s = match ll with [] -> mt () | _ -> str "es" in
    hov 0 (str "Bound to class" ++ opt_s ++
      spc() ++ prlist_with_sep spc pr_scope_class l)

let pr_notation_info prglob ntn c =
  str "\"" ++ str ntn ++ str "\" :=" ++ brk (1,2) ++
  prglob (Notation_ops.glob_constr_of_notation_constr c)

let pr_notation_status on_parsing on_printing =
  let deactivated b = if b then [] else ["deactivated"] in
  let l = match on_parsing, on_printing with
  | Some on, None -> "only parsing" :: deactivated on
  | None, Some on -> "only printing" :: deactivated on
  | Some false, Some false -> ["deactivated"]
  | Some true, Some false -> ["deactivated for printing"]
  | Some false, Some true -> ["deactivated for parsing"]
  | Some true, Some true -> []
  | None, None -> assert false in
  match l with
  | [] -> mt ()
  | l -> str "(" ++ prlist_with_sep pr_comma str l ++ str ")"

let pr_non_empty spc pp =
  if pp = mt () then mt () else spc ++ pp

let pr_notation_data prglob (on_parsing,on_printing,{ not_interp  = (_, r); not_location = (_, df) }) =
  hov 0 (pr_notation_info prglob df r ++ pr_non_empty (brk(1,2)) (pr_notation_status on_parsing on_printing))

let extract_notation_data (main,extra) =
  let main = match main with
  | NoParsingData -> []
  | ParsingAndPrintingData (on_parsing, on_printing, d) ->
    [Some on_parsing, Some on_printing, d]
  | OnlyParsingData (on_parsing, d) ->
    [Some on_parsing, None, d] in
  let extra = List.map (fun (on_printing, d) -> (None, Some on_printing, d)) extra in
  main @ extra

let pr_named_scope prglob (scope,sc) =
 (if String.equal scope default_scope then
   match NotationMap.cardinal sc.notations with
     | 0 -> str "No lonely notation"
     | n -> str "Lonely notation" ++ (if Int.equal n 1 then mt() else str"s")
  else
    str "Scope " ++ str scope ++ fnl () ++ pr_delimiters_info sc.delimiters)
  ++ pr_non_empty (fnl ()) (pr_scope_classes scope)
  ++ prlist (fun a -> fnl () ++ pr_notation_data prglob a)
       (NotationMap.fold (fun ntn data l -> extract_notation_data data @ l) sc.notations [])

let pr_scope prglob scope = pr_named_scope prglob (scope, find_scope scope)

let pr_scopes prglob =
 let l = String.Map.bindings !scope_map in
 prlist_with_sep (fun () -> fnl () ++ fnl ()) (pr_named_scope prglob) l

let rec find_default ntn = function
  | [] -> None
  | OpenScopeItem scope :: scopes ->
    if has_active_parsing_rule_in_scope ntn scope then Some scope
    else find_default ntn scopes
  | LonelyNotationItem ntn' :: scopes ->
    if notation_eq ntn ntn' then Some default_scope
    else find_default ntn scopes

let factorize_entries = function
  | [] -> []
  | (ntn,sc',c)::l ->
      let (ntn,l_of_ntn,rest) =
        List.fold_left
          (fun (a',l,rest) (a,sc,c) ->
            if notation_eq a a' then (a',(sc,c)::l,rest) else (a,[sc,c],(a',l)::rest))
          (ntn,[sc',c],[]) l in
      (ntn,l_of_ntn)::rest

type symbol_token = WhiteSpace of int | String of string

let split_notation_string str =
  let push_token beg i l =
    if Int.equal beg i then l else
      let s = String.sub str beg (i - beg) in
      String s :: l
  in
  let push_whitespace beg i l =
    if Int.equal beg i then l else WhiteSpace (i-beg) :: l
  in
  let rec loop beg i =
    if i < String.length str then
      if str.[i] == ' ' then
        push_token beg i (loop_on_whitespace (i+1) (i+1))
      else
        loop beg (i+1)
    else
      push_token beg i []
  and loop_on_whitespace beg i =
    if i < String.length str then
      if str.[i] != ' ' then
        push_whitespace beg i (loop i (i+1))
      else
        loop_on_whitespace beg (i+1)
    else
      push_whitespace beg i []
  in
  loop 0 0

let rec raw_analyze_notation_tokens = function
  | []    -> []
  | String ".." :: sl -> NonTerminal Notation_ops.ldots_var :: raw_analyze_notation_tokens sl
  | String "_" :: _ -> user_err Pp.(str "_ must be quoted.")
  | String x :: sl when Id.is_valid x ->
      NonTerminal (Names.Id.of_string x) :: raw_analyze_notation_tokens sl
  | String s :: sl ->
      Terminal (String.drop_simple_quotes s) :: raw_analyze_notation_tokens sl
  | WhiteSpace n :: sl ->
      Break n :: raw_analyze_notation_tokens sl

let rec raw_analyze_anonymous_notation_tokens = function
  | []    -> []
  | String ".." :: sl -> NonTerminal Notation_ops.ldots_var :: raw_analyze_anonymous_notation_tokens sl
  | String "_" :: sl -> NonTerminal (Id.of_string "dummy") :: raw_analyze_anonymous_notation_tokens sl
  | String s :: sl ->
      Terminal (String.drop_simple_quotes s) :: raw_analyze_anonymous_notation_tokens sl
  | WhiteSpace n :: sl -> raw_analyze_anonymous_notation_tokens sl

(* Interpret notations with a recursive component *)

let out_nt = function NonTerminal x -> x | _ -> assert false

let msg_expected_form_of_recursive_notation =
  "In the notation, the special symbol \"..\" must occur in\na configuration of the form \"x symbs .. symbs y\"."

let rec find_pattern nt xl = function
  | Break n as x :: l, Break n' :: l' when Int.equal n n' ->
      find_pattern nt (x::xl) (l,l')
  | Terminal s as x :: l, Terminal s' :: l' when String.equal s s' ->
      find_pattern nt (x::xl) (l,l')
  | [], NonTerminal x' :: l' ->
      (out_nt nt,x',List.rev xl),l'
  | _, Break s :: _ | Break s :: _, _ ->
      user_err Pp.(str ("A break occurs on one side of \"..\" but not on the other side."))
  | _, Terminal s :: _ | Terminal s :: _, _ ->
      user_err ~hdr:"Metasyntax.find_pattern"
        (str "The token \"" ++ str s ++ str "\" occurs on one side of \"..\" but not on the other side.")
  | _, [] ->
      user_err Pp.(str msg_expected_form_of_recursive_notation)
  | ((SProdList _ | NonTerminal _) :: _), _ | _, (SProdList _ :: _) ->
      anomaly (Pp.str "Only Terminal or Break expected on left, non-SProdList on right.")

let rec interp_list_parser hd = function
  | [] -> [], List.rev hd
  | NonTerminal id :: tl when Id.equal id Notation_ops.ldots_var ->
      if List.is_empty hd then user_err Pp.(str msg_expected_form_of_recursive_notation);
      let hd = List.rev hd in
      let ((x,y,sl),tl') = find_pattern (List.hd hd) [] (List.tl hd,tl) in
      let xyl,tl'' = interp_list_parser [] tl' in
      (* We remember each pair of variable denoting a recursive part to *)
      (* remove the second copy of it afterwards *)
      (x,y)::xyl, SProdList (x,sl) :: tl''
  | (Terminal _ | Break _) as s :: tl ->
      if List.is_empty hd then
        let yl,tl' = interp_list_parser [] tl in
        yl, s :: tl'
      else
        interp_list_parser (s::hd) tl
  | NonTerminal _ as x :: tl ->
      let xyl,tl' = interp_list_parser [x] tl in
      xyl, List.rev_append hd tl'
  | SProdList _ :: _ -> anomaly (Pp.str "Unexpected SProdList in interp_list_parser.")

let get_notation_vars l =
  List.map_filter (function NonTerminal id | SProdList (id,_) -> Some id | _ -> None) l

let decompose_raw_notation ntn =
  let l = split_notation_string ntn in
  let l = raw_analyze_notation_tokens l in
  let recvars,l = interp_list_parser [] l in
  let vars = get_notation_vars l in
  recvars, vars, l

let interpret_notation_string ntn =
  (* We collect the possible interpretations of a notation string depending on whether it is
    in "x 'U' y" or "_ U _" format *)
  let toks = split_notation_string ntn in
  let toks =
    if
      List.exists (function String "_" -> true | _ -> false) toks ||
      List.for_all (function String id -> Id.is_valid id | _ -> false) toks
    then
      (* Only "_ U _" format *)
      raw_analyze_anonymous_notation_tokens toks
    else
      (* Includes the case of only a subset of tokens or an "x 'U' y"-style format *)
      raw_analyze_notation_tokens toks
  in
  let _,toks = interp_list_parser [] toks in
  let _,ntn' = make_notation_key None toks in
  ntn'

(* Tell if a non-recursive notation is an instance of a recursive one *)
let is_approximation ntn ntn' =
  let rec aux toks1 toks2 = match (toks1, toks2) with
    | Terminal s1 :: toks1, Terminal s2 :: toks2 -> String.equal s1 s2 && aux toks1 toks2
    | NonTerminal _ :: toks1, NonTerminal _ :: toks2 -> aux toks1 toks2
    | SProdList (_,l1) :: toks1, SProdList (_, l2) :: toks2 -> aux l1 l2 && aux toks1 toks2
    | NonTerminal _ :: toks1, SProdList (_,l2) :: toks2 -> aux' toks1 l2 l2 toks2 || aux toks1 toks2
    | [], [] -> true
    | (Break _ :: _, _) | (_, Break _ :: _) -> assert false
    | (Terminal _ | NonTerminal _ | SProdList _) :: _, _ -> false
    | [], _ -> false
  and aux' toks1 l2 l2full toks2 = match (toks1, l2) with
    | Terminal s1 :: toks1, Terminal s2 :: l2 when String.equal s1 s2 -> aux' toks1 l2 l2full toks2
    | NonTerminal _ :: toks1, [] -> aux' toks1 l2full l2full toks2 || aux toks1 toks2
    | _ -> false
  in
  let _,toks = interp_list_parser [] (raw_analyze_anonymous_notation_tokens (split_notation_string ntn)) in
  let _,toks' = interp_list_parser [] (raw_analyze_anonymous_notation_tokens (split_notation_string ntn')) in
  aux toks toks'

let browse_notation strict ntn map =
  let ntn = interpret_notation_string ntn in
  let find (from,ntn' as fullntn') =
    if String.contains ntn ' ' then
      if String.string_contains ~where:ntn' ~what:".." then is_approximation ntn ntn'
      else String.equal ntn ntn'
    else
      let _,toks = decompose_notation_key fullntn' in
      let get_terminals = function Terminal ntn -> Some ntn | _ -> None in
      let trms = List.map_filter get_terminals toks in
      if strict then String.List.equal [ntn] trms
      else String.List.mem ntn trms
  in
  let l =
    String.Map.fold
      (fun scope_name sc ->
        NotationMap.fold (fun ntn data l ->
          if find ntn
          then List.map (fun d -> (ntn,scope_name,d)) (extract_notation_data data) @ l
          else l) sc.notations)
      map [] in
  List.sort (fun x y -> String.compare (snd (pi1 x)) (snd (pi1 y))) l

let global_reference_of_notation ~head test (ntn,sc,(on_parsing,on_printing,{not_interp = (_,c)})) =
  match c with
  | NRef (ref,_) when test ref -> Some (on_parsing,on_printing,ntn,sc,ref)
  | NApp (NRef (ref,_), l) when head || List.for_all isNVar_or_NHole l && test ref ->
      Some (on_parsing,on_printing,ntn,sc,ref)
  | _ -> None

let error_ambiguous_notation ?loc _ntn =
  user_err ?loc (str "Ambiguous notation.")

let error_notation_not_reference ?loc ntn =
  user_err ?loc
   (str "Unable to interpret " ++ quote (str ntn) ++
    str " as a reference.")

let interp_notation_as_global_reference ?loc ~head test ntn sc =
  let scopes = match sc with
  | Some sc ->
      let scope = find_scope (find_delimiters_scope sc) in
      String.Map.add sc scope String.Map.empty
  | None -> !scope_map in
  let ntns = browse_notation true ntn scopes in
  let refs = List.map (global_reference_of_notation ~head test) ntns in
  match Option.List.flatten refs with
  | [Some true,_ (* why not if the only one? *),_,_,ref] -> ref
  | [] -> error_notation_not_reference ?loc ntn
  | refs ->
      let f (on_parsing,_,ntn,sc,ref) =
        let def = find_default ntn !scope_stack in
        match def with
        | None -> false
        | Some sc' -> on_parsing = Some true && String.equal sc sc'
      in
      match List.filter f refs with
      | [_,_,_,_,ref] -> ref
      | [] -> error_notation_not_reference ?loc ntn
      | _ -> error_ambiguous_notation ?loc ntn

let locate_notation prglob ntn scope =
  let ntns = factorize_entries (browse_notation false ntn !scope_map) in
  let scopes = Option.fold_right push_scope scope !scope_stack in
  match ntns with
  | [] -> str "Unknown notation"
  | _ ->
    prlist_with_sep fnl (fun (ntn,l) ->
      let scope = find_default ntn scopes in
      prlist_with_sep fnl
        (fun (sc,(on_parsing,on_printing,{ not_interp  = (_, r); not_location = (_, df) })) ->
          hov 0 (
            str "Notation" ++ brk (1,2) ++
            pr_notation_info prglob df r ++
            (if String.equal sc default_scope then mt ()
             else (brk (1,2) ++ str ": " ++ str sc)) ++
            (if Option.equal String.equal (Some sc) scope
             then brk (1,2) ++ str "(default interpretation)" else mt ()) ++
            pr_non_empty (brk (1,2)) (pr_notation_status on_parsing on_printing)))
        l) ntns

let collect_notation_in_scope scope sc known =
  assert (not (String.equal scope default_scope));
  NotationMap.fold
    (fun ntn d (l,known as acc) ->
      if List.mem_f notation_eq ntn known then acc else (extract_notation_data d @ l,ntn::known))
    sc.notations ([],known)

let collect_notations stack =
  fst (List.fold_left
    (fun (all,knownntn as acc) -> function
      | OpenScopeItem scope ->
          if String.List.mem_assoc scope all then acc
          else
            let (l,knownntn) =
              collect_notation_in_scope scope (find_scope scope) knownntn in
            ((scope,l)::all,knownntn)
      | LonelyNotationItem ntn ->
          if List.mem_f notation_eq ntn knownntn then (all,knownntn)
          else
          try
            let datas = extract_notation_data
              (NotationMap.find ntn (find_scope default_scope).notations) in
            let all' = match all with
              | (s,lonelyntn)::rest when String.equal s default_scope ->
                  (s,datas@lonelyntn)::rest
              | _ ->
                  (default_scope,datas)::all in
            (all',ntn::knownntn)
          with Not_found -> (* e.g. if only printing *) (all,knownntn))
    ([],[]) stack)

let pr_visible_in_scope prglob (scope,ntns) =
  let strm =
    List.fold_right
      (fun d strm -> pr_notation_data prglob d ++ fnl () ++ strm)
      ntns (mt ()) in
  (if String.equal scope default_scope then
     str "Lonely notation" ++ (match ntns with [_] -> mt () | _ -> str "s")
   else
     str "Visible in scope " ++ str scope)
  ++ fnl () ++ strm

let pr_scope_stack prglob stack =
  prlist_with_sep fnl (pr_visible_in_scope prglob) (collect_notations stack)

let pr_visibility prglob = function
  | Some scope -> pr_scope_stack prglob (push_scope scope !scope_stack)
  | None -> pr_scope_stack prglob !scope_stack

(**********************************************************************)
(* Synchronisation with reset *)

let freeze ~marshallable =
 (!scope_map, !scope_stack, !arguments_scope,
  !delimiters_map, !notations_key_table, !scope_class_map,
  !prim_token_interp_infos, !prim_token_uninterp_infos,
  !entry_coercion_map, !entry_has_global_map,
  !entry_has_ident_map)

let unfreeze (scm,scs,asc,dlm,fkm,clsc,ptii,ptui,coe,globs,ids) =
  scope_map := scm;
  scope_stack := scs;
  delimiters_map := dlm;
  arguments_scope := asc;
  notations_key_table := fkm;
  scope_class_map := clsc;
  prim_token_interp_infos := ptii;
  prim_token_uninterp_infos := ptui;
  entry_coercion_map := coe;
  entry_has_global_map := globs;
  entry_has_ident_map := ids

let init () =
  init_scope_map ();
  delimiters_map := String.Map.empty;
  notations_key_table := KeyMap.empty;
  scope_class_map := initial_scope_class_map;
  prim_token_interp_infos := String.Map.empty;
  prim_token_uninterp_infos := GlobRef.Map.empty

let _ =
  Summary.declare_summary "symbols"
    { Summary.freeze_function = freeze;
      Summary.unfreeze_function = unfreeze;
      Summary.init_function = init }

let with_notation_protection f x =
  let fs = freeze ~marshallable:false in
  try let a = f x in unfreeze fs; a
  with reraise ->
    let reraise = Exninfo.capture reraise in
    let () = unfreeze fs in
    Exninfo.iraise reraise
OCaml

Innovation. Community. Security.