package coq-core

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file sos_lib.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
(* ========================================================================= *)
(* - This code originates from John Harrison's HOL LIGHT 2.30                *)
(*   (see file LICENSE.sos for license, copyright and disclaimer)            *)
(*   This code is the HOL LIGHT library code used by sos.ml                  *)
(* - Laurent Théry (thery@sophia.inria.fr) has isolated the HOL              *)
(*   independent bits                                                        *)
(* - Frédéric Besson (fbesson@irisa.fr) is using it to feed  micromega       *)
(* ========================================================================= *)

(* ------------------------------------------------------------------------- *)
(* Comparisons that are reflexive on NaN and also short-circuiting.          *)
(* ------------------------------------------------------------------------- *)

(** FIXME *)
let cmp = compare

let ( =? ) x y = cmp x y = 0
let ( <? ) x y = cmp x y < 0
let ( <=? ) x y = cmp x y <= 0
let ( >? ) x y = cmp x y > 0

(* ------------------------------------------------------------------------- *)
(* Combinators.                                                              *)
(* ------------------------------------------------------------------------- *)

let o f g x = f (g x)

(* ------------------------------------------------------------------------- *)
(* Various versions of list iteration.                                       *)
(* ------------------------------------------------------------------------- *)

let rec end_itlist f l =
  match l with
  | [] -> failwith "end_itlist"
  | [x] -> x
  | h :: t -> f h (end_itlist f t)

(* ------------------------------------------------------------------------- *)
(* All pairs arising from applying a function over two lists.                *)
(* ------------------------------------------------------------------------- *)

let rec allpairs f l1 l2 =
  match l1 with
  | h1 :: t1 -> List.fold_right (fun x a -> f h1 x :: a) l2 (allpairs f t1 l2)
  | [] -> []

(* ------------------------------------------------------------------------- *)
(* String operations (surely there is a better way...)                       *)
(* ------------------------------------------------------------------------- *)

let implode l = List.fold_right ( ^ ) l ""

let explode s =
  let rec exap n l =
    if n < 0 then l else exap (n - 1) (String.sub s n 1 :: l)
  in
  exap (String.length s - 1) []

(* ------------------------------------------------------------------------- *)
(* Repetition of a function.                                                 *)
(* ------------------------------------------------------------------------- *)

let rec funpow n f x = if n < 1 then x else funpow (n - 1) f (f x)

(* ------------------------------------------------------------------------- *)
(* Sequences.                                                *)
(* ------------------------------------------------------------------------- *)

let rec ( -- ) m n = if m > n then [] else m :: (m + 1 -- n)

(* ------------------------------------------------------------------------- *)
(* Various useful list operations.                                           *)
(* ------------------------------------------------------------------------- *)

let rec tryfind f l =
  match l with
  | [] -> failwith "tryfind"
  | h :: t -> ( try f h with Failure _ -> tryfind f t )

(* ------------------------------------------------------------------------- *)
(* "Set" operations on lists.                                                *)
(* ------------------------------------------------------------------------- *)

let rec mem x lis = match lis with [] -> false | h :: t -> x =? h || mem x t
let insert x l = if mem x l then l else x :: l
let union l1 l2 = List.fold_right insert l1 l2
let subtract l1 l2 = List.filter (fun x -> not (mem x l2)) l1

(* ------------------------------------------------------------------------- *)
(* Common measure predicates to use with "sort".                             *)
(* ------------------------------------------------------------------------- *)

let increasing f x y = f x <? f y

(* ------------------------------------------------------------------------- *)
(* Iterating functions over lists.                                           *)
(* ------------------------------------------------------------------------- *)

let rec do_list f l = match l with [] -> () | h :: t -> f h; do_list f t

(* ------------------------------------------------------------------------- *)
(* Sorting.                                                                  *)
(* ------------------------------------------------------------------------- *)

let rec sort cmp lis =
  match lis with
  | [] -> []
  | piv :: rest ->
    let r, l = List.partition (cmp piv) rest in
    sort cmp l @ (piv :: sort cmp r)

(* ------------------------------------------------------------------------- *)
(* Removing adjacent (NB!) equal elements from list.                         *)
(* ------------------------------------------------------------------------- *)

let rec uniq l =
  match l with
  | x :: (y :: _ as t) ->
    let t' = uniq t in
    if x =? y then t' else if t' == t then l else x :: t'
  | _ -> l

(* ------------------------------------------------------------------------- *)
(* Convert list into set by eliminating duplicates.                          *)
(* ------------------------------------------------------------------------- *)

let setify s = uniq (sort ( <=? ) s)

(* ------------------------------------------------------------------------- *)
(* Polymorphic finite partial functions via Patricia trees.                  *)
(*                                                                           *)
(* The point of this strange representation is that it is canonical (equal   *)
(* functions have the same encoding) yet reasonably efficient on average.    *)
(*                                                                           *)
(* Idea due to Diego Olivier Fernandez Pons (OCaml list, 2003/11/10).        *)
(* ------------------------------------------------------------------------- *)

type ('a, 'b) func =
  | Empty
  | Leaf of int * ('a * 'b) list
  | Branch of int * int * ('a, 'b) func * ('a, 'b) func

(* ------------------------------------------------------------------------- *)
(* Undefined function.                                                       *)
(* ------------------------------------------------------------------------- *)

let undefined = Empty

(* ------------------------------------------------------------------------- *)
(* In case of equality comparison worries, better use this.                  *)
(* ------------------------------------------------------------------------- *)

let is_undefined f = match f with Empty -> true | _ -> false

(* ------------------------------------------------------------------------- *)
(* Operation analogous to "map" for lists.                                   *)
(* ------------------------------------------------------------------------- *)

let mapf =
  let rec map_list f l =
    match l with [] -> [] | (x, y) :: t -> (x, f y) :: map_list f t
  in
  let rec mapf f t =
    match t with
    | Empty -> Empty
    | Leaf (h, l) -> Leaf (h, map_list f l)
    | Branch (p, b, l, r) -> Branch (p, b, mapf f l, mapf f r)
  in
  mapf

(* ------------------------------------------------------------------------- *)
(* Operations analogous to "fold" for lists.                                 *)
(* ------------------------------------------------------------------------- *)

let foldl =
  let rec foldl_list f a l =
    match l with [] -> a | (x, y) :: t -> foldl_list f (f a x y) t
  in
  let rec foldl f a t =
    match t with
    | Empty -> a
    | Leaf (h, l) -> foldl_list f a l
    | Branch (p, b, l, r) -> foldl f (foldl f a l) r
  in
  foldl

let foldr =
  let rec foldr_list f l a =
    match l with [] -> a | (x, y) :: t -> f x y (foldr_list f t a)
  in
  let rec foldr f t a =
    match t with
    | Empty -> a
    | Leaf (h, l) -> foldr_list f l a
    | Branch (p, b, l, r) -> foldr f l (foldr f r a)
  in
  foldr

(* ------------------------------------------------------------------------- *)
(* Redefinition and combination.                                             *)
(* ------------------------------------------------------------------------- *)

let ( |-> ), combine =
  let ldb x y =
    let z = x lxor y in
    z land -z
  in
  let newbranch p1 t1 p2 t2 =
    let b = ldb p1 p2 in
    let p = p1 land (b - 1) in
    if p1 land b = 0 then Branch (p, b, t1, t2) else Branch (p, b, t2, t1)
  in
  let rec define_list ((x, y) as xy) l =
    match l with
    | ((a, b) as ab) :: t ->
      if x =? a then xy :: t
      else if x <? a then xy :: l
      else ab :: define_list xy t
    | [] -> [xy]
  and combine_list op z l1 l2 =
    match (l1, l2) with
    | [], _ -> l2
    | _, [] -> l1
    | ((x1, y1) as xy1) :: t1, ((x2, y2) as xy2) :: t2 ->
      if x1 <? x2 then xy1 :: combine_list op z t1 l2
      else if x2 <? x1 then xy2 :: combine_list op z l1 t2
      else
        let y = op y1 y2 and l = combine_list op z t1 t2 in
        if z y then l else (x1, y) :: l
  in
  let ( |-> ) x y =
    let k = Hashtbl.hash x in
    let rec upd t =
      match t with
      | Empty -> Leaf (k, [(x, y)])
      | Leaf (h, l) ->
        if h = k then Leaf (h, define_list (x, y) l)
        else newbranch h t k (Leaf (k, [(x, y)]))
      | Branch (p, b, l, r) ->
        if k land (b - 1) <> p then newbranch p t k (Leaf (k, [(x, y)]))
        else if k land b = 0 then Branch (p, b, upd l, r)
        else Branch (p, b, l, upd r)
    in
    upd
  in
  let rec combine op z t1 t2 =
    match (t1, t2) with
    | Empty, _ -> t2
    | _, Empty -> t1
    | Leaf (h1, l1), Leaf (h2, l2) ->
      if h1 = h2 then
        let l = combine_list op z l1 l2 in
        if l = [] then Empty else Leaf (h1, l)
      else newbranch h1 t1 h2 t2
    | (Leaf (k, lis) as lf), (Branch (p, b, l, r) as br)
     |(Branch (p, b, l, r) as br), (Leaf (k, lis) as lf) ->
      if k land (b - 1) = p then
        if k land b = 0 then
          let l' = combine op z lf l in
          if is_undefined l' then r else Branch (p, b, l', r)
        else
          let r' = combine op z lf r in
          if is_undefined r' then l else Branch (p, b, l, r')
      else newbranch k lf p br
    | Branch (p1, b1, l1, r1), Branch (p2, b2, l2, r2) ->
      if b1 < b2 then
        if p2 land (b1 - 1) <> p1 then newbranch p1 t1 p2 t2
        else if p2 land b1 = 0 then
          let l = combine op z l1 t2 in
          if is_undefined l then r1 else Branch (p1, b1, l, r1)
        else
          let r = combine op z r1 t2 in
          if is_undefined r then l1 else Branch (p1, b1, l1, r)
      else if b2 < b1 then
        if p1 land (b2 - 1) <> p2 then newbranch p1 t1 p2 t2
        else if p1 land b2 = 0 then
          let l = combine op z t1 l2 in
          if is_undefined l then r2 else Branch (p2, b2, l, r2)
        else
          let r = combine op z t1 r2 in
          if is_undefined r then l2 else Branch (p2, b2, l2, r)
      else if p1 = p2 then
        let l = combine op z l1 l2 and r = combine op z r1 r2 in
        if is_undefined l then r
        else if is_undefined r then l
        else Branch (p1, b1, l, r)
      else newbranch p1 t1 p2 t2
  in
  (( |-> ), combine)

(* ------------------------------------------------------------------------- *)
(* Special case of point function.                                           *)
(* ------------------------------------------------------------------------- *)

let ( |=> ) x y = (x |-> y) undefined

(* ------------------------------------------------------------------------- *)
(* Grab an arbitrary element.                                                *)
(* ------------------------------------------------------------------------- *)

let rec choose t =
  match t with
  | Empty -> failwith "choose: completely undefined function"
  | Leaf (h, l) -> List.hd l
  | Branch (b, p, t1, t2) -> choose t1

(* ------------------------------------------------------------------------- *)
(* Application.                                                              *)
(* ------------------------------------------------------------------------- *)

let applyd =
  let rec apply_listd l d x =
    match l with
    | (a, b) :: t ->
      if x =? a then b else if x >? a then apply_listd t d x else d x
    | [] -> d x
  in
  fun f d x ->
    let k = Hashtbl.hash x in
    let rec look t =
      match t with
      | Leaf (h, l) when h = k -> apply_listd l d x
      | Branch (p, b, l, r) -> look (if k land b = 0 then l else r)
      | _ -> d x
    in
    look f

let apply f = applyd f (fun x -> failwith "apply")
let tryapplyd f a d = applyd f (fun x -> d) a

(* ------------------------------------------------------------------------- *)
(* Undefinition.                                                             *)
(* ------------------------------------------------------------------------- *)

let undefine =
  let rec undefine_list x l =
    match l with
    | ((a, b) as ab) :: t ->
      if x =? a then t
      else if x <? a then l
      else
        let t' = undefine_list x t in
        if t' == t then l else ab :: t'
    | [] -> []
  in
  fun x ->
    let k = Hashtbl.hash x in
    let rec und t =
      match t with
      | Leaf (h, l) when h = k ->
        let l' = undefine_list x l in
        if l' == l then t else if l' = [] then Empty else Leaf (h, l')
      | Branch (p, b, l, r) when k land (b - 1) = p ->
        if k land b = 0 then
          let l' = und l in
          if l' == l then t
          else if is_undefined l' then r
          else Branch (p, b, l', r)
        else
          let r' = und r in
          if r' == r then t
          else if is_undefined r' then l
          else Branch (p, b, l, r')
      | _ -> t
    in
    und

(* ------------------------------------------------------------------------- *)
(* Mapping to sorted-list representation of the graph, domain and range.     *)
(* ------------------------------------------------------------------------- *)

let graph f = setify (foldl (fun a x y -> (x, y) :: a) [] f)
let dom f = setify (foldl (fun a x y -> x :: a) [] f)

(* ------------------------------------------------------------------------- *)
(* More parser basics.                                                       *)
(* ------------------------------------------------------------------------- *)

exception Noparse

let isspace, isnum =
  let charcode s = Char.code s.[0] in
  let spaces = " \t\n\r"
  and separators = ",;"
  and brackets = "()[]{}"
  and symbs = "\\!@#$%^&*-+|\\<=>/?~.:"
  and alphas = "'abcdefghijklmnopqrstuvwxyz_ABCDEFGHIJKLMNOPQRSTUVWXYZ"
  and nums = "0123456789" in
  let allchars = spaces ^ separators ^ brackets ^ symbs ^ alphas ^ nums in
  let csetsize = List.fold_right (o max charcode) (explode allchars) 256 in
  let ctable = Array.make csetsize 0 in
  do_list (fun c -> ctable.(charcode c) <- 1) (explode spaces);
  do_list (fun c -> ctable.(charcode c) <- 2) (explode separators);
  do_list (fun c -> ctable.(charcode c) <- 4) (explode brackets);
  do_list (fun c -> ctable.(charcode c) <- 8) (explode symbs);
  do_list (fun c -> ctable.(charcode c) <- 16) (explode alphas);
  do_list (fun c -> ctable.(charcode c) <- 32) (explode nums);
  let isspace c = ctable.(charcode c) = 1
  and isnum c = ctable.(charcode c) = 32 in
  (isspace, isnum)

let parser_or parser1 parser2 input =
  try parser1 input with Noparse -> parser2 input

let ( ++ ) parser1 parser2 input =
  let result1, rest1 = parser1 input in
  let result2, rest2 = parser2 rest1 in
  ((result1, result2), rest2)

let rec many prs input =
  try
    let result, next = prs input in
    let results, rest = many prs next in
    (result :: results, rest)
  with Noparse -> ([], input)

let ( >> ) prs treatment input =
  let result, rest = prs input in
  (treatment result, rest)

let fix err prs input =
  try prs input with Noparse -> failwith (err ^ " expected")

let listof prs sep err =
  prs ++ many (sep ++ fix err prs >> snd) >> fun (h, t) -> h :: t

let possibly prs input =
  try
    let x, rest = prs input in
    ([x], rest)
  with Noparse -> ([], input)

let some p = function
  | [] -> raise Noparse
  | h :: t -> if p h then (h, t) else raise Noparse

let a tok = some (fun item -> item = tok)

let rec atleast n prs i =
  ( if n <= 0 then many prs
  else prs ++ atleast (n - 1) prs >> fun (h, t) -> h :: t )
    i

(* ------------------------------------------------------------------------- *)

let temp_path = Filename.get_temp_dir_name ()

(* ------------------------------------------------------------------------- *)
(* Convenient conversion between files and (lists of) strings.               *)
(* ------------------------------------------------------------------------- *)

let strings_of_file filename =
  let fd =
    try open_in filename
    with Sys_error _ -> failwith ("strings_of_file: can't open " ^ filename)
  in
  let rec suck_lines acc =
    try
      let l = input_line fd in
      suck_lines (l :: acc)
    with End_of_file -> List.rev acc
  in
  let data = suck_lines [] in
  close_in fd; data

let string_of_file filename = String.concat "\n" (strings_of_file filename)

let file_of_string filename s =
  let fd = open_out filename in
  output_string fd s; close_out fd

(* ------------------------------------------------------------------------- *)
(* Iterative deepening.                                                      *)
(* ------------------------------------------------------------------------- *)

let rec deepen f n =
  try
    (*print_string "Searching with depth limit ";
      print_int n; print_newline();*)
    f n
  with Failure _ -> deepen f (n + 1)

exception TooDeep

let deepen_until limit f n =
  match compare limit 0 with
  | 0 -> raise TooDeep
  | -1 -> deepen f n
  | _ ->
    let rec d_until f n =
      try
        (* if !debugging
           then (print_string "Searching with depth limit ";
                 print_int n; print_newline()) ;*)
        f n
      with Failure x ->
        (*if !debugging then (Printf.printf "solver error : %s\n" x) ; *)
        if n = limit then raise TooDeep else d_until f (n + 1)
    in
    d_until f n
OCaml

Innovation. Community. Security.