Source file rewrite.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
open Pp
open CErrors
open Util
open Names
open Constr
open Context
open EConstr
open Vars
open Tacticals
open Tactics
open Pretype_errors
open Evd
open Tactypes
open Locus
open Locusops
open Elimschemes
open Environ
open Termops
open EConstr
open Proofview.Notations
open Context.Named.Declaration
module TC = Typeclasses
(** Typeclass-based generalized rewriting. *)
(** Constants used by the tactic. *)
let bind_global_ref lib s =
let gr = lazy (Coqlib.lib_ref (lib ^ "." ^ s)) in
fun () -> Lazy.force gr
type evars = evar_map * Evar.Set.t
let bind_global lib s =
let gr = lazy (Coqlib.lib_ref (lib ^ "." ^ s)) in
fun env (evd,cstrs) ->
let (evd, c) = Evd.fresh_global env evd (Lazy.force gr) in
(evd, cstrs), c
(** Utility for dealing with polymorphic applications *)
(** Global constants. *)
let coq_eq_ref () = Coqlib.lib_ref "core.eq.type"
let coq_eq = bind_global "core.eq" "type"
let coq_f_equal = bind_global "core.eq" "congr"
let coq_all = bind_global "core" "all"
let impl = bind_global "core" "impl"
let default_relation = bind_global "rewrite" "DefaultRelation"
(** Bookkeeping which evars are constraints so that we can
remove them at the end of the tactic. *)
let goalevars evars = fst evars
let cstrevars evars = snd evars
let new_cstr_evar (evd,cstrs) env t =
let (evd', t) = Evarutil.new_evar env evd ~typeclass_candidate:false t in
let ev, _ = destEvar evd' t in
(evd', Evar.Set.add ev cstrs), t
(** Building or looking up instances. *)
let extends_undefined evars evars' =
let f ev evi found = found || not (Evd.mem evars ev)
in fold_undefined f evars' false
let app_poly_check env evars f args =
let (evars, cstrs), fc = f env evars in
let evars, t = Typing.checked_appvect env evars fc args in
(evars, cstrs), t
let app_poly_nocheck env evars f args =
let evars, fc = f env evars in
evars, mkApp (fc, args)
let app_poly_sort b =
if b then app_poly_nocheck
else app_poly_check
let find_class_proof proof_type proof_method env evars carrier relation =
try
let evars, goal = app_poly_check env evars proof_type [| carrier ; relation |] in
let evars', c = TC.resolve_one_typeclass env (goalevars evars) goal in
if extends_undefined (goalevars evars) evars' then raise Not_found
else app_poly_check env (evars',cstrevars evars) proof_method [| carrier; relation; c |]
with e when CErrors.noncritical e -> raise Not_found
let eq_pb (ty, env, x, y as pb) (ty', env', x', y' as pb') =
let equal x y = Constr.equal (EConstr.Unsafe.to_constr x) (EConstr.Unsafe.to_constr y) in
pb == pb' || (ty == ty' && equal x x' && equal y y')
let problem_inclusion x y =
List.for_all (fun pb -> List.exists (fun pb' -> eq_pb pb pb') y) x
let evd_convertible env evd x y =
try
let _, pbs = Evd.extract_all_conv_pbs evd in
let evd' = Evarconv.unify_delay env evd x y in
let _, pbs' = Evd.extract_all_conv_pbs evd' in
if evd' == evd || problem_inclusion pbs' pbs then Some evd'
else None
with e when CErrors.noncritical e -> None
type hypinfo = {
prf : constr;
car : constr;
rel : constr;
sort : bool;
c1 : constr;
c2 : constr;
holes : EClause.hole list;
}
let error_no_relation () = user_err Pp.(str "Cannot find a relation to rewrite.")
let rec decompose_app_rel env evd t =
let t = Reductionops.whd_betaiota env evd t in
match EConstr.kind evd t with
| App (f, [||]) -> assert false
| App (f, [|arg|]) ->
let (f', argl, argr) = decompose_app_rel env evd arg in
let ty = Retyping.get_type_of env evd argl in
let ty' = Retyping.get_type_of env evd argr in
let r = Retyping.relevance_of_type env evd ty in
let r' = Retyping.relevance_of_type env evd ty' in
let f'' = mkLambda (make_annot (Name Namegen.default_dependent_ident) r, ty,
mkLambda (make_annot (Name (Id.of_string "y")) r', lift 1 ty',
mkApp (lift 2 f, [| mkApp (lift 2 f', [| mkRel 2; mkRel 1 |]) |])))
in (f'', argl, argr)
| App (f, args) ->
let len = Array.length args in
let fargs = Array.sub args 0 (Array.length args - 2) in
let rel = mkApp (f, fargs) in
rel, args.(len - 2), args.(len - 1)
| _ -> error_no_relation ()
let decompose_app_rel env evd t =
let (rel, t1, t2) = decompose_app_rel env evd t in
let ty = try Retyping.get_type_of ~lax:true env evd rel with Retyping.RetypeError _ -> error_no_relation () in
if not (Reductionops.is_arity env evd ty) then None else
match Reductionops.splay_arity env evd ty with
| [_, ty2; _, ty1], concl ->
if noccurn evd 1 ty2 then
Some (rel, ty1, subst1 mkProp ty2, concl, t1, t2)
else None
| _ -> assert false
let decompose_app_rel_error env evd t =
match decompose_app_rel env evd t with
| Some e -> e
| None -> error_no_relation ()
let decompose_applied_relation env sigma (c,l) =
let open Context.Rel.Declaration in
let ctype = Retyping.get_type_of env sigma c in
let find_rel ty =
let sigma, cl = EClause.make_evar_clause env sigma ty in
let sigma = EClause.solve_evar_clause env sigma true cl l in
let { EClause.cl_holes = holes; EClause.cl_concl = t } = cl in
match decompose_app_rel env sigma t with
| None -> None
| Some (equiv, ty1, ty2, concl, c1, c2) ->
match evd_convertible env sigma ty1 ty2 with
| None -> None
| Some sigma ->
let args = Array.map_of_list (fun h -> h.EClause.hole_evar) holes in
let value = mkApp (c, args) in
Some (sigma, { prf=value;
car=ty1; rel = equiv; sort = Sorts.is_prop (ESorts.kind sigma concl);
c1=c1; c2=c2; holes })
in
match find_rel ctype with
| Some c -> c
| None ->
let ctx,t' = Reductionops.whd_decompose_prod env sigma ctype in
let t' = it_mkProd_or_LetIn t' (List.map (fun (n,t) -> LocalAssum (n, t)) ctx) in
match find_rel t' with
| Some c -> c
| None -> user_err Pp.(str "Cannot find an homogeneous relation to rewrite.")
(** Utility functions *)
module GlobalBindings (M : sig
val prefix : string
val app_poly : env -> evars -> (env -> evars -> evars * constr) -> constr array -> evars * constr
val arrow : env -> evars -> evars * constr
end) = struct
open M
open Context.Rel.Declaration
let bind_rewrite s = bind_global prefix s
let bind_rewrite_ref s = bind_global_ref prefix s
let relation : env -> evars -> evars * constr =
bind_rewrite "relation"
let reflexive_type = bind_rewrite "Reflexive"
let reflexive_proof = bind_rewrite "reflexivity"
let symmetric_type = bind_rewrite "Symmetric"
let symmetric_proof = bind_rewrite "symmetry"
let transitive_type = bind_rewrite "Transitive"
let transitive_proof = bind_rewrite "transitivity"
let forall_relation = bind_rewrite "forall_relation"
let pointwise_relation = bind_rewrite "pointwise_relation"
let forall_relation_ref = bind_global_ref prefix "forall_relation"
let pointwise_relation_ref = bind_global_ref prefix "pointwise_relation"
let respectful = bind_rewrite "respectful"
let coq_forall = bind_rewrite "forall_def"
let subrelation = bind_rewrite "subrelation"
let do_subrelation = bind_rewrite "do_subrelation"
let apply_subrelation = bind_rewrite "apply_subrelation"
let rewrite_relation_class = bind_rewrite "RewriteRelation"
let proper_class =
let r = lazy (bind_rewrite_ref "Proper" ()) in
fun () -> Option.get (TC.class_info (Lazy.force r))
let proper_proxy_class =
let r = lazy (bind_rewrite_ref "ProperProxy" ()) in
fun () -> Option.get (TC.class_info (Lazy.force r))
let proper_proj () =
UnsafeMonomorphic.mkConst (Option.get (List.hd (proper_class ()).TC.cl_projs).TC.meth_const)
let proper_type env (sigma,cstrs) =
let l = (proper_class ()).TC.cl_impl in
let (sigma, c) = Evd.fresh_global env sigma l in
(sigma, cstrs), c
let proper_proxy_type env (sigma,cstrs) =
let l = (proper_proxy_class ()).TC.cl_impl in
let (sigma, c) = Evd.fresh_global env sigma l in
(sigma, cstrs), c
let proper_proof env evars carrier relation x =
let evars, goal = app_poly env evars proper_proxy_type [| carrier ; relation; x |] in
new_cstr_evar evars env goal
let get_reflexive_proof env = find_class_proof reflexive_type reflexive_proof env
let get_symmetric_proof env = find_class_proof symmetric_type symmetric_proof env
let get_transitive_proof env = find_class_proof transitive_type transitive_proof env
let mk_relation env evars ty =
let evars', ty = Evarsolve.refresh_universes ~onlyalg:true ~status:(Evd.UnivFlexible false)
(Some false) env (fst evars) ty in
app_poly env (evars', snd evars) relation [| ty |]
(** Build an inferred signature from constraints on the arguments and expected output
relation *)
let build_signature evars env m (cstrs : (types * types option) option list)
(finalcstr : (types * types option) option) =
let mk_relty evars newenv ty obj =
match obj with
| None | Some (_, None) ->
let evars, relty = mk_relation newenv evars ty in
if closed0 (goalevars evars) ty then
let env' = Environ.reset_with_named_context (Environ.named_context_val env) env in
new_cstr_evar evars env' relty
else new_cstr_evar evars newenv relty
| Some (x, Some rel) -> evars, rel
in
let rec aux env evars ty l =
let t = Reductionops.whd_all env (goalevars evars) ty in
match EConstr.kind (goalevars evars) t, l with
| Prod (na, ty, b), obj :: cstrs ->
let b = Reductionops.nf_betaiota env (goalevars evars) b in
if noccurn (goalevars evars) 1 b then
let ty = Reductionops.nf_betaiota env (goalevars evars) ty in
let (evars, b', arg, cstrs) = aux env evars (subst1 mkProp b) cstrs in
let evars, relty = mk_relty evars env ty obj in
let evars', b' = Evarsolve.refresh_universes ~onlyalg:true ~status:(Evd.UnivFlexible false)
(Some false) env (fst evars) b' in
let evars, newarg = app_poly env (evars', snd evars) respectful [| ty ; b' ; relty ; arg |] in
evars, mkProd(na, ty, b), newarg, (ty, Some relty) :: cstrs
else
let (evars, b, arg, cstrs) =
aux (push_rel (LocalAssum (na, ty)) env) evars b cstrs
in
let ty = Reductionops.nf_betaiota env (goalevars evars) ty in
let pred = mkLambda (na, ty, b) in
let liftarg = mkLambda (na, ty, arg) in
let evars, arg' = app_poly env evars forall_relation [| ty ; pred ; liftarg |] in
if Option.is_empty obj then evars, mkProd(na, ty, b), arg', (ty, None) :: cstrs
else user_err Pp.(str "build_signature: no constraint can apply on a dependent argument")
| _, obj :: _ -> anomaly ~label:"build_signature" (Pp.str "not enough products.")
| _, [] ->
(match finalcstr with
| None | Some (_, None) ->
let t = Reductionops.nf_betaiota env (fst evars) ty in
let evars, rel = mk_relty evars env t None in
evars, t, rel, [t, Some rel]
| Some (t, Some rel) -> evars, t, rel, [t, Some rel])
in aux env evars m cstrs
(** Folding/unfolding of the tactic constants. *)
let unfold_impl n sigma t =
match EConstr.kind sigma t with
| App (arrow, [| a; b |]) ->
mkProd (make_annot n ERelevance.relevant, a, lift 1 b)
| _ -> assert false
let unfold_all sigma t =
match EConstr.kind sigma t with
| App (id, [| a; b |]) ->
(match EConstr.kind sigma b with
| Lambda (n, ty, b) -> mkProd (n, ty, b)
| _ -> assert false)
| _ -> assert false
let unfold_forall sigma t =
match EConstr.kind sigma t with
| App (id, [| a; b |]) ->
(match EConstr.kind sigma b with
| Lambda (n, ty, b) -> mkProd (n, ty, b)
| _ -> assert false)
| _ -> assert false
let arrow_morphism env evd n ta tb a b =
let ap = is_Prop (goalevars evd) ta and bp = is_Prop (goalevars evd) tb in
if ap && bp then app_poly env evd impl [| a; b |], unfold_impl n
else if ap then
(app_poly env evd arrow [| a; b |]), unfold_impl n
else if bp then
(app_poly env evd coq_all [| a; mkLambda (make_annot n ERelevance.relevant, a, lift 1 b) |]), unfold_forall
else
(app_poly env evd arrow [| a; b |]), unfold_impl n
let rec decomp_pointwise env sigma n c =
if Int.equal n 0 then Some c
else
match EConstr.kind sigma c with
| App (f, [| a; b; relb |]) when isRefX env sigma (pointwise_relation_ref ()) f ->
decomp_pointwise env sigma (pred n) relb
| App (f, [| a; b; arelb |]) when isRefX env sigma (forall_relation_ref ()) f ->
decomp_pointwise env sigma (pred n) (Reductionops.beta_applist sigma (arelb, [mkRel 1]))
| _ ->
None
let rec apply_pointwise env sigma rel = function
| arg :: args ->
(match EConstr.kind sigma rel with
| App (f, [| a; b; relb |]) when isRefX env sigma (pointwise_relation_ref ()) f ->
apply_pointwise env sigma relb args
| App (f, [| a; b; arelb |]) when isRefX env sigma (forall_relation_ref ()) f ->
apply_pointwise env sigma (Reductionops.beta_applist sigma (arelb, [arg])) args
| _ -> invalid_arg "apply_pointwise")
| [] -> rel
let refresh_univs env evars ty =
let evars', ty = Evarsolve.refresh_universes ~onlyalg:true ~status:(Evd.UnivFlexible false)
(Some false) env (fst evars) ty in
(evars', snd evars), ty
let pointwise_or_dep_relation env evars n t car rel =
let evars, car = refresh_univs env evars car in
if noccurn (goalevars evars) 1 car && noccurn (goalevars evars) 1 rel then
app_poly env evars pointwise_relation [| t; lift (-1) car; lift (-1) rel |]
else
app_poly env evars forall_relation
[| t; mkLambda (make_annot n ERelevance.relevant, t, car);
mkLambda (make_annot n ERelevance.relevant, t, rel) |]
let lift_cstr env evars (args : constr list) c ty cstr =
let start evars env car =
match cstr with
| None | Some (_, None) ->
let evars, rel = mk_relation env evars car in
new_cstr_evar evars env rel
| Some (ty, Some rel) -> evars, rel
in
let rec aux evars env prod n =
if Int.equal n 0 then start evars env prod
else
let sigma = goalevars evars in
match EConstr.kind sigma (Reductionops.whd_all env sigma prod) with
| Prod (na, ty, b) ->
if noccurn sigma 1 b then
let b' = lift (-1) b in
let evars, rb = aux evars env b' (pred n) in
app_poly env evars pointwise_relation [| ty; b'; rb |]
else
let evars, rb = aux evars (push_rel (LocalAssum (na, ty)) env) b (pred n) in
app_poly env evars forall_relation
[| ty; mkLambda (na, ty, b); mkLambda (na, ty, rb) |]
| _ -> raise Not_found
in
let rec find env c ty = function
| [] -> None
| arg :: args ->
try let evars, found = aux evars env ty (succ (List.length args)) in
Some (evars, found, c, ty, arg :: args)
with Not_found ->
let sigma = goalevars evars in
let ty = Reductionops.whd_all env sigma ty in
find env (mkApp (c, [| arg |])) (prod_applist sigma ty [arg]) args
in find env c ty args
let unlift_cstr env sigma = function
| None -> None
| Some codom -> decomp_pointwise env (goalevars sigma) 1 codom
(** Looking up declared rewrite relations (instances of [RewriteRelation]) *)
let is_applied_rewrite_relation env sigma rels t =
match EConstr.kind sigma t with
| App (c, args) when Array.length args >= 2 ->
let head = if isApp sigma c then fst (destApp sigma c) else c in
if isRefX env sigma (coq_eq_ref ()) head then None
else
(try
let env' = push_rel_context rels env in
match decompose_app_rel env' sigma t with
| None -> None
| Some (equiv, ty1, ty2, concl, c1, c2) ->
let (evars, evset), inst =
app_poly env' (sigma,Evar.Set.empty)
rewrite_relation_class [| ty1; equiv |] in
let sigma, _ = TC.resolve_one_typeclass env' evars inst in
match evd_convertible env sigma ty1 ty2 with
| None -> None
| Some sigma -> Some (it_mkProd_or_LetIn t rels)
with e when CErrors.noncritical e -> None)
| _ -> None
end
let type_app_poly env env evd f args =
let evars, c = app_poly_nocheck env evd f args in
let evd', t = Typing.type_of env (goalevars evars) c in
(evd', cstrevars evars), c
module PropGlobal = struct
module Consts =
struct
let prefix = "rewrite.prop"
let app_poly = app_poly_nocheck
let arrow = bind_global "core" "arrow"
let coq_inverse = bind_global "core" "flip"
end
module G = GlobalBindings(Consts)
include G
include Consts
let inverse env evd car rel =
type_app_poly env env evd coq_inverse [| car ; car; mkProp; rel |]
end
module TypeGlobal = struct
module Consts =
struct
let prefix = "rewrite.type"
let app_poly = app_poly_check
let arrow = bind_global prefix "arrow"
let coq_inverse = bind_global prefix "flip"
end
module G = GlobalBindings(Consts)
include G
include Consts
let inverse env (evd,cstrs) car rel =
let evd, car = Evarsolve.refresh_universes ~onlyalg:true (Some false) env evd car in
let (evd, sort) = Evarutil.new_Type ~rigid:Evd.univ_flexible evd in
app_poly_check env (evd,cstrs) coq_inverse [| car ; car; sort; rel |]
end
let init_relation_classes () =
if Coqlib.has_ref "rewrite.prop.relation" || Coqlib.has_ref "rewrite.type.relation" then ()
else CErrors.user_err
(Pp.str "No bindings have been registered for relation classes in Prop or Type, maybe you need to require Coq.Classes.(C)RelationClasses.")
let init_rewrite () =
if Coqlib.has_ref "rewrite.prop.Proper" || Coqlib.has_ref "rewrite.type.Proper" then ()
else CErrors.user_err
(Pp.str "No bindings have been registered for morphisms in Prop or Type, maybe you need to require Coq.Classes.(C)Morphisms.")
let get_type_of_refresh env evars t =
let evars', tty = Evarsolve.get_type_of_refresh env (fst evars) t in
(evars', snd evars), tty
let sort_of_rel env evm rel =
ESorts.kind evm (Reductionops.sort_of_arity env evm (Retyping.get_type_of env evm rel))
let is_applied_rewrite_relation = PropGlobal.is_applied_rewrite_relation
let split_head = function
hd :: tl -> hd, tl
| [] -> assert(false)
let get_symmetric_proof b =
if b then PropGlobal.get_symmetric_proof else TypeGlobal.get_symmetric_proof
let rewrite_db = "rewrite"
let conv_transparent_state =
let open TransparentState in
{ tr_var = Id.Pred.empty; tr_cst = Cpred.full; tr_prj = PRpred.full }
let rewrite_transparent_state () =
Hints.Hint_db.transparent_state (Hints.searchtable_map rewrite_db)
let rewrite_core_unif_flags = {
Unification.modulo_conv_on_closed_terms = None;
Unification.use_metas_eagerly_in_conv_on_closed_terms = true;
Unification.use_evars_eagerly_in_conv_on_closed_terms = true;
Unification.modulo_delta = TransparentState.empty;
Unification.modulo_delta_types = TransparentState.full;
Unification.check_applied_meta_types = true;
Unification.use_pattern_unification = true;
Unification.use_meta_bound_pattern_unification = true;
Unification.allowed_evars = Evarsolve.AllowedEvars.all;
Unification.restrict_conv_on_strict_subterms = false;
Unification.modulo_betaiota = false;
Unification.modulo_eta = true;
}
let rewrite_unif_flags =
let flags = rewrite_core_unif_flags in {
Unification.core_unify_flags = flags;
Unification.merge_unify_flags = flags;
Unification.subterm_unify_flags = flags;
Unification.allow_K_in_toplevel_higher_order_unification = true;
Unification.resolve_evars = true
}
let rewrite_core_conv_unif_flags = {
rewrite_core_unif_flags with
Unification.modulo_conv_on_closed_terms = Some conv_transparent_state;
Unification.modulo_delta_types = conv_transparent_state;
Unification.modulo_betaiota = true
}
let rewrite_conv_unif_flags =
let flags = rewrite_core_conv_unif_flags in {
Unification.core_unify_flags = flags;
Unification.merge_unify_flags = flags;
Unification.subterm_unify_flags = flags;
Unification.allow_K_in_toplevel_higher_order_unification = true;
Unification.resolve_evars = true
}
let general_rewrite_unif_flags () =
let ts = rewrite_transparent_state () in
let core_flags =
{ rewrite_core_unif_flags with
Unification.modulo_conv_on_closed_terms = Some ts;
Unification.use_evars_eagerly_in_conv_on_closed_terms = true;
Unification.modulo_delta = ts;
Unification.modulo_delta_types = TransparentState.full;
Unification.modulo_betaiota = true }
in {
Unification.core_unify_flags = core_flags;
Unification.merge_unify_flags = core_flags;
Unification.subterm_unify_flags = { core_flags with Unification.modulo_delta = TransparentState.empty };
Unification.allow_K_in_toplevel_higher_order_unification = true;
Unification.resolve_evars = true
}
let refresh_hypinfo env sigma (cb : EConstr.t with_bindings delayed_open) =
let sigma, cbl = cb env sigma in
let sigma, hypinfo = decompose_applied_relation env sigma cbl in
let { c1; c2; car; rel; prf; sort; holes } = hypinfo in
sigma, (car, rel, prf, c1, c2, holes, sort)
(** FIXME: write this in the new monad interface *)
let solve_remaining_by env sigma holes by =
match by with
| None -> sigma
| Some tac ->
let map h =
if h.EClause.hole_deps then None
else match EConstr.kind sigma h.EClause.hole_evar with
| Evar (evk, _) ->
Some evk
| _ -> None
in
let indep = List.map_filter map holes in
let ist = { Geninterp.lfun = Id.Map.empty
; poly = false
; extra = Geninterp.TacStore.empty } in
let solve_tac = match tac with
| Genarg.GenArg (Genarg.Glbwit tag, tac) ->
Ftactic.run (Geninterp.interp tag ist tac) (fun _ -> Proofview.tclUNIT ())
in
let solve_tac = tclCOMPLETE solve_tac in
let solve sigma evk =
let evi =
try Some (Evd.find_undefined sigma evk)
with Not_found -> None
in
match evi with
| None -> sigma
| Some evi ->
let env = Evd.evar_env env evi in
let ty = Evd.evar_concl evi in
let name, poly = Id.of_string "rewrite", false in
let c, sigma = Proof.refine_by_tactic ~name ~poly env sigma ty solve_tac in
Evd.define evk c sigma
in
List.fold_left solve sigma indep
let no_constraints cstrs =
fun ev _ -> not (Evar.Set.mem ev cstrs)
let poly_inverse sort =
if sort then PropGlobal.inverse else TypeGlobal.inverse
type rewrite_proof =
| RewPrf of constr * constr
(** A Relation (R : rew_car -> rew_car -> Prop) and a proof of R rew_from rew_to *)
| RewCast of cast_kind
(** A proof of convertibility (with casts) *)
type rewrite_result_info = {
rew_car : constr ;
(** A type *)
rew_from : constr ;
(** A term of type rew_car *)
rew_to : constr ;
(** A term of type rew_car *)
rew_prf : rewrite_proof ;
(** A proof of rew_from == rew_to *)
rew_evars : evars;
}
type rewrite_result =
| Fail
| Identity
| Success of rewrite_result_info
type 'a strategy_input = { state : 'a ;
env : Environ.env ;
unfresh : Id.Set.t;
term1 : constr ;
ty1 : types ;
cstr : (bool * constr option) ;
evars : evars }
type 'a pure_strategy = { strategy :
'a strategy_input ->
'a * rewrite_result }
type strategy = unit pure_strategy
let symmetry env sort rew =
let { rew_evars = evars; rew_car = car; } = rew in
let (rew_evars, rew_prf) = match rew.rew_prf with
| RewCast _ -> (rew.rew_evars, rew.rew_prf)
| RewPrf (rel, prf) ->
try
let evars, symprf = get_symmetric_proof sort env evars car rel in
let prf = mkApp (symprf, [| rew.rew_from ; rew.rew_to ; prf |]) in
(evars, RewPrf (rel, prf))
with Not_found ->
let evars, rel = poly_inverse sort env evars car rel in
(evars, RewPrf (rel, prf))
in
{ rew with rew_from = rew.rew_to; rew_to = rew.rew_from; rew_prf; rew_evars; }
let unify_eqn (car, rel, prf, c1, c2, holes, sort) l2r flags env (sigma, cstrs) by t =
try
let left = if l2r then c1 else c2 in
let sigma = Unification.w_unify ~flags env sigma CONV left t in
let sigma = TC.resolve_typeclasses ~filter:(no_constraints cstrs)
~fail:true env sigma in
let sigma = solve_remaining_by env sigma holes by in
let nf c = Reductionops.nf_evar sigma c in
let c1 = nf c1 and c2 = nf c2
and rew_car = nf car and rel = nf rel
and prf = nf prf in
let ty1 = Retyping.get_type_of env sigma c1 in
let ty2 = Retyping.get_type_of env sigma c2 in
begin match Reductionops.infer_conv ~pb:CUMUL env sigma ty2 ty1 with
| None -> None
| Some sigma ->
let rew_evars = sigma, cstrs in
let rew_prf = RewPrf (rel, prf) in
let rew = { rew_evars; rew_prf; rew_car; rew_from = c1; rew_to = c2; } in
let rew = if l2r then rew else symmetry env sort rew in
Some rew
end
with
| e when noncritical e -> None
let unify_abs (car, rel, prf, c1, c2) l2r sort env (sigma, cstrs) t =
try
let left = if l2r then c1 else c2 in
let sigma = Unification.w_unify ~flags:rewrite_unif_flags env sigma CONV left t in
let rew_evars = sigma, cstrs in
let rew_prf = RewPrf (rel, prf) in
let rew = { rew_car = car; rew_from = c1; rew_to = c2; rew_prf; rew_evars; } in
let rew = if l2r then rew else symmetry env sort rew in
Some rew
with
| e when noncritical e -> None
type rewrite_flags = { under_lambdas : bool; on_morphisms : bool }
let default_flags = { under_lambdas = true; on_morphisms = true; }
let get_opt_rew_rel = function RewPrf (rel, prf) -> Some rel | _ -> None
let new_global env (evars, cstrs) gr =
let (sigma,c) = Evd.fresh_global env evars gr in
(sigma, cstrs), c
let make_eq env sigma =
new_global env sigma Coqlib.(lib_ref "core.eq.type")
let make_eq_refl env sigma =
new_global env sigma Coqlib.(lib_ref "core.eq.refl")
let get_rew_prf env evars r = match r.rew_prf with
| RewPrf (rel, prf) -> evars, (rel, prf)
| RewCast c ->
let evars, eq = make_eq env evars in
let evars, eq_refl = make_eq_refl env evars in
let rel = mkApp (eq, [| r.rew_car |]) in
evars, (rel, mkCast (mkApp (eq_refl, [| r.rew_car; r.rew_from |]),
c, mkApp (rel, [| r.rew_from; r.rew_to |])))
let poly_subrelation sort =
if sort then PropGlobal.subrelation else TypeGlobal.subrelation
let resolve_subrelation env car rel sort prf rel' res =
if Termops.eq_constr env (fst res.rew_evars) rel rel' then res
else
let evars, app = app_poly_check env res.rew_evars (poly_subrelation sort) [|car; rel; rel'|] in
let evars, subrel = new_cstr_evar evars env app in
let appsub = mkApp (subrel, [| res.rew_from ; res.rew_to ; prf |]) in
{ res with
rew_prf = RewPrf (rel', appsub);
rew_evars = evars }
let resolve_morphism env m args args' (b,cstr) evars =
let evars, proj, sigargs, m', args, args' =
let first = match (Array.findi (fun _ b -> not (Option.is_empty b)) args') with
| Some i -> i
| None -> invalid_arg "resolve_morphism" in
let morphargs, morphobjs = Array.chop first args in
let morphargs', morphobjs' = Array.chop first args' in
let appm = mkApp(m, morphargs) in
let evd, appmtype = Typing.type_of env (goalevars evars) appm in
let evars = evd, snd evars in
let cstrs = List.map
(Option.map (fun r -> r.rew_car, get_opt_rew_rel r.rew_prf))
(Array.to_list morphobjs')
in
let evars, appmtype', signature, sigargs =
if b then PropGlobal.build_signature evars env appmtype cstrs cstr
else TypeGlobal.build_signature evars env appmtype cstrs cstr
in
let evars', appmtype' = Evarsolve.refresh_universes ~status:(Evd.UnivFlexible false) ~onlyalg:true
(Some false) env (fst evars) appmtype' in
let cl_args = [| appmtype' ; signature ; appm |] in
let evars, app = app_poly_sort b env (evars', snd evars) (if b then PropGlobal.proper_type else TypeGlobal.proper_type)
cl_args in
let dosub, appsub =
if b then PropGlobal.do_subrelation, PropGlobal.apply_subrelation
else TypeGlobal.do_subrelation, TypeGlobal.apply_subrelation
in
let _, dosub = app_poly_sort b env evars dosub [||] in
let _, appsub = app_poly_nocheck env evars appsub [||] in
let dosub_id = Id.of_string "do_subrelation" in
let env' = EConstr.push_named (LocalDef (make_annot dosub_id ERelevance.relevant, dosub, appsub)) env in
let evars, morph = new_cstr_evar evars env' app in
let morph = Vars.replace_vars (fst evars) [dosub_id , dosub] morph in
evars, morph, sigargs, appm, morphobjs, morphobjs'
in
let projargs, subst, evars, respars, typeargs =
Array.fold_left2
(fun (acc, subst, evars, sigargs, typeargs') x y ->
let (carrier, relation), sigargs = split_head sigargs in
match relation with
| Some relation ->
let carrier = substl subst carrier
and relation = substl subst relation in
(match y with
| None ->
let evars, proof =
(if b then PropGlobal.proper_proof else TypeGlobal.proper_proof)
env evars carrier relation x in
[ proof ; x ; x ] @ acc, subst, evars, sigargs, x :: typeargs'
| Some r ->
let evars, proof = get_rew_prf env evars r in
[ snd proof; r.rew_to; x ] @ acc, subst, evars,
sigargs, r.rew_to :: typeargs')
| None ->
if not (Option.is_empty y) then
user_err Pp.(str "Cannot rewrite inside dependent arguments of a function");
x :: acc, x :: subst, evars, sigargs, x :: typeargs')
([], [], evars, sigargs, []) args args'
in
let proof = applist (proj, List.rev projargs) in
let newt = applist (m', List.rev typeargs) in
match respars with
[ a, Some r ] -> evars, proof, substl subst a, substl subst r, newt
| _ -> assert(false)
let apply_constraint env car rel prf cstr res =
match snd cstr with
| None -> res
| Some r -> resolve_subrelation env car rel (fst cstr) prf r res
let coerce env cstr res =
let evars, (rel, prf) = get_rew_prf env res.rew_evars res in
let res = { res with rew_evars = evars } in
apply_constraint env res.rew_car rel prf cstr res
let apply_rule unify : occurrences_count pure_strategy =
{ strategy = fun { state = occs ; env ;
term1 = t ; ty1 = ty ; cstr ; evars } ->
let unif = if isEvar (goalevars evars) t then None else unify env evars t in
match unif with
| None -> (occs, Fail)
| Some rew ->
let b, occs = update_occurrence_counter occs in
if not b then (occs, Fail)
else if Termops.eq_constr env (fst rew.rew_evars) t rew.rew_to then (occs, Identity)
else
let res = { rew with rew_car = ty } in
let res = Success (coerce env cstr res) in
(occs, res)
}
let apply_lemma l2r flags oc by loccs : strategy = { strategy =
fun ({ state = () ; env ; term1 = t ; evars = (sigma, cstrs) } as input) ->
let sigma, c = oc sigma in
let sigma, hypinfo = decompose_applied_relation env sigma c in
let { c1; c2; car; rel; prf; sort; holes } = hypinfo in
let rew = (car, rel, prf, c1, c2, holes, sort) in
let evars = (sigma, cstrs) in
let unify env evars t =
let rew = unify_eqn rew l2r flags env evars by t in
match rew with
| None -> None
| Some rew -> Some rew
in
let loccs, res = (apply_rule unify).strategy { input with
state = initialize_occurrence_counter loccs ;
evars } in
check_used_occurrences loccs;
(), res
}
let e_app_poly env evars f args =
let evars', c = app_poly_nocheck env !evars f args in
evars := evars';
c
let make_leibniz_proof env c ty r =
let evars = ref r.rew_evars in
let prf =
match r.rew_prf with
| RewPrf (rel, prf) ->
let rel = e_app_poly env evars coq_eq [| ty |] in
let prf =
e_app_poly env evars coq_f_equal
[| r.rew_car; ty;
mkLambda (make_annot Anonymous ERelevance.relevant, r.rew_car, c);
r.rew_from; r.rew_to; prf |]
in RewPrf (rel, prf)
| RewCast k -> r.rew_prf
in
{ rew_car = ty; rew_evars = !evars;
rew_from = subst1 r.rew_from c; rew_to = subst1 r.rew_to c; rew_prf = prf }
let fold_match ?(force=false) env sigma c =
let case = destCase sigma c in
let (ci, (p,_), iv, c, brs) = EConstr.expand_case env sigma case in
let cty = Retyping.get_type_of env sigma c in
let dep, pred, sk =
let env', ctx, body =
let ctx, pred = decompose_lambda_decls sigma p in
let env' = push_rel_context ctx env in
env', ctx, pred
in
let sortp = Retyping.get_sort_family_of env' sigma body in
let sortc = Retyping.get_sort_family_of env sigma cty in
let dep = not (noccurn sigma 1 body) in
let pred = if dep then p else
it_mkProd_or_LetIn (subst1 mkProp body) (List.tl ctx)
in
let sk =
if sortp == Sorts.InProp then
if sortc == Sorts.InProp then
if dep then case_dep
else case_nodep
else (
if dep
then casep_dep
else case_nodep )
else (
if dep
then case_dep
else case_nodep)
in
match Ind_tables.lookup_scheme sk ci.ci_ind with
| Some cst ->
dep, pred, cst
| None ->
raise Not_found
in
let app =
let sk = if Global.is_polymorphic (ConstRef sk)
then CErrors.anomaly Pp.(str "Unexpected univ poly in Rewrite.fold_match")
else UnsafeMonomorphic.mkConst sk
in
let ind, args = Inductiveops.find_mrectype env sigma cty in
let pars, args = List.chop ci.ci_npar args in
let meths = Array.to_list brs in
applist (sk, pars @ [pred] @ meths @ args @ [c])
in
sk, app
let unfold_match env sigma sk app =
match EConstr.kind sigma app with
| App (f', args) when QConstant.equal env (fst (destConst sigma f')) sk ->
let v = Environ.constant_value_in env (sk,UVars.Instance.empty) in
let v = EConstr.of_constr v in
Reductionops.whd_beta env sigma (mkApp (v, args))
| _ -> app
let is_rew_cast = function RewCast _ -> true | _ -> false
let subterm all flags (s : 'a pure_strategy) : 'a pure_strategy =
let rec aux { state ; env ; unfresh ;
term1 = t ; ty1 = ty ; cstr = (prop, cstr) ; evars } =
let cstr' = Option.map (fun c -> (ty, Some c)) cstr in
match EConstr.kind (goalevars evars) t with
| App (m, args) ->
let rewrite_args state success =
let state, (args', evars', progress) =
Array.fold_left
(fun (state, (acc, evars, progress)) arg ->
if not (Option.is_empty progress) && not all then
state, (None :: acc, evars, progress)
else
let evars, argty = get_type_of_refresh env evars arg in
let state, res = s.strategy { state ; env ;
unfresh ;
term1 = arg ; ty1 = argty ;
cstr = (prop,None) ;
evars } in
let res' =
match res with
| Identity ->
let progress = if Option.is_empty progress then Some false else progress in
(None :: acc, evars, progress)
| Success r ->
(Some r :: acc, r.rew_evars, Some true)
| Fail -> (None :: acc, evars, progress)
in state, res')
(state, ([], evars, success)) args
in
let res =
match progress with
| None -> Fail
| Some false -> Identity
| Some true ->
let args' = Array.of_list (List.rev args') in
if Array.exists
(function
| None -> false
| Some r -> not (is_rew_cast r.rew_prf)) args'
then
let evars', prf, car, rel, c2 =
resolve_morphism env m args args' (prop, cstr') evars'
in
let res = { rew_car = ty; rew_from = t;
rew_to = c2; rew_prf = RewPrf (rel, prf);
rew_evars = evars' }
in Success res
else
let args' = Array.map2
(fun aorig anew ->
match anew with None -> aorig
| Some r -> r.rew_to) args args'
in
let res = { rew_car = ty; rew_from = t;
rew_to = mkApp (m, args'); rew_prf = RewCast DEFAULTcast;
rew_evars = evars' }
in Success res
in state, res
in
if flags.on_morphisms then
let evars, mty = get_type_of_refresh env evars m in
let evars, cstr', m, mty, argsl, args =
let argsl = Array.to_list args in
let lift = if prop then PropGlobal.lift_cstr else TypeGlobal.lift_cstr in
match lift env evars argsl m mty None with
| Some (evars, cstr', m, mty, args) ->
evars, Some cstr', m, mty, args, Array.of_list args
| None -> evars, None, m, mty, argsl, args
in
let state, m' = s.strategy { state ; env ; unfresh ;
term1 = m ; ty1 = mty ;
cstr = (prop, cstr') ; evars } in
match m' with
| Fail -> rewrite_args state None
| Identity -> rewrite_args state (Some false)
| Success r ->
let prf = match r.rew_prf with
| RewPrf (rel, prf) ->
let app = if prop then PropGlobal.apply_pointwise
else TypeGlobal.apply_pointwise
in
RewPrf (app env (goalevars evars) rel argsl, mkApp (prf, args))
| x -> x
in
let res =
{ rew_car = Reductionops.hnf_prod_appvect env (goalevars evars) r.rew_car args;
rew_from = mkApp(r.rew_from, args); rew_to = mkApp(r.rew_to, args);
rew_prf = prf; rew_evars = r.rew_evars }
in
let res =
match prf with
| RewPrf (rel, prf) ->
Success (apply_constraint env res.rew_car
rel prf (prop,cstr) res)
| _ -> Success res
in state, res
else rewrite_args state None
| Prod (n, x, b) when noccurn (goalevars evars) 1 b ->
let b = subst1 mkProp b in
let evars, tx = get_type_of_refresh env evars x in
let evars, tb = get_type_of_refresh env evars b in
let arr = if prop then PropGlobal.arrow_morphism
else TypeGlobal.arrow_morphism
in
let (evars', mor), unfold = arr env evars n.binder_name tx tb x b in
let state, res = aux { state ; env ; unfresh ;
term1 = mor ; ty1 = ty ;
cstr = (prop,cstr) ; evars = evars' } in
let res =
match res with
| Success r -> Success { r with rew_to = unfold (goalevars r.rew_evars) r.rew_to }
| Fail | Identity -> res
in state, res
| Prod (n, dom, codom) ->
let lam = mkLambda (n, dom, codom) in
let (evars', app), unfold =
if eq_constr (fst evars) ty mkProp then
(app_poly_sort prop env evars coq_all [| dom; lam |]), TypeGlobal.unfold_all
else
let forall = if prop then PropGlobal.coq_forall else TypeGlobal.coq_forall in
(app_poly_sort prop env evars forall [| dom; lam |]), TypeGlobal.unfold_forall
in
let state, res = aux { state ; env ; unfresh ;
term1 = app ; ty1 = ty ;
cstr = (prop,cstr) ; evars = evars' } in
let res =
match res with
| Success r -> Success { r with rew_to = unfold (goalevars r.rew_evars) r.rew_to }
| Fail | Identity -> res
in state, res
| Lambda (n, t, b) when flags.under_lambdas ->
let unfresh, n' =
let id = match n.binder_name with
| Anonymous -> Namegen.default_dependent_ident
| Name id -> id
in
let id = Tactics.fresh_id_in_env unfresh id env in
Id.Set.add id unfresh, {n with binder_name = Name id}
in
let unfresh = match n'.binder_name with
| Anonymous -> unfresh
| Name id -> Id.Set.add id unfresh
in
let open Context.Rel.Declaration in
let env' = EConstr.push_rel (LocalAssum (n', t)) env in
let bty = Retyping.get_type_of env' (goalevars evars) b in
let unlift = if prop then PropGlobal.unlift_cstr else TypeGlobal.unlift_cstr in
let state, b' = s.strategy { state ; env = env' ; unfresh ;
term1 = b ; ty1 = bty ;
cstr = (prop, unlift env evars cstr) ;
evars } in
let res =
match b' with
| Success r ->
let r = match r.rew_prf with
| RewPrf (rel, prf) ->
let point = if prop then PropGlobal.pointwise_or_dep_relation else
TypeGlobal.pointwise_or_dep_relation
in
let evars, rel = point env r.rew_evars n'.binder_name t r.rew_car rel in
let prf = mkLambda (n', t, prf) in
{ r with rew_prf = RewPrf (rel, prf); rew_evars = evars }
| x -> r
in
Success { r with
rew_car = mkProd (n, t, r.rew_car);
rew_from = mkLambda(n, t, r.rew_from);
rew_to = mkLambda (n, t, r.rew_to) }
| Fail | Identity -> b'
in state, res
| Case (ci, u, pms, p, iv, c, brs) ->
let (ci, (p,rp), iv, c, brs) = EConstr.expand_case env (goalevars evars) (ci, u, pms, p, iv, c, brs) in
let cty = Retyping.get_type_of env (goalevars evars) c in
let evars', eqty = app_poly_sort prop env evars coq_eq [| cty |] in
let cstr' = Some eqty in
let state, c' = s.strategy { state ; env ; unfresh ;
term1 = c ; ty1 = cty ;
cstr = (prop, cstr') ; evars = evars' } in
let state, res =
match c' with
| Success r ->
let case = mkCase (EConstr.contract_case env (goalevars evars) (ci, (lift 1 p,rp), map_invert (lift 1) iv, mkRel 1, Array.map (lift 1) brs)) in
let res = make_leibniz_proof env case ty r in
state, Success (coerce env (prop,cstr) res)
| Fail | Identity ->
if Array.for_all (Int.equal 0) ci.ci_cstr_ndecls then
let evars', eqty = app_poly_sort prop env evars coq_eq [| ty |] in
let cstr = Some eqty in
let state, found, brs' = Array.fold_left
(fun (state, found, acc) br ->
if not (Option.is_empty found) then
(state, found, fun x -> lift 1 br :: acc x)
else
let state, res = s.strategy { state ; env ; unfresh ;
term1 = br ; ty1 = ty ;
cstr = (prop,cstr) ; evars } in
match res with
| Success r -> (state, Some r, fun x -> mkRel 1 :: acc x)
| Fail | Identity -> (state, None, fun x -> lift 1 br :: acc x))
(state, None, fun x -> []) brs
in
match found with
| Some r ->
let ctxc = mkCase (EConstr.contract_case env (goalevars evars) (ci, (lift 1 p, rp), map_invert (lift 1) iv, lift 1 c, Array.of_list (List.rev (brs' c')))) in
state, Success (make_leibniz_proof env ctxc ty r)
| None -> state, c'
else
match try Some (fold_match env (goalevars evars) t) with Not_found -> None with
| None -> state, c'
| Some (cst, t') ->
let state, res = aux { state ; env ; unfresh ;
term1 = t' ; ty1 = ty ;
cstr = (prop,cstr) ; evars } in
let res =
match res with
| Success prf ->
Success { prf with
rew_from = t;
rew_to = unfold_match env (goalevars evars) cst prf.rew_to }
| x' -> c'
in state, res
in
let res =
match res with
| Success r -> Success (coerce env (prop,cstr) r)
| Fail | Identity -> res
in state, res
| _ -> state, Fail
in { strategy = aux }
let all_subterms = subterm true default_flags
let one_subterm = subterm false default_flags
(** Requires transitivity of the rewrite step, if not a reduction.
Not tail-recursive. *)
let transitivity state env unfresh cstr (res : rewrite_result_info) (next : 'a pure_strategy) :
'a * rewrite_result =
let cstr = match cstr with
| _, Some _ -> cstr
| prop, None -> prop, get_opt_rew_rel res.rew_prf
in
let state, nextres =
next.strategy { state; env; unfresh; cstr;
term1 = res.rew_to;
ty1 = res.rew_car;
evars = res.rew_evars; }
in
let res =
match nextres with
| Fail -> Fail
| Identity -> Success res
| Success res' ->
match res.rew_prf with
| RewCast c -> Success { res' with rew_from = res.rew_from }
| RewPrf (rew_rel, rew_prf) ->
match res'.rew_prf with
| RewCast _ -> Success { res with rew_to = res'.rew_to }
| RewPrf (res'_rel, res'_prf) ->
let trans =
if fst cstr then PropGlobal.transitive_type
else TypeGlobal.transitive_type
in
let evars, prfty =
app_poly_sort (fst cstr) env res'.rew_evars trans [| res.rew_car; rew_rel |]
in
let evars, prf = new_cstr_evar evars env prfty in
let prf = mkApp (prf, [|res.rew_from; res'.rew_from; res'.rew_to;
rew_prf; res'_prf |])
in Success { res' with rew_from = res.rew_from;
rew_evars = evars; rew_prf = RewPrf (res'_rel, prf) }
in state, res
(** Rewriting strategies.
Inspired by ELAN's rewriting strategies:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.4049
*)
module Strategies =
struct
let fail : 'a pure_strategy =
{ strategy = fun { state } -> state, Fail }
let id : 'a pure_strategy =
{ strategy = fun { state } -> state, Identity }
let refl : 'a pure_strategy =
{ strategy =
fun { state ; env ;
term1 = t ; ty1 = ty ;
cstr = (prop,cstr) ; evars } ->
let evars, rel = match cstr with
| None ->
let mkr = if prop then PropGlobal.mk_relation else TypeGlobal.mk_relation in
let evars, rty = mkr env evars ty in
new_cstr_evar evars env rty
| Some r -> evars, r
in
let evars, proof =
let proxy =
if prop then PropGlobal.proper_proxy_type
else TypeGlobal.proper_proxy_type
in
let evars, mty = app_poly_sort prop env evars proxy [| ty ; rel; t |] in
new_cstr_evar evars env mty
in
let res = Success { rew_car = ty; rew_from = t; rew_to = t;
rew_prf = RewPrf (rel, proof); rew_evars = evars }
in state, res
}
let progress (s : 'a pure_strategy) : 'a pure_strategy = { strategy =
fun input ->
let state, res = s.strategy input in
match res with
| Fail -> state, Fail
| Identity -> state, Fail
| Success r -> state, Success r
}
let seq first snd : 'a pure_strategy = { strategy =
fun ({ env ; unfresh ; cstr } as input) ->
let state, res = first.strategy input in
match res with
| Fail -> state, Fail
| Identity -> snd.strategy { input with state }
| Success res -> transitivity state env unfresh cstr res snd
}
let choice fst snd : 'a pure_strategy = { strategy =
fun input ->
let state, res = fst.strategy input in
match res with
| Fail -> snd.strategy { input with state }
| Identity | Success _ -> state, res
}
let try_ str : 'a pure_strategy = choice str id
let check_interrupt str input =
Control.check_for_interrupt ();
str input
let fix (f : 'a pure_strategy -> 'a pure_strategy) : 'a pure_strategy =
let rec aux input = (f { strategy = fun input -> check_interrupt aux input }).strategy input in
{ strategy = aux }
let any (s : 'a pure_strategy) : 'a pure_strategy =
fix (fun any -> try_ (seq s any))
let repeat (s : 'a pure_strategy) : 'a pure_strategy =
seq s (any s)
let bu (s : 'a pure_strategy) : 'a pure_strategy =
fix (fun s' -> seq (choice (progress (all_subterms s')) s) (try_ s'))
let td (s : 'a pure_strategy) : 'a pure_strategy =
fix (fun s' -> seq (choice s (progress (all_subterms s'))) (try_ s'))
let innermost (s : 'a pure_strategy) : 'a pure_strategy =
fix (fun ins -> choice (one_subterm ins) s)
let outermost (s : 'a pure_strategy) : 'a pure_strategy =
fix (fun out -> choice s (one_subterm out))
let lemmas cs : 'a pure_strategy =
List.fold_left (fun tac (l,l2r,by) ->
choice tac (apply_lemma l2r rewrite_unif_flags l by AllOccurrences))
fail cs
let inj_open hint = (); fun sigma ->
let (ctx, lemma) = Autorewrite.RewRule.rew_lemma hint in
let subst, ctx = UnivGen.fresh_universe_context_set_instance ctx in
let subst = Sorts.QVar.Map.empty, subst in
let lemma = Vars.subst_univs_level_constr subst (EConstr.of_constr lemma) in
let sigma = Evd.merge_context_set UnivRigid sigma ctx in
(sigma, (lemma, NoBindings))
let old_hints (db : string) : 'a pure_strategy =
let rules = Autorewrite.find_rewrites db in
lemmas
(List.map (fun hint -> (inj_open hint, Autorewrite.RewRule.rew_l2r hint,
Autorewrite.RewRule.rew_tac hint)) rules)
let hints (db : string) : 'a pure_strategy = { strategy =
fun ({ term1 = t; env } as input) ->
let t = EConstr.Unsafe.to_constr t in
let rules = Autorewrite.find_matches env db t in
let lemma hint = (inj_open hint, Autorewrite.RewRule.rew_l2r hint,
Autorewrite.RewRule.rew_tac hint) in
let lems = List.map lemma rules in
(lemmas lems).strategy input
}
let reduce (r : Redexpr.red_expr) : 'a pure_strategy = { strategy =
fun { state = state ; env = env ; term1 = t ; ty1 = ty ; cstr = cstr ; evars = evars } ->
let rfn, ckind = Redexpr.reduction_of_red_expr env r in
let sigma = goalevars evars in
let (sigma, t') = rfn env sigma t in
if Termops.eq_constr env sigma t' t then
state, Identity
else
state, Success { rew_car = ty; rew_from = t; rew_to = t';
rew_prf = RewCast ckind;
rew_evars = sigma, cstrevars evars }
}
let fold_glob c : 'a pure_strategy = { strategy =
fun { state ; env ; term1 = t ; ty1 = ty ; cstr ; evars } ->
let sigma, c = Pretyping.understand_tcc env (goalevars evars) c in
let unfolded = match Tacred.red_product env sigma c with
| None -> user_err Pp.(str "fold: the term is not unfoldable!")
| Some c -> c
in
try
let sigma = Unification.w_unify env sigma CONV ~flags:(Unification.elim_flags ()) unfolded t in
let c' = Reductionops.nf_evar sigma c in
state, Success { rew_car = ty; rew_from = t; rew_to = c';
rew_prf = RewCast DEFAULTcast;
rew_evars = (sigma, snd evars) }
with e when CErrors.noncritical e -> state, Fail
}
end
(** The strategy for a single rewrite, dealing with occurrences. *)
(** A dummy initial clauseenv to avoid generating initial evars before
even finding a first application of the rewriting lemma, in setoid_rewrite
mode *)
let rewrite_with l2r flags c occs : strategy = { strategy =
fun ({ state = () } as input) ->
let unify env evars t =
let (sigma, cstrs) = evars in
let (sigma, rew) = refresh_hypinfo env sigma c in
unify_eqn rew l2r flags env (sigma, cstrs) None t
in
let app = apply_rule unify in
let strat =
Strategies.fix (fun aux ->
Strategies.choice (Strategies.progress app) (subterm true default_flags aux))
in
let occs, res = strat.strategy { input with state = initialize_occurrence_counter occs } in
check_used_occurrences occs;
((), res)
}
let apply_strategy (s : strategy) env unfresh concl (prop, cstr) evars =
let evars, ty = get_type_of_refresh env evars concl in
let _, res = s.strategy { state = () ; env ; unfresh ;
term1 = concl ; ty1 = ty ;
cstr = (prop, Some cstr) ; evars } in
res
let solve_constraints env (evars,cstrs) =
let oldtcs = Evd.get_typeclass_evars evars in
let evars' = Evd.set_typeclass_evars evars cstrs in
let evars' = TC.resolve_typeclasses env ~filter:TC.all_evars ~fail:true evars' in
Evd.set_typeclass_evars evars' oldtcs
let nf_zeta =
Reductionops.clos_norm_flags (RedFlags.mkflags [RedFlags.fZETA])
exception RewriteFailure of Environ.env * Evd.evar_map * pretype_error
type result = (evar_map * constr option * types) option option
exception UnsolvedConstraints of Environ.env * Evd.evar_map * Evar.t
let () = CErrors.register_handler begin function
| UnsolvedConstraints (env, evars, ev) ->
Some (str "Unsolved constraint remaining: " ++ spc () ++
Termops.pr_evar_info env evars (Evd.find_undefined evars ev) ++ str ".")
| _ -> None
end
let cl_rewrite_clause_aux ?(abs=None) strat env avoid sigma concl is_hyp : result =
let sigma, sort = Typing.sort_of env sigma concl in
let evdref = ref sigma in
let evars = (!evdref, Evar.Set.empty) in
let evars, cstr =
let prop, (evars, arrow) =
if ESorts.is_prop sigma sort then true, app_poly_sort true env evars impl [||]
else false, app_poly_sort false env evars TypeGlobal.arrow [||]
in
match is_hyp with
| None ->
let evars, t = poly_inverse prop env evars (mkSort sort) arrow in
evars, (prop, t)
| Some _ -> evars, (prop, arrow)
in
let eq = apply_strategy strat env avoid concl cstr evars in
match eq with
| Fail -> None
| Identity -> Some None
| Success res ->
let (_, cstrs) = res.rew_evars in
let evars = solve_constraints env res.rew_evars in
let iter ev = if not (Evd.is_defined evars ev) then raise (UnsolvedConstraints (env, evars, ev)) in
let () = Evar.Set.iter iter cstrs in
let newt = res.rew_to in
let res = match res.rew_prf with
| RewCast c -> None
| RewPrf (rel, p) ->
let p = nf_zeta env evars p in
let term =
match abs with
| None -> p
| Some (t, ty) ->
mkApp (mkLambda (make_annot (Name (Id.of_string "lemma")) ERelevance.relevant, ty, p), [| t |])
in
let proof = match is_hyp with
| None -> term
| Some id -> mkApp (term, [| mkVar id |])
in
Some proof
in
Some (Some (evars, res, newt))
let assert_replacing id newt tac =
let prf = Tactics.assert_after_replacing id newt in
Proofview.tclTHEN prf (Proofview.tclFOCUS 2 2 tac)
let newfail n s =
let info = Exninfo.reify () in
Proofview.tclZERO ~info (Tacticals.FailError (n, lazy s))
let cl_rewrite_clause_newtac ?abs ?origsigma ~progress strat clause =
let open Proofview.Notations in
let beta = Tactics.reduct_in_concl ~cast:false ~check:false
(Reductionops.nf_betaiota, DEFAULTcast)
in
let beta_hyp id = Tactics.reduct_in_hyp ~check:false ~reorder:false Reductionops.nf_betaiota (id, InHyp) in
let treat sigma res state =
match res with
| None -> newfail 0 (str "Nothing to rewrite")
| Some None ->
if progress
then newfail 0 (str"Failed to progress")
else Proofview.tclUNIT ()
| Some (Some res) ->
let (undef, prf, newt) = res in
let fold ev _ accu = if Evd.mem sigma ev then accu else ev :: accu in
let gls = List.rev (Evd.fold_undefined fold undef []) in
let gls = List.map (fun gl -> Proofview.goal_with_state gl state) gls in
match clause, prf with
| Some id, Some p ->
let tac = tclTHENLIST [
Refine.refine ~typecheck:true (fun h -> (h,p));
Proofview.Unsafe.tclNEWGOALS gls;
] in
Proofview.Unsafe.tclEVARS undef <*>
tclTHENFIRST (assert_replacing id newt tac) (beta_hyp id)
| Some id, None ->
Proofview.Unsafe.tclEVARS undef <*>
convert_hyp ~check:false ~reorder:false (LocalAssum (make_annot id ERelevance.relevant, newt)) <*>
beta_hyp id
| None, Some p ->
Proofview.Unsafe.tclEVARS undef <*>
Proofview.Goal.enter begin fun gl ->
let env = Proofview.Goal.env gl in
let make = begin fun sigma ->
let (sigma, ev) = Evarutil.new_evar env sigma newt in
(sigma, mkApp (p, [| ev |]))
end in
Refine.refine ~typecheck:true make <*> Proofview.Unsafe.tclNEWGOALS gls
end
| None, None ->
Proofview.Unsafe.tclEVARS undef <*>
convert_concl ~cast:false ~check:false newt DEFAULTcast
in
Proofview.Goal.enter begin fun gl ->
let concl = Proofview.Goal.concl gl in
let env = Proofview.Goal.env gl in
let state = Proofview.Goal.state gl in
let sigma = Tacmach.project gl in
let ty = match clause with
| None -> concl
| Some id -> EConstr.of_constr (Environ.named_type id env)
in
let env = match clause with
| None -> env
| Some id ->
let ctx = named_context env in
let filter decl = not (occur_var_in_decl env sigma id decl) in
let nctx = List.filter filter ctx in
Environ.reset_with_named_context (val_of_named_context nctx) env
in
try
let res =
cl_rewrite_clause_aux ?abs strat env Id.Set.empty sigma ty clause
in
let sigma = match origsigma with None -> sigma | Some sigma -> sigma in
treat sigma res state <*>
beta <*> Proofview.shelve_unifiable
with
| PretypeError (env, evd, (UnsatisfiableConstraints _ as e)) ->
raise (RewriteFailure (env, evd, e))
end
let tactic_init_rewrite () =
try init_rewrite (); Proofview.tclUNIT ()
with e when CErrors.noncritical e ->
let _, info = Exninfo.capture e in
Tacticals.tclFAIL ~info (str"Setoid library not loaded")
let cl_rewrite_clause_strat progress strat clause =
tactic_init_rewrite () <*>
(if progress then Proofview.tclPROGRESS else fun x -> x)
(Proofview.tclOR
(cl_rewrite_clause_newtac ~progress strat clause)
(fun (e, info) -> match e with
| Tacticals.FailError (n, pp) ->
tclFAILn ~info n (str"setoid rewrite failed: " ++ Lazy.force pp)
| e ->
Proofview.tclZERO ~info e))
(** Setoid rewriting when called with "setoid_rewrite" *)
let cl_rewrite_clause l left2right occs clause =
let strat = rewrite_with left2right (general_rewrite_unif_flags ()) l occs in
cl_rewrite_clause_strat true strat clause
(** Setoid rewriting when called with "rewrite_strat" *)
let cl_rewrite_clause_strat strat clause =
cl_rewrite_clause_strat false strat clause
let apply_glob_constr ((_, c) : _ * EConstr.t delayed_open) l2r occs = (); fun ({ state = () ; env = env } as input) ->
let c sigma =
let (sigma, c) = c env sigma in
(sigma, (c, NoBindings))
in
let flags = general_rewrite_unif_flags () in
(apply_lemma l2r flags c None occs).strategy input
let interp_glob_constr_list env =
let make c = (); fun sigma ->
let sigma, c = Pretyping.understand_tcc env sigma c in
(sigma, (c, NoBindings))
in
List.map (fun c -> make c, true, None)
type unary_strategy =
Subterms | Subterm | Innermost | Outermost
| Bottomup | Topdown | Progress | Try | Any | Repeat
type binary_strategy =
| Compose
type nary_strategy = Choice
type ('constr,'redexpr,'id) strategy_ast =
| StratId | StratFail | StratRefl
| StratUnary of unary_strategy * ('constr,'redexpr,'id) strategy_ast
| StratBinary of
binary_strategy * ('constr,'redexpr,'id) strategy_ast * ('constr,'redexpr,'id) strategy_ast
| StratNAry of nary_strategy * ('constr,'redexpr,'id) strategy_ast list
| StratConstr of 'constr * bool
| StratTerms of 'constr list
| StratHints of bool * string
| StratEval of 'redexpr
| StratFold of 'constr
| StratVar of 'id
| StratFix of 'id * ('constr,'redexpr,'id) strategy_ast
let rec map_strategy f g h = function
| StratId | StratFail | StratRefl as s -> s
| StratUnary (s, str) -> StratUnary (s, map_strategy f g h str)
| StratBinary (s, str, str') -> StratBinary (s, map_strategy f g h str, map_strategy f g h str')
| StratNAry (s, strs) -> StratNAry (s, List.map (map_strategy f g h) strs)
| StratConstr (c, b) -> StratConstr (f c, b)
| StratTerms l -> StratTerms (List.map f l)
| StratHints (b, id) -> StratHints (b, id)
| StratEval r -> StratEval (g r)
| StratFold c -> StratFold (f c)
| StratVar id -> StratVar (h id)
| StratFix (id, s) -> StratFix (h id, map_strategy f g h s)
let pr_ustrategy = function
| Subterms -> str "subterms"
| Subterm -> str "subterm"
| Innermost -> str "innermost"
| Outermost -> str "outermost"
| Bottomup -> str "bottomup"
| Topdown -> str "topdown"
| Progress -> str "progress"
| Try -> str "try"
| Any -> str "any"
| Repeat -> str "repeat"
let paren p = str "(" ++ p ++ str ")"
let rec pr_strategy0 prc prr prid = function
| StratId -> str "id"
| StratFail -> str "fail"
| StratRefl -> str "refl"
| str -> paren (pr_strategy prc prr prid str)
and pr_strategy1 prc prr prid = function
| StratUnary (s, str) ->
pr_ustrategy s ++ spc () ++ pr_strategy1 prc prr prid str
| StratNAry (Choice, strs) ->
str "choice" ++ brk (1,2) ++ prlist_with_sep spc (fun str -> hov 0 (pr_strategy0 prc prr prid str)) strs
| StratConstr (c, true) -> prc c
| StratConstr (c, false) -> str "<-" ++ spc () ++ prc c
| StratVar id -> prid id
| StratTerms cl -> str "terms" ++ spc () ++ pr_sequence prc cl
| StratHints (old, id) ->
let cmd = if old then "old_hints" else "hints" in
str cmd ++ spc () ++ str id
| StratEval r -> str "eval" ++ spc () ++ prr r
| StratFold c -> str "fold" ++ spc () ++ prc c
| str -> pr_strategy0 prc prr prid str
and pr_strategy2 prc prr prid = function
| StratBinary (Compose, str1, str2) ->
pr_strategy2 prc prr prid str1 ++ str ";" ++ spc () ++ hov 0 (pr_strategy1 prc prr prid str2)
| str -> hov 0 (pr_strategy1 prc prr prid str)
and pr_strategy prc prr prid = function
| StratFix (id,s) -> str "fix" ++ spc() ++ prid id ++ spc() ++ str ":=" ++ spc() ++ hov 0 (pr_strategy1 prc prr prid s)
| str -> pr_strategy2 prc prr prid str
let rec strategy_of_ast bindings = function
| StratId -> Strategies.id
| StratFail -> Strategies.fail
| StratRefl -> Strategies.refl
| StratUnary (f, s) ->
let s' = strategy_of_ast bindings s in
let f' = match f with
| Subterms -> all_subterms
| Subterm -> one_subterm
| Innermost -> Strategies.innermost
| Outermost -> Strategies.outermost
| Bottomup -> Strategies.bu
| Topdown -> Strategies.td
| Progress -> Strategies.progress
| Try -> Strategies.try_
| Any -> Strategies.any
| Repeat -> Strategies.repeat
in f' s'
| StratBinary (f, s, t) ->
let s' = strategy_of_ast bindings s in
let t' = strategy_of_ast bindings t in
let f' = match f with
| Compose -> Strategies.seq
in f' s' t'
| StratNAry (Choice, strs) ->
let strs = List.map (strategy_of_ast bindings) strs in
begin match strs with
| [] -> assert false
| s::strs -> List.fold_left Strategies.choice s strs
end
| StratConstr (c, b) -> { strategy = apply_glob_constr c b AllOccurrences }
| StratHints (old, id) -> if old then Strategies.old_hints id else Strategies.hints id
| StratTerms l -> { strategy =
(fun ({ state = () ; env } as input) ->
let l' = interp_glob_constr_list env (List.map fst l) in
(Strategies.lemmas l').strategy input)
}
| StratEval r -> { strategy =
(fun ({ state = () ; env ; evars } as input) ->
let (sigma, r_interp) = r env (goalevars evars) in
(Strategies.reduce r_interp).strategy { input with
evars = (sigma,cstrevars evars) }) }
| StratFold c -> Strategies.fold_glob (fst c)
| StratVar id -> Id.Map.get id bindings
| StratFix (id, s) -> Strategies.fix (fun self -> strategy_of_ast (Id.Map.add id self bindings) s)
let strategy_of_ast s = strategy_of_ast Id.Map.empty s
let proper_projection sigma r ty =
let rel_vect n m = Array.init m (fun i -> mkRel(n+m-i)) in
let ctx, inst = decompose_prod_decls sigma ty in
let mor, args = destApp sigma inst in
let instarg = mkApp (r, rel_vect 0 (List.length ctx)) in
let app = mkApp (PropGlobal.proper_proj (),
Array.append args [| instarg |]) in
it_mkLambda_or_LetIn app ctx
let build_morphism_signature env sigma m =
let m,ctx = Constrintern.interp_constr env sigma m in
let sigma = Evd.from_ctx ctx in
let t = Retyping.get_type_of env sigma m in
let cstrs =
let rec aux t =
match EConstr.kind sigma t with
| Prod (na, a, b) ->
None :: aux b
| _ -> []
in aux t
in
let evars, t', sig_, cstrs =
PropGlobal.build_signature (sigma, Evar.Set.empty) env t cstrs None in
let evd = ref evars in
let _ = List.iter
(fun (ty, rel) ->
Option.iter (fun rel ->
let default = e_app_poly env evd default_relation [| ty; rel |] in
let evd', t = new_cstr_evar !evd env default in
evd := evd')
rel)
cstrs
in
let morph = e_app_poly env evd PropGlobal.proper_type [| t; sig_; m |] in
let evd = solve_constraints env !evd in
evd, morph
let default_morphism env sigma sign m =
let t = Retyping.get_type_of env sigma m in
let evars, _, sign, cstrs =
PropGlobal.build_signature (sigma, Evar.Set.empty) env t (fst sign) (snd sign)
in
let evars, morph = app_poly_check env evars PropGlobal.proper_type [| t; sign; m |] in
let evars, mor = TC.resolve_one_typeclass env (goalevars evars) morph in
mor, proper_projection sigma mor morph
(** Bind to "rewrite" too *)
let unification_rewrite l2r c1 c2 sigma prf car rel but env =
let (sigma,c') =
try
Unification.w_unify_to_subterm
~flags:rewrite_unif_flags
env sigma ((if l2r then c1 else c2),but)
with
| ex when Pretype_errors.precatchable_exception ex ->
Unification.w_unify_to_subterm
~flags:rewrite_conv_unif_flags
env sigma ((if l2r then c1 else c2),but)
in
let nf c = Reductionops.nf_evar sigma c in
let c1 = if l2r then nf c' else nf c1
and c2 = if l2r then nf c2 else nf c'
and car = nf car and rel = nf rel in
let prf = nf prf in
let prfty = nf (Retyping.get_type_of env sigma prf) in
let sort = sort_of_rel env sigma but in
let abs = prf, prfty in
let prf = mkRel 1 in
let res = (car, rel, prf, c1, c2) in
abs, sigma, res, Sorts.is_prop sort
let get_hyp gl (c,l) clause l2r =
let evars = Tacmach.project gl in
let env = Tacmach.pf_env gl in
let sigma, hi = decompose_applied_relation env evars (c,l) in
let but = match clause with
| Some id -> Tacmach.pf_get_hyp_typ id gl
| None -> Reductionops.nf_evar evars (Tacmach.pf_concl gl)
in
unification_rewrite l2r hi.c1 hi.c2 sigma hi.prf hi.car hi.rel but env
let general_rewrite_flags = { under_lambdas = false; on_morphisms = true }
(** Setoid rewriting when called with "rewrite" *)
let general_s_rewrite cl l2r occs (c,l) ~new_goals =
Proofview.Goal.enter begin fun gl ->
let abs, evd, res, sort = get_hyp gl (c,l) cl l2r in
let unify env evars t = unify_abs res l2r sort env evars t in
let app = apply_rule unify in
let recstrat aux = Strategies.choice app (subterm true general_rewrite_flags aux) in
let substrat = Strategies.fix recstrat in
let strat = { strategy = fun ({ state = () } as input) ->
let occs, res = substrat.strategy { input with state = initialize_occurrence_counter occs } in
check_used_occurrences occs;
(), res
}
in
let origsigma = Tacmach.project gl in
tactic_init_rewrite () <*>
Proofview.tclOR
(tclPROGRESS
(tclTHEN
(Proofview.Unsafe.tclEVARS evd)
(cl_rewrite_clause_newtac ~progress:true ~abs:(Some abs) ~origsigma strat cl)))
(fun (e, info) -> match e with
| e -> Proofview.tclZERO ~info e)
end
let _ = Hook.set Equality.general_setoid_rewrite_clause general_s_rewrite
(** [setoid_]{reflexivity,symmetry,transitivity} tactics *)
exception RelationNotDeclared of Environ.env * Evd.evar_map * string * EConstr.types
let () = CErrors.register_handler begin function
| RelationNotDeclared (env, sigma, ty, concl) ->
let rel, _, _, _, _, _ = decompose_app_rel_error env sigma concl in
Some (str" The relation " ++ Printer.pr_econstr_env env sigma rel ++ str" is not a declared " ++
str ty ++ str" relation. Maybe you need to require the Coq.Classes.RelationClasses library")
| _ -> None
end
let not_declared ~info env sigma ty concl =
Proofview.tclZERO ~info (RelationNotDeclared (env, sigma, ty, concl))
let setoid_proof ty fn fallback =
Proofview.Goal.enter begin fun gl ->
let env = Proofview.Goal.env gl in
let sigma = Tacmach.project gl in
let concl = Proofview.Goal.concl gl in
Proofview.tclORELSE
begin
try
let rel, ty1, ty2, concl, _, _ = decompose_app_rel_error env sigma concl in
let (sigma, t) = Typing.type_of env sigma rel in
let car = snd (List.hd (fst (Reductionops.whd_decompose_prod env sigma t))) in
(try init_relation_classes () with e when CErrors.noncritical e -> raise Not_found);
fn env sigma car rel
with e when CErrors.noncritical e ->
let e, info = Exninfo.capture e in
Proofview.tclZERO ~info e
end
begin function
| e ->
Proofview.tclORELSE
fallback
begin function (e', info) -> match e' with
| Hipattern.NoEquationFound ->
begin match e with
| (Not_found, _) -> not_declared ~info env sigma ty concl
| (e, info) ->
Proofview.tclZERO ~info e
end
| e' -> Proofview.tclZERO ~info e'
end
end
end
let tac_open ((evm,_), c) tac =
(tclTHEN (Proofview.Unsafe.tclEVARS evm) (tac c))
let poly_proof getp gett env evm car rel =
if Sorts.is_prop (sort_of_rel env evm rel) then
getp env (evm,Evar.Set.empty) car rel
else gett env (evm,Evar.Set.empty) car rel
let setoid_reflexivity =
setoid_proof "reflexive"
(fun env evm car rel ->
tac_open (poly_proof PropGlobal.get_reflexive_proof
TypeGlobal.get_reflexive_proof
env evm car rel)
(fun c -> tclCOMPLETE (apply c)))
(reflexivity_red true)
let setoid_symmetry =
setoid_proof "symmetric"
(fun env evm car rel ->
tac_open
(poly_proof PropGlobal.get_symmetric_proof TypeGlobal.get_symmetric_proof
env evm car rel)
(fun c -> apply c))
(symmetry_red true)
let setoid_transitivity c =
setoid_proof "transitive"
(fun env evm car rel ->
tac_open (poly_proof PropGlobal.get_transitive_proof TypeGlobal.get_transitive_proof
env evm car rel)
(fun proof -> match c with
| None -> eapply proof
| Some c -> apply_with_bindings (proof,ImplicitBindings [ c ])))
(transitivity_red true c)
let setoid_symmetry_in id =
Proofview.Goal.enter begin fun gl ->
let env = Proofview.Goal.env gl in
let sigma = Proofview.Goal.sigma gl in
let ctype = Retyping.get_type_of env sigma (mkVar id) in
let binders,concl = decompose_prod_decls sigma ctype in
let (equiv, args) = decompose_app_list sigma concl in
let rec split_last_two = function
| [c1;c2] -> [],(c1, c2)
| x::y::z -> let l,res = split_last_two (y::z) in x::l, res
| _ -> user_err Pp.(str "Cannot find an equivalence relation to rewrite.")
in
let others,(c1,c2) = split_last_two args in
let he,c1,c2 = mkApp (equiv, Array.of_list others),c1,c2 in
let new_hyp' = mkApp (he, [| c2 ; c1 |]) in
let new_hyp = it_mkProd_or_LetIn new_hyp' binders in
(tclTHENLAST
(Tactics.assert_after_replacing id new_hyp)
(tclTHENLIST [ intros; setoid_symmetry; apply (mkVar id); Tactics.assumption ]))
end
let _ = Hook.set Tactics.setoid_reflexivity setoid_reflexivity
let _ = Hook.set Tactics.setoid_symmetry setoid_symmetry
let _ = Hook.set Tactics.setoid_symmetry_in setoid_symmetry_in
let _ = Hook.set Tactics.setoid_transitivity setoid_transitivity
let get_lemma_proof f env evm x y =
let (evm, _), c = f env (evm,Evar.Set.empty) x y in
evm, c
let get_reflexive_proof =
get_lemma_proof PropGlobal.get_reflexive_proof
let get_symmetric_proof =
get_lemma_proof PropGlobal.get_symmetric_proof
let get_transitive_proof =
get_lemma_proof PropGlobal.get_transitive_proof
module Internal =
struct
let build_signature env sigma m cstr finalcstr =
let evars = (sigma, Evar.Set.empty) in
let ((sigma, _), _, sig_, cstr) = PropGlobal.build_signature evars env m cstr finalcstr in
sigma, sig_, cstr
let build_morphism_signature = build_morphism_signature
let default_morphism = default_morphism
end