package coq-core

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file elim.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

open Util
open Names
open Termops
open EConstr
open Inductiveops
open Hipattern
open Tacmach
open Tacticals
open Tactics

type elim_kind = Case of bool | Elim

(* Find the right elimination suffix corresponding to the sort of the goal *)
(* c should be of type A1->.. An->B with B an inductive definition *)
let general_elim_using mk_elim (ind, u, args) id = match mk_elim with
| Case dep ->
  Clenv.case_pf ~dep (mkVar id, mkApp (mkIndU (ind, u), args))
| Elim ->
  Proofview.Goal.enter begin fun gl ->
    let env = Proofview.Goal.env gl in
    let sigma = Proofview.Goal.sigma gl in
    let sort = Retyping.get_sort_family_of env sigma (Proofview.Goal.concl gl) in
    let flags = Unification.elim_flags () in
    let gr = Indrec.lookup_eliminator env ind sort in
    let sigma, elim = Evd.fresh_global env sigma gr in
    let elimt = Retyping.get_type_of env sigma elim in
    (* applying elimination_scheme just a little modified *)
    let elimclause = Clenv.mk_clenv_from env sigma (elim, elimt) in
    let indmv = List.last (Clenv.clenv_arguments elimclause) in
    let elimclause = Clenv.clenv_instantiate indmv elimclause (mkVar id, mkApp (mkIndU (ind, u), args)) in
    Clenv.res_pf ~flags elimclause
  end

(* computing the case/elim combinators *)

let elim_on_ba tac nassums =
  Proofview.Goal.enter begin fun gl ->
  let branches =
    try List.rev (List.firstn nassums (Proofview.Goal.hyps gl))
    with Failure _ -> CErrors.anomaly (Pp.str "make_elim_branch_assumptions.")
  in
  tac branches
  end

let case_tac dep names tac (ind, u, args as spec) c =
  let open Proofview.Notations in
  Proofview.Goal.enter begin fun gl ->
    let env = Proofview.Goal.env gl in
    let branchsigns = Tacticals.compute_constructor_signatures env ~rec_flag:false (ind, u) in
    let brnames = Tacticals.compute_induction_names false branchsigns names in
    let after_tac i =
      let branchnames = brnames.(i) in
      let n1 = List.length branchsigns.(i) in
      let n2 = List.length branchnames in
      let (l1,l2),l3 =
        if n1 < n2 then List.chop n1 branchnames, []
        else (branchnames, []), List.make (n1-n2) false in
      (intro_patterns false l1) <*> (intros_clearing l3) <*> (elim_on_ba (tac l2) n1)
    in
    let branchtacs = List.init (Array.length branchsigns) after_tac in
    general_elim_using (Case dep) spec c <*>
    (Proofview.tclEXTEND [] tclIDTAC branchtacs)
  end

(* The following tactic Decompose repeatedly applies the
   elimination(s) rule(s) of the types satisfying the predicate
   ``recognizer'' onto a certain hypothesis. For example :

Require Elim.
Require Le.
   Goal (y:nat){x:nat | (le O x)/\(le x y)}->{x:nat | (le O x)}.
   Intros y H.
   Decompose [sig and] H;EAuto.
   Qed.

Another example :

   Goal (A,B,C:Prop)(A/\B/\C \/ B/\C \/ C/\A) -> C.
   Intros A B C H; Decompose [and or] H; Assumption.
   Qed.
*)

let rec general_decompose_aux recognizer id =
  let open Declarations in
  let open Proofview.Notations in
  Proofview.Goal.enter begin fun gl ->
  let env = Proofview.Goal.env gl in
  let ((ind, u), t) = pf_apply Tacred.reduce_to_atomic_ind gl (pf_get_type_of gl (mkVar id)) in
  let _, args = decompose_app (Proofview.Goal.sigma gl) t in
  let rec_flag, mkelim =
    match (Environ.lookup_mind (fst ind) env).mind_record with
    | NotRecord -> true, Elim
    | FakeRecord | PrimRecord _ -> false, Case true
  in
  let branchsigns = Tacticals.compute_constructor_signatures env ~rec_flag (ind, u) in
  let next_tac bas =
    let map id = ifOnHyp recognizer (general_decompose_aux recognizer) (fun _ -> tclIDTAC) id in
    tclMAP map (ids_of_named_context bas)
  in
  let after_tac i =
    let nassums = List.length branchsigns.(i) in
    (tclDO nassums intro) <*> (clear [id]) <*> (elim_on_ba next_tac nassums)
  in
  let branchtacs = List.init (Array.length branchsigns) after_tac in
  general_elim_using mkelim (ind, u, args) id <*>
  (Proofview.tclEXTEND [] tclIDTAC branchtacs)
  end


(* We should add a COMPLETE to be sure that the created hypothesis
   doesn't stay if no elimination is possible *)

(* Best strategies but loss of compatibility *)
let tmphyp_name = Id.of_string "_TmpHyp"

let general_decompose recognizer c =
  Proofview.Goal.enter begin fun gl ->
  let typc = pf_get_type_of gl c in
  tclTHENS (cut typc)
    [ intro_using_then tmphyp_name (fun id ->
          ifOnHyp recognizer (general_decompose_aux recognizer)
            (fun id -> clear [id])
            id);
       exact_no_check c ]
  end

let head_in indl t gl =
  let env = Proofview.Goal.env gl in
  let sigma = Tacmach.project gl in
  try
    let ity,_ = extract_mrectype sigma t in
    List.exists (fun i -> Environ.QInd.equal env (fst i) (fst ity)) indl
  with Not_found -> false

let decompose_these c l =
  Proofview.Goal.enter begin fun gl ->
  let indl = List.map (fun x -> x, UVars.Instance.empty) l in
  general_decompose (fun env sigma (_,t) -> head_in indl t gl) c
  end

let decompose_and c =
  general_decompose
    (fun env sigma (_,t) -> is_record env sigma t)
    c

let decompose_or c =
  general_decompose
    (fun env sigma (_,t) -> is_disjunction env sigma t)
    c

let h_decompose l c = decompose_these c l

let h_decompose_or = decompose_or

let h_decompose_and = decompose_and
OCaml

Innovation. Community. Security.