package coq-core

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file declare.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(** This module is about the low-level declaration of logical objects *)

open Pp
open Util
open Names
open Safe_typing
module NamedDecl = Context.Named.Declaration

(* Hooks naturally belong here as they apply to both definitions and lemmas *)
module Hook = struct
  module S = struct
    type t =
      { uctx : UState.t
      (** [ustate]: universe constraints obtained when the term was closed *)
      ; obls : (Names.Id.t * Constr.t) list
      (** [(n1,t1),...(nm,tm)]: association list between obligation
          name and the corresponding defined term (might be a constant,
          but also an arbitrary term in the Expand case of obligations) *)
      ; scope : Locality.definition_scope
      (**  [locality]: Locality of the original declaration *)
      ; dref : Names.GlobRef.t
      (** [ref]: identifier of the original declaration *)
      }
  end

  type 'a g = (S.t -> 'a -> 'a) CEphemeron.key
  type t = unit g

  let make_g hook = CEphemeron.create hook
  let make (hook : S.t -> unit) : t = CEphemeron.create (fun x () -> hook x)

  let hcall hook x s = CEphemeron.default hook (fun _ x -> x) x s

  let call_g ?hook x s = Option.cata (fun hook -> hcall hook x s) s hook
  let call ?hook x = Option.iter (fun hook -> hcall hook x ()) hook

end

module CInfo = struct

  type 'constr t =
    { name : Id.t
    (** Name of theorem *)
    ; typ : 'constr
    (** Type of theorem  *)
    ; args : Name.t list
    (** Names to pre-introduce  *)
    ; impargs : Impargs.manual_implicits
    (** Explicitily declared implicit arguments  *)
    }


  let make ~name ~typ ?(args=[]) ?(impargs=[]) () =
    { name; typ; args; impargs }

  let to_constr sigma thm = { thm with typ = EConstr.to_constr sigma thm.typ }

  let get_typ { typ; _ } = typ
  let get_name { name; _ } = name

end

(** Information for a declaration, interactive or not, includes
   parameters shared by mutual constants *)
module Info = struct

  type t =
    { poly : bool
    ; inline : bool
    ; kind : Decls.logical_kind
    ; udecl : UState.universe_decl
    ; scope : Locality.definition_scope
    ; clearbody : bool (* always false for non Discharge scope *)
    ; hook : Hook.t option
    ; typing_flags : Declarations.typing_flags option
    ; user_warns : UserWarn.t option
    ; ntns : Metasyntax.notation_interpretation_decl list
    }

  (** Note that [opaque] doesn't appear here as it is not known at the
     start of the proof in the interactive case. *)
  let make ?(poly=false) ?(inline=false) ?(kind=Decls.(IsDefinition Definition))
      ?(udecl=UState.default_univ_decl) ?(scope=Locality.default_scope)
      ?(clearbody=false) ?hook ?typing_flags ?user_warns ?(ntns=[]) () =
    { poly; inline; kind; udecl; scope; hook; typing_flags; clearbody; user_warns; ntns }

end

(** Declaration of constants and parameters *)

type 'a pproof_entry = {
  proof_entry_body   : 'a;
  (* List of section variables *)
  proof_entry_secctx : Id.Set.t option;
  (* State id on which the completion of type checking is reported *)
  proof_entry_feedback : Stateid.t option;
  proof_entry_type        : Constr.types option;
  proof_entry_universes   : UState.named_universes_entry;
  proof_entry_opaque      : bool;
  proof_entry_inline_code : bool;
}

type proof_entry = Evd.side_effects Opaques.const_entry_body pproof_entry

type parameter_entry = {
  parameter_entry_secctx : Id.Set.t option;
  parameter_entry_type : Constr.types;
  parameter_entry_universes : UState.named_universes_entry;
  parameter_entry_inline_code : Entries.inline;
}

type primitive_entry = {
  prim_entry_type : (Constr.types * UState.named_universes_entry) option;
  prim_entry_content : CPrimitives.op_or_type;
}

type symbol_entry = {
  symb_entry_type : Constr.types;
  symb_entry_unfold_fix: bool;
  symb_entry_universes : UState.named_universes_entry;
}

let default_univ_entry = UState.Monomorphic_entry Univ.ContextSet.empty
let default_named_univ_entry = default_univ_entry, UnivNames.empty_binders

(** [univsbody] are universe-constraints attached to the body-only,
   used in vio-delayed opaque constants and private poly universes *)
let definition_entry_core ?(opaque=false) ?using ?(inline=false) ?types
    ?(univs=default_named_univ_entry) ?(eff=Evd.empty_side_effects) ?(univsbody=Univ.ContextSet.empty) body =
  { proof_entry_body = Future.from_val ((body,univsbody), eff);
    proof_entry_secctx = using;
    proof_entry_type = types;
    proof_entry_universes = univs;
    proof_entry_opaque = opaque;
    proof_entry_feedback = None;
    proof_entry_inline_code = inline}

let definition_entry =
  definition_entry_core ?eff:None ?univsbody:None

let parameter_entry ?inline ?(univs=default_named_univ_entry) typ = {
  parameter_entry_secctx = None;
  parameter_entry_type = typ;
  parameter_entry_universes = univs;
  parameter_entry_inline_code = inline;
}

let primitive_entry ?types c = {
  prim_entry_type = types;
  prim_entry_content = c;
}

let symbol_entry ?(univs=default_named_univ_entry) ~unfold_fix symb_entry_type = {
  symb_entry_universes = univs;
  symb_entry_unfold_fix = unfold_fix;
  symb_entry_type;
}

type constant_entry =
  | DefinitionEntry of proof_entry
  | ParameterEntry of parameter_entry
  | PrimitiveEntry of primitive_entry
  | SymbolEntry of symbol_entry

let local_csts = Summary.ref ~name:"local-csts" Cset_env.empty

let is_local_constant c = Cset_env.mem c !local_csts

type constant_obj = {
  cst_kind : Decls.logical_kind;
  cst_locl : Locality.import_status;
  cst_warn : UserWarn.t option;
}

let load_constant i ((sp,kn), obj) =
  if Nametab.exists_cci sp then
    raise (DeclareUniv.AlreadyDeclared (None, Libnames.basename sp));
  let con = Global.constant_of_delta_kn kn in
  Nametab.push ?user_warns:obj.cst_warn (Nametab.Until i) sp (GlobRef.ConstRef con);
  Dumpglob.add_constant_kind con obj.cst_kind;
  begin match obj.cst_locl with
    | Locality.ImportNeedQualified -> local_csts := Cset_env.add con !local_csts
    | Locality.ImportDefaultBehavior -> ()
  end

(* Opening means making the name without its module qualification available *)
let open_constant i ((sp,kn), obj) =
  (* Never open a local definition *)
  match obj.cst_locl with
  | Locality.ImportNeedQualified -> ()
  | Locality.ImportDefaultBehavior ->
    let con = Global.constant_of_delta_kn kn in
    Nametab.push (Nametab.Exactly i) sp (GlobRef.ConstRef con)

let exists_name id =
  Decls.variable_exists id || Global.exists_objlabel (Label.of_id id)

let check_exists id =
  if exists_name id then
    raise (DeclareUniv.AlreadyDeclared (None, id))

let cache_constant ((sp,kn), obj) =
  let kn = Global.constant_of_delta_kn kn in
  Nametab.push ?user_warns:obj.cst_warn (Nametab.Until 1) sp (GlobRef.ConstRef kn);
  Dumpglob.add_constant_kind kn obj.cst_kind

let discharge_constant obj = Some obj

let classify_constant cst = Libobject.Substitute

let (objConstant : (Id.t * constant_obj) Libobject.Dyn.tag) =
  let open Libobject in
  declare_named_object_full { (default_object "CONSTANT") with
    cache_function = cache_constant;
    load_function = load_constant;
    open_function = simple_open open_constant;
    classify_function = classify_constant;
    subst_function = ident_subst_function;
    discharge_function = discharge_constant }

let inConstant v = Libobject.Dyn.Easy.inj v objConstant

let update_tables c =
  Impargs.declare_constant_implicits c;
  Notation.declare_ref_arguments_scope (GlobRef.ConstRef c)

let register_constant kn kind ?user_warns local =
  let id = Label.to_id (Constant.label kn) in
  let o = inConstant (id, { cst_kind = kind; cst_locl = local; cst_warn = user_warns }) in
  let () = Lib.add_leaf o in
  update_tables kn

let register_side_effect (c, body, role) =
  (* Register the body in the opaque table *)
  let () = match body with
  | None -> ()
  | Some opaque -> Opaques.declare_private_opaque opaque
  in
  let () = register_constant c Decls.(IsProof Theorem) Locality.ImportDefaultBehavior in
  match role with
  | None -> ()
  | Some (Evd.Schema (ind, kind)) -> DeclareScheme.declare_scheme kind (ind,c)

let get_roles export eff =
  let map (c, body) =
    let role = try Some (Cmap.find c eff.Evd.seff_roles) with Not_found -> None in
    (c, body, role)
  in
  List.map map export

let export_side_effects eff =
  let export = Global.export_private_constants eff.Evd.seff_private in
  let export = get_roles export eff in
  List.iter register_side_effect export

let record_aux env s_ty s_bo =
  let open Environ in
  let in_ty = keep_hyps env s_ty in
  let v =
    String.concat " "
      (CList.map_filter (fun decl ->
          let id = NamedDecl.get_id decl in
          if List.exists (NamedDecl.get_id %> Id.equal id) in_ty then None
          else Some (Id.to_string id))
        (keep_hyps env s_bo)) in
  Aux_file.record_in_aux "context_used" v

let pure_definition_entry ?(opaque=false) ?(inline=false) ?types
    ?(univs=default_named_univ_entry) body =
  { proof_entry_body = ((body,Univ.ContextSet.empty), ());
    proof_entry_secctx = None;
    proof_entry_type = types;
    proof_entry_universes = univs;
    proof_entry_opaque = opaque;
    proof_entry_feedback = None;
    proof_entry_inline_code = inline}

let delayed_definition_entry ~opaque ?feedback_id ~using ~univs ?types body =
  { proof_entry_body = body
  ; proof_entry_secctx = using
  ; proof_entry_type = types
  ; proof_entry_universes = univs
  ; proof_entry_opaque = opaque
  ; proof_entry_feedback = feedback_id
  ; proof_entry_inline_code = false
  }

let extract_monomorphic = function
| UState.Monomorphic_entry ctx -> Entries.Monomorphic_entry, ctx
| UState.Polymorphic_entry uctx -> Entries.Polymorphic_entry uctx, Univ.ContextSet.empty

let cast_proof_entry e =
  let (body, ctx), () = e.proof_entry_body in
  let univ_entry =
    if Univ.ContextSet.is_empty ctx then fst (e.proof_entry_universes)
    else match fst (e.proof_entry_universes) with
      | UState.Monomorphic_entry ctx' ->
        (* This can actually happen, try compiling EqdepFacts for instance *)
        UState.Monomorphic_entry (Univ.ContextSet.union ctx' ctx)
      | UState.Polymorphic_entry _ ->
        CErrors.anomaly Pp.(str "Local universes in non-opaque polymorphic definition.");
  in
  let univ_entry, ctx = extract_monomorphic univ_entry in
  { Entries.const_entry_body = body;
    const_entry_secctx = e.proof_entry_secctx;
    const_entry_type = e.proof_entry_type;
    const_entry_universes = univ_entry;
    const_entry_inline_code = e.proof_entry_inline_code;
  },
  ctx

type ('a, 'b) effect_entry =
| EffectEntry : (private_constants Opaques.const_entry_body, unit) effect_entry
| PureEntry : (unit Entries.proof_output, Constr.constr) effect_entry

let cast_opaque_proof_entry (type a b) (entry : (a, b) effect_entry) (e : a pproof_entry) : b Entries.opaque_entry * _ =
  let typ = match e.proof_entry_type with
  | None -> assert false
  | Some typ -> typ
  in
  let secctx = match e.proof_entry_secctx with
  | None ->
    let open Environ in
    let env = Global.env () in
    let hyp_typ, hyp_def =
      if List.is_empty (Environ.named_context env) then
        Id.Set.empty, Id.Set.empty
      else
        let ids_typ = global_vars_set env typ in
        let pf, env = match entry with
        | PureEntry ->
          let (pf, _), () = e.proof_entry_body in
          pf, env
        | EffectEntry ->
          let (pf, _), eff = Future.force e.proof_entry_body in
          let env = Safe_typing.push_private_constants env eff in
          pf, env
        in
        let vars = global_vars_set env pf in
        ids_typ, vars
    in
    let () = if Aux_file.recording () then record_aux env hyp_typ hyp_def in
    Environ.really_needed env (Id.Set.union hyp_typ hyp_def)
  | Some hyps -> hyps
  in
  let (body, (univ_entry, ctx) : b * _) = match entry with
  | PureEntry ->
    let (body, uctx), () = e.proof_entry_body in
    let univ_entry = match fst (e.proof_entry_universes) with
    | UState.Monomorphic_entry uctx' ->
      Entries.Monomorphic_entry, (Univ.ContextSet.union uctx uctx')
    | UState.Polymorphic_entry uctx' ->
      assert (Univ.ContextSet.is_empty uctx);
      Entries.Polymorphic_entry uctx', Univ.ContextSet.empty
    in
    body, univ_entry
  | EffectEntry -> (), extract_monomorphic (fst (e.proof_entry_universes))
  in
  { Entries.opaque_entry_body = body;
    opaque_entry_secctx = secctx;
    opaque_entry_type = typ;
    opaque_entry_universes = univ_entry;
  },
  ctx

let feedback_axiom () = Feedback.(feedback AddedAxiom)

let is_unsafe_typing_flags flags =
  let flags = Option.default (Global.typing_flags ()) flags in
  let open Declarations in
  not (flags.check_universes && flags.check_guarded && flags.check_positive)

let make_ubinders uctx (univs, ubinders as u) = match univs with
| UState.Polymorphic_entry _ -> u
| UState.Monomorphic_entry _ -> (UState.Monomorphic_entry uctx, ubinders)

let declare_constant_core ~name ~typing_flags cd =
  (* Logically define the constant and its subproofs, no libobject tampering *)
  let decl, unsafe, ubinders, delayed = match cd with
    | DefinitionEntry de ->
      (* We deal with side effects *)
      if not de.proof_entry_opaque then
        let body, eff = Future.force de.proof_entry_body in
        (* This globally defines the side-effects in the environment
           and registers their libobjects. *)
        let () = export_side_effects eff in
        let de = { de with proof_entry_body = body, () } in
        let e, ctx = cast_proof_entry de in
        let ubinders = make_ubinders ctx de.proof_entry_universes in
        (* We register the global universes after exporting side-effects, since
           the latter depend on the former. *)
        let () = Global.push_context_set ~strict:true ctx in
        let cd = Entries.DefinitionEntry e in
        ConstantEntry cd, false, ubinders, None
      else
        let map (body, eff) = body, eff.Evd.seff_private in
        let body = Future.chain de.proof_entry_body map in
        let feedback_id = de.proof_entry_feedback in
        let de = { de with proof_entry_body = body } in
        let cd, ctx = cast_opaque_proof_entry EffectEntry de in
        let ubinders = make_ubinders ctx de.proof_entry_universes in
        let () = Global.push_context_set ~strict:true ctx in
        OpaqueEntry cd, false, ubinders, Some (body, feedback_id)
    | ParameterEntry e ->
      let univ_entry, ctx = extract_monomorphic (fst e.parameter_entry_universes) in
      let ubinders = make_ubinders ctx e.parameter_entry_universes in
      let () = Global.push_context_set ~strict:true ctx in
      let e = {
        Entries.parameter_entry_secctx = e.parameter_entry_secctx;
        Entries.parameter_entry_type = e.parameter_entry_type;
        Entries.parameter_entry_universes = univ_entry;
        Entries.parameter_entry_inline_code = e.parameter_entry_inline_code;
      } in
      ConstantEntry (Entries.ParameterEntry e), not (Lib.is_modtype_strict()), ubinders, None
    | PrimitiveEntry e ->
      let typ, univ_entry, ctx = match e.prim_entry_type with
      | None ->
        None, (UState.Monomorphic_entry Univ.ContextSet.empty, UnivNames.empty_binders), Univ.ContextSet.empty
      | Some (typ, entry_univs) ->
        let univ_entry, ctx = extract_monomorphic (fst entry_univs) in
        Some (typ, univ_entry), entry_univs, ctx
      in
      let () = Global.push_context_set ~strict:true ctx in
      let e = {
        Entries.prim_entry_type = typ;
        Entries.prim_entry_content = e.prim_entry_content;
      } in
      let ubinders = make_ubinders ctx univ_entry in
      ConstantEntry (Entries.PrimitiveEntry e), false, ubinders, None
    | SymbolEntry { symb_entry_type=typ; symb_entry_unfold_fix=un_fix; symb_entry_universes=entry_univs } ->
      let univ_entry, ctx = extract_monomorphic (fst entry_univs) in
      let () = Global.push_context_set ~strict:true ctx in
      let e = {
        Entries.symb_entry_type = typ;
        Entries.symb_entry_unfold_fix = un_fix;
        Entries.symb_entry_universes = univ_entry;
      } in
      let ubinders = make_ubinders ctx entry_univs in
      ConstantEntry (Entries.SymbolEntry e), false, ubinders, None
  in
  let kn = Global.add_constant ?typing_flags name decl in
  let () = DeclareUniv.declare_univ_binders (GlobRef.ConstRef kn) ubinders in
  if unsafe || is_unsafe_typing_flags typing_flags then feedback_axiom();
  kn, delayed

let declare_constant ?(local = Locality.ImportDefaultBehavior) ~name ~kind ~typing_flags ?user_warns cd =
  let () = check_exists name in
  let kn, delayed = declare_constant_core ~typing_flags ~name cd in
  (* Register the libobjects attached to the constants *)
  let () = match delayed with
  | None -> ()
  | Some (body, feedback_id) ->
    let open Declarations in
    match (Global.lookup_constant kn).const_body with
    | OpaqueDef o ->
      let (_, _, _, i) = Opaqueproof.repr o in
      Opaques.declare_defined_opaque ?feedback_id i body
    | Def _ | Undef _ | Primitive _ | Symbol _ -> assert false
  in
  let () = register_constant kn kind local ?user_warns in
  kn

let declare_private_constant ?role ?(local = Locality.ImportDefaultBehavior) ~name ~kind de =
  let de, ctx =
    if not de.proof_entry_opaque then
      let de, ctx = cast_proof_entry de in
      DefinitionEff de, ctx
    else
      let de, ctx = cast_opaque_proof_entry PureEntry de in
      OpaqueEff de, ctx
  in
  let kn, eff = Global.add_private_constant name ctx de in
  let () = register_constant kn kind local in
  let seff_roles = match role with
  | None -> Cmap.empty
  | Some r -> Cmap.singleton kn r
  in
  let eff = { Evd.seff_private = eff; Evd.seff_roles; } in
  kn, eff

let inline_private_constants ~uctx env ce =
  let body, eff = ce.proof_entry_body in
  let cb, ctx = Safe_typing.inline_private_constants env (body, eff.Evd.seff_private) in
  let uctx = UState.merge ~sideff:true Evd.univ_rigid uctx ctx in
  cb, uctx

(** Declaration of section variables and local definitions *)
type variable_declaration =
  | SectionLocalDef of {
      clearbody : bool;
      entry : proof_entry;
    }
  | SectionLocalAssum of {
      typ : Constr.types;
      impl : Glob_term.binding_kind;
      univs : UState.named_universes_entry;
    }

(* This object is only for things which iterate over objects to find
   variables (only Prettyp.print_context AFAICT) *)
let objVariable : Id.t Libobject.Dyn.tag =
  let open Libobject in
  declare_object_full { (default_object "VARIABLE") with
    classify_function = (fun _ -> Dispose)}

let inVariable v = Libobject.Dyn.Easy.inj v objVariable

let declare_variable ~name ~kind ~typing_flags d =
  (* Variables are distinguished by only short names *)
  if Decls.variable_exists name then
    raise (DeclareUniv.AlreadyDeclared (None, name));

  let impl,opaque = match d with (* Fails if not well-typed *)
    | SectionLocalAssum {typ;impl;univs} ->
      let () = match fst univs with
        | UState.Monomorphic_entry uctx -> Global.push_context_set ~strict:true uctx
        | UState.Polymorphic_entry uctx -> Global.push_section_context uctx
      in
      let () = Global.push_named_assum (name,typ) in
      impl, true
    | SectionLocalDef { clearbody; entry = de } ->
      (* The body should already have been forced upstream because it is a
         section-local definition, but it's not enforced by typing *)
      let ((body, body_uctx), eff) = Future.force de.proof_entry_body in
      let () = export_side_effects eff in
      (* We must declare the universe constraints before type-checking the
         term. *)
      let () = match fst de.proof_entry_universes with
        | UState.Monomorphic_entry uctx ->
          Global.push_context_set ~strict:true (Univ.ContextSet.union uctx body_uctx)
        | UState.Polymorphic_entry uctx ->
          Global.push_section_context uctx;
          let mk_anon_names u =
            let qs, us = UVars.Instance.to_array u in
            Array.make (Array.length qs) Anonymous, Array.make (Array.length us) Anonymous
          in
          Global.push_section_context
            (UVars.UContext.of_context_set mk_anon_names Sorts.QVar.Set.empty body_uctx)
      in
      let opaque = de.proof_entry_opaque in
      let se = if opaque then
          let cname = Id.of_string (Id.to_string name ^ "_subproof") in
          let cname = Namegen.next_global_ident_away cname Id.Set.empty in
          let poly = match fst de.proof_entry_universes with
            | Monomorphic_entry _ -> false
            | Polymorphic_entry _ -> true
          in
          let de = {
            proof_entry_body = Future.from_val ((body, Univ.ContextSet.empty), Evd.empty_side_effects);
            proof_entry_secctx = None; (* de.proof_entry_secctx is NOT respected *)
            proof_entry_feedback = de.proof_entry_feedback;
            proof_entry_type = de.proof_entry_type;
            proof_entry_universes = UState.univ_entry ~poly UState.empty;
            proof_entry_opaque = true;
            proof_entry_inline_code = de.proof_entry_inline_code;
          }
          in
          let kn = declare_constant ~name:cname
              ~local:ImportNeedQualified ~kind:(IsProof Lemma) ~typing_flags
              (DefinitionEntry de)
          in
          {
            Entries.secdef_body = Constr.mkConstU (kn, UVars.Instance.empty);
            secdef_type = None;
          }
        else {
        Entries.secdef_body = body;
        secdef_type = de.proof_entry_type;
      } in
      let () = Global.push_named_def (name, se) in
      (* opaque implies clearbody, so we don't see useless "foo := foo_subproof" in the context *)
      Glob_term.Explicit, opaque || clearbody
  in
  Nametab.push (Nametab.Until 1) (Libnames.make_path DirPath.empty name) (GlobRef.VarRef name);
  Decls.(add_variable_data name {opaque;kind});
  Lib.add_leaf (inVariable name);
  Impargs.declare_var_implicits ~impl name;
  Notation.declare_ref_arguments_scope (GlobRef.VarRef name)

(* Declaration messages *)

let pr_rank i = pr_nth (i+1)

let fixpoint_message indexes l =
  Flags.if_verbose Feedback.msg_info (match l with
  | [] -> CErrors.anomaly (Pp.str "no recursive definition.")
  | [id] -> Id.print id ++ str " is recursively defined" ++
      (match indexes with
         | Some [|i|] -> str " (guarded on "++pr_rank i++str " argument)"
         | _ -> mt ())
  | l -> hov 0 (prlist_with_sep pr_comma Id.print l ++
                  spc () ++ str "are recursively defined" ++
                  match indexes with
                    | Some a -> spc () ++ str "(guarded respectively on " ++
                        prvect_with_sep pr_comma pr_rank a ++
                        str " arguments)"
                    | None -> mt ()))

let cofixpoint_message l =
  Flags.if_verbose Feedback.msg_info (match l with
  | [] -> CErrors.anomaly (Pp.str "No corecursive definition.")
  | [id] -> Id.print id ++ str " is corecursively defined"
  | l -> hov 0 (prlist_with_sep pr_comma Id.print l ++
                    spc () ++ str "are corecursively defined"))

let recursive_message isfix indexes l =
  (if isfix then fixpoint_message indexes else cofixpoint_message) l

let definition_message id =
  Flags.if_verbose Feedback.msg_info (Id.print id ++ str " is defined")

let assumption_message id =
  (* Changing "assumed" to "declared", "assuming" referring more to
  the type of the object than to the name of the object (see
  discussion on coqdev: "Chapter 4 of the Reference Manual", 8/10/2015) *)
  Flags.if_verbose Feedback.msg_info (Id.print id ++ str " is declared")

module Internal = struct

  let pmap_entry_body ~f entry =
    { entry with proof_entry_body = f entry.proof_entry_body }

  let map_entry_body ~f entry =
    { entry with proof_entry_body = Future.chain entry.proof_entry_body f }

  let map_entry_type ~f entry =
    { entry with proof_entry_type = f entry.proof_entry_type }

  let set_opacity ~opaque entry =
    { entry with proof_entry_opaque = opaque }

  let rec shrink ctx sign c t accu =
    let open Constr in
    let open Vars in
    match ctx, sign with
    | [], [] -> (c, t, accu)
    | p :: ctx, decl :: sign ->
      if noccurn 1 c && noccurn 1 t then
        let c = subst1 mkProp c in
        let t = subst1 mkProp t in
        shrink ctx sign c t accu
      else
        let c = Term.mkLambda_or_LetIn p c in
        let t = Term.mkProd_or_LetIn p t in
        let accu = if Context.Rel.Declaration.is_local_assum p
          then mkVar (NamedDecl.get_id decl) :: accu
          else accu
        in
        shrink ctx sign c t accu
    | _ -> assert false

  let shrink_entry sign const =
    let typ = match const.proof_entry_type with
      | None -> assert false
      | Some t -> t
    in
    let ((body, uctx), eff) = const.proof_entry_body in
    let (ctx, body, typ) = Term.decompose_lambda_prod_n_decls (List.length sign) body typ in
    let (body, typ, args) = shrink ctx sign body typ [] in
    { const with
      proof_entry_body = ((body, uctx), eff)
    ; proof_entry_type = Some typ
    }, args

  module Constant = struct
    type t = constant_obj
    let tag = objConstant
    let kind obj = obj.cst_kind
  end

  let objVariable = objVariable

  let export_side_effects = export_side_effects

end

let declare_definition_scheme ~internal ~univs ~role ~name ?loc c =
  let kind = Decls.(IsDefinition Scheme) in
  let entry = pure_definition_entry ~univs c in
  let kn, eff = declare_private_constant ~role ~kind ~name entry in
  Dumpglob.dump_definition
    (CAst.make ?loc (Constant.label kn |> Label.to_id)) false "scheme";
  let () = if internal then () else definition_message name in
  kn, eff

(* Locality stuff *)
let declare_entry_core ~name ?(scope=Locality.default_scope) ?(clearbody=false) ~kind ~typing_flags ~user_warns ?hook ~obls ~impargs ~uctx entry =
  let should_suggest =
    entry.proof_entry_opaque
    && not (List.is_empty (Global.named_context()))
    && Option.is_empty entry.proof_entry_secctx
  in
  let dref = match scope with
  | Locality.Discharge ->
    let () = declare_variable ~typing_flags ~name ~kind (SectionLocalDef {clearbody; entry}) in
    if should_suggest then Proof_using.suggest_variable (Global.env ()) name;
    Names.GlobRef.VarRef name
  | Locality.Global local ->
    assert (not clearbody);
    let kn = declare_constant ~name ~local ~kind ~typing_flags ?user_warns (DefinitionEntry entry) in
    let gr = Names.GlobRef.ConstRef kn in
    if should_suggest then Proof_using.suggest_constant (Global.env ()) kn;
    gr
  in
  let () = Impargs.maybe_declare_manual_implicits false dref impargs in
  let () = definition_message name in
  Hook.call ?hook { Hook.S.uctx; obls; scope; dref };
  dref

let declare_entry = declare_entry_core ~obls:[]

(* Using processing *)
let interp_proof_using_gen f env evd cinfo using =
  let cextract v (fixnames, terms) =
    let name, new_terms = f v in
    name :: fixnames, new_terms @ terms
  in
  let fixnames, terms = CList.fold_right cextract cinfo ([],[]) in
  Proof_using.definition_using env evd ~fixnames ~terms ~using

let interp_proof_using_cinfo env evd cinfo using =
  let f { CInfo.name; typ; _ } = name, [EConstr.of_constr typ] in
  interp_proof_using_gen f env evd cinfo using

let make_recursive_body env possible_guard rec_declaration =
  let indexes = Pretyping.search_guard env possible_guard rec_declaration in
  let body = match indexes with
  | Some indexes -> Constr.mkFix ((indexes,0), rec_declaration)
  | None -> Constr.mkCoFix (0, rec_declaration) in
  body, indexes

let gather_mutual_using_data =
  List.fold_left2 (fun acc CInfo.{ name; typ; _ } body ->
      let typ, body = EConstr.(of_constr typ, of_constr body) in
      (name, [typ; body]) :: acc) []

let select_body i t =
  let open Constr in
  match Constr.kind t with
  | Fix ((nv,0),decls) -> mkFix ((nv,i),decls)
  | CoFix (0,decls) -> mkCoFix (i,decls)
  | _ -> assert false

let make_mutual_bodies env ~typing_flags ~rec_declaration ~possible_guard =
  let env = Environ.update_typing_flags ?typing_flags env in
  let body, indexes = make_recursive_body env possible_guard rec_declaration in
  let vars = Vars.universes_of_constr body in
  let nfix = Array.length (pi1 rec_declaration) in
  let fixdecls = List.init nfix (fun i -> select_body i body) in
  vars, fixdecls, indexes

let prepare_recursive_declaration fixitems (fixdefs,fixrs) =
  let fixnames = List.map (fun CInfo.{name} -> name) fixitems in
  let names = List.map2 (fun CInfo.{name} r -> Context.make_annot (Name name) r) fixitems fixrs in
  let fixtypes = List.map (fun CInfo.{typ} -> typ) fixitems in
  let defs = List.map (Vars.subst_vars (List.rev fixnames)) fixdefs in
  (Array.of_list names, Array.of_list fixtypes, Array.of_list defs)

let declare_mutual_definitions ~info ~cinfo ~opaque ~uctx ~bodies ~possible_guard ?using () =
  let { Info.poly; udecl; scope; clearbody; kind; typing_flags; user_warns; ntns; _ } = info in
  let env = Global.env() in
  let rec_declaration = prepare_recursive_declaration cinfo bodies in
  let vars, fixdecls, indexes = make_mutual_bodies env ~typing_flags ~rec_declaration ~possible_guard in
  let uctx = UState.restrict uctx vars in
  let univs = UState.check_univ_decl ~poly uctx udecl in
  let evd = Evd.from_env env in
  let using =
    Option.map (fun using ->
        let cinfos = gather_mutual_using_data cinfo fixdecls in
        let f x = x in
        interp_proof_using_gen f env evd cinfos using)
      using
  in
  let csts = CList.map2
      (fun CInfo.{ name; typ; impargs } body ->
         let entry = definition_entry ~opaque ~types:typ ~univs ?using body in
         declare_entry ~name ~scope ~clearbody ~kind ~impargs ~uctx ~typing_flags ~user_warns entry)
      cinfo fixdecls
  in
  let isfix = Option.has_some indexes in
  let fixnames = List.map (fun { CInfo.name } -> name) cinfo in
  recursive_message isfix indexes fixnames;
  List.iter (Metasyntax.add_notation_interpretation ~local:(scope=Locality.Discharge) (Global.env())) ntns;
  csts

let warn_let_as_axiom =
  CWarnings.create ~name:"let-as-axiom" ~category:CWarnings.CoreCategories.vernacular
    Pp.(fun id -> strbrk "Let definition" ++ spc () ++ Names.Id.print id ++
                  spc () ++ strbrk "declared as an axiom.")

(* Declare an assumption when not in a section: Parameter/Axiom but also
   Variable/Hypothesis seen as Local Parameter/Axiom *)
let declare_parameter ~name ~scope ~hook ~impargs ~uctx pe =
  let local = match scope with
    | Locality.Discharge -> warn_let_as_axiom name; Locality.ImportNeedQualified
    | Locality.Global local -> local
  in
  let kind = Decls.(IsAssumption Conjectural) in
  let decl = ParameterEntry pe in
  let kn = declare_constant ~name ~local ~kind ~typing_flags:None decl in
  let dref = Names.GlobRef.ConstRef kn in
  let () = Impargs.maybe_declare_manual_implicits false dref impargs in
  let () = assumption_message name in
  let () = Hook.(call ?hook { S.uctx; obls = []; scope; dref}) in
  dref

(* Preparing proof entries *)
let error_unresolved_evars env sigma t evars =
  let pr_unresolved_evar e =
    hov 2 (str"- " ++ Printer.pr_existential_key env sigma e ++  str ": " ++
      Himsg.explain_pretype_error env sigma
        (Pretype_errors.UnsolvableImplicit (e,None)))
  in
  CErrors.user_err (hov 0 begin
    str "The following term contains unresolved implicit arguments:"++ fnl () ++
    str "  " ++ Printer.pr_econstr_env env sigma t ++ fnl () ++
    str "More precisely: " ++ fnl () ++
    v 0 (prlist_with_sep cut pr_unresolved_evar (Evar.Set.elements evars))
  end)

let check_evars_are_solved env sigma t =
  let evars = Evarutil.undefined_evars_of_term sigma t in
  if not (Evar.Set.is_empty evars) then error_unresolved_evars env sigma t evars

let prepare_definition ~info ~opaque ?using ~name ~body ~typ sigma =
  let { Info.poly; udecl; inline; _ } = info in
  let env = Global.env () in
  Option.iter (check_evars_are_solved env sigma) typ;
  check_evars_are_solved env sigma body;
  let sigma, (body, types) = Evarutil.finalize
      sigma (fun nf -> nf body, Option.map nf typ)
  in
  let univs = Evd.check_univ_decl ~poly sigma udecl in
  let using =
    let f (name, body, typ) =
      name, Option.List.flatten [ Some (EConstr.of_constr body); typ ] in
    Option.map (interp_proof_using_gen f env sigma [name, body, typ]) using
  in
  let entry = definition_entry ~opaque ?using ~inline ?types ~univs body in
  let uctx = Evd.evar_universe_context sigma in
  entry, uctx

let declare_definition_core ~info ~cinfo ~opaque ~obls ~body ?using sigma =
  let { CInfo.name; impargs; typ; _ } = cinfo in
  let entry, uctx = prepare_definition ~info ~opaque ?using ~name ~body ~typ sigma in
  let { Info.scope; clearbody; kind; hook; typing_flags; user_warns; ntns; _ } = info in
  let gref = declare_entry_core ~name ~scope ~clearbody ~kind ~impargs ~typing_flags ~user_warns ~obls ?hook ~uctx entry in
  List.iter (Metasyntax.add_notation_interpretation ~local:(info.scope=Locality.Discharge) (Global.env ())) ntns;
  gref, uctx

let declare_definition ~info ~cinfo ~opaque ~body ?using sigma =
  declare_definition_core ~obls:[] ~info ~cinfo ~opaque ~body ?using sigma |> fst

let prepare_obligations ~name ?types ~body env sigma =
  let env = Global.env () in
  let types = match types with
    | Some t -> t
    | None -> Retyping.get_type_of env sigma body
  in
  let sigma, (body, types) = Evarutil.finalize ~abort_on_undefined_evars:false
      sigma (fun nf -> nf body, nf types)
  in
  RetrieveObl.check_evars env sigma;
  let body, types = EConstr.(of_constr body, of_constr types) in
  let obls, (_, evmap), body, cty = RetrieveObl.retrieve_obligations env name sigma 0 body types in
  let uctx = Evd.evar_universe_context sigma in
  body, cty, uctx, evmap, obls

let prepare_parameter ~poly ~udecl ~types sigma =
  let env = Global.env () in
  Pretyping.check_evars_are_solved ~program_mode:false env sigma;
  let sigma, typ = Evarutil.finalize ~abort_on_undefined_evars:true
      sigma (fun nf -> nf types)
  in
  let univs = Evd.check_univ_decl ~poly sigma udecl in
  let pe = {
      parameter_entry_secctx = None;
      parameter_entry_type = typ;
      parameter_entry_universes = univs;
      parameter_entry_inline_code = None;
    } in
  sigma, pe

type progress = Remain of int | Dependent | Defined of GlobRef.t

module Obls_ = struct

open Constr

type 'a obligation_body = DefinedObl of 'a | TermObl of constr

module Obligation = struct
  type t =
    { obl_name : Id.t
    ; obl_type : types
    ; obl_location : Evar_kinds.t Loc.located
    ; obl_body : pconstant obligation_body option
    ; obl_status : bool * Evar_kinds.obligation_definition_status
    ; obl_deps : Int.Set.t
    ; obl_tac : unit Proofview.tactic option }

  let set_type ~typ obl = {obl with obl_type = typ}
end

type obligations = {obls : Obligation.t array; remaining : int}
type fixpoint_kind = IsFixpoint of lident option list | IsCoFixpoint

module ProgramDecl = struct

  type 'a t =
    { prg_cinfo : constr CInfo.t
    ; prg_info : Info.t
    ; prg_using : Vernacexpr.section_subset_expr option
    ; prg_opaque : bool
    ; prg_hook : 'a option
    ; prg_body : constr
    ; prg_uctx : UState.t
    ; prg_obligations : obligations
    ; prg_deps : Id.t list
    ; prg_possible_guard : Pretyping.possible_guard option (* None = not recursive *)
    ; prg_reduce : constr -> constr
    }

  open Obligation

  let make ~info ~cinfo ~opaque ~reduce ~deps ~uctx ~body ~possible_guard ?obl_hook ?using obls =
    let obls', body =
      match body with
      | None ->
        assert (Int.equal (Array.length obls) 0);
        let n = Nameops.add_suffix cinfo.CInfo.name "_obligation" in
        ( [| { obl_name = n
             ; obl_body = None
             ; obl_location = Loc.tag Evar_kinds.InternalHole
             ; obl_type = cinfo.CInfo.typ
             ; obl_status = (false, Evar_kinds.Expand)
             ; obl_deps = Int.Set.empty
             ; obl_tac = None } |]
        , mkVar n )
      | Some b ->
        ( Array.mapi
            (fun i (n, t, l, o, d, tac) ->
              { obl_name = n
              ; obl_body = None
              ; obl_location = l
              ; obl_type = t
              ; obl_status = o
              ; obl_deps = d
              ; obl_tac = tac })
            obls
        , b )
    in
    let prg_uctx = UState.make_flexible_nonalgebraic uctx in
    { prg_cinfo = { cinfo with CInfo.typ = reduce cinfo.CInfo.typ }
    ; prg_info = info
    ; prg_using = using
    ; prg_hook = obl_hook
    ; prg_opaque = opaque
    ; prg_body = body
    ; prg_uctx
    ; prg_obligations = {obls = obls'; remaining = Array.length obls'}
    ; prg_deps = deps
    ; prg_possible_guard = possible_guard
    ; prg_reduce = reduce }

  let show prg =
    let { CInfo.name; typ; _ } = prg.prg_cinfo in
    let env = Global.env () in
    let sigma = Evd.from_env env in
    Id.print name ++ spc () ++ str ":" ++ spc ()
    ++ Printer.pr_constr_env env sigma typ
    ++ spc () ++ str ":=" ++ fnl ()
    ++ Printer.pr_constr_env env sigma prg.prg_body

  module Internal = struct
    let get_name prg = prg.prg_cinfo.CInfo.name
    let get_uctx prg = prg.prg_uctx
    let set_uctx ~uctx prg = {prg with prg_uctx = uctx}
    let get_poly prg = prg.prg_info.Info.poly
    let get_obligations prg = prg.prg_obligations
    let get_using prg = prg.prg_using
  end
end

open Obligation
open ProgramDecl

(* Saving an obligation *)

(* XXX: Is this the right place for this? *)
let it_mkLambda_or_LetIn_or_clean t ctx =
  let open Context.Rel.Declaration in
  let fold t decl =
    if is_local_assum decl then Term.mkLambda_or_LetIn decl t
    else if Vars.noccurn 1 t then Vars.subst1 mkProp t
    else Term.mkLambda_or_LetIn decl t
  in
  Context.Rel.fold_inside fold ctx ~init:t

(* XXX: Is this the right place for this? *)
let decompose_lam_prod c ty =
  let open Context.Rel.Declaration in
  let rec aux ctx c ty =
    match (Constr.kind c, Constr.kind ty) with
    | LetIn (x, b, t, c), LetIn (x', b', t', ty)
      when Constr.equal b b' && Constr.equal t t' ->
      let ctx' = Context.Rel.add (LocalDef (x, b', t')) ctx in
      aux ctx' c ty
    | _, LetIn (x', b', t', ty) ->
      let ctx' = Context.Rel.add (LocalDef (x', b', t')) ctx in
      aux ctx' (lift 1 c) ty
    | LetIn (x, b, t, c), _ ->
      let ctx' = Context.Rel.add (LocalDef (x, b, t)) ctx in
      aux ctx' c (lift 1 ty)
    | Lambda (x, b, t), Prod (x', b', t')
    (* By invariant, must be convertible *) ->
      let ctx' = Context.Rel.add (LocalAssum (x, b')) ctx in
      aux ctx' t t'
    | Cast (c, _, _), _ -> aux ctx c ty
    | _, _ -> (ctx, c, ty)
  in
  aux Context.Rel.empty c ty

(* XXX: What's the relation of this with Abstract.shrink ? *)
let shrink_body c ty =
  let ctx, b, ty =
    match ty with
    | None ->
      let ctx, b = Term.decompose_lambda_decls c in
      (ctx, b, None)
    | Some ty ->
      let ctx, b, ty = decompose_lam_prod c ty in
      (ctx, b, Some ty)
  in
  let b', ty', n, args =
    List.fold_left
      (fun (b, ty, i, args) decl ->
        if Vars.noccurn 1 b && Option.cata (Vars.noccurn 1) true ty then
          (Vars.subst1 mkProp b, Option.map (Vars.subst1 mkProp) ty, succ i, args)
        else
          let open Context.Rel.Declaration in
          let args = if is_local_assum decl then mkRel i :: args else args in
          ( Term.mkLambda_or_LetIn decl b
          , Option.map (Term.mkProd_or_LetIn decl) ty
          , succ i
          , args ))
      (b, ty, 1, []) ctx
  in
  (ctx, b', ty', Array.of_list args)

(***********************************************************************)
(* Saving an obligation                                                *)
(***********************************************************************)

let universes_of_decl body typ =
  let univs_typ = match typ with None -> Univ.Level.Set.empty | Some ty -> Vars.universes_of_constr ty in
  let univs_body = Vars.universes_of_constr body in
  Univ.Level.Set.union univs_body univs_typ

let current_obligation_uctx prg uctx vars =
  let uctx = UState.restrict uctx vars in
  if prg.prg_info.Info.poly then
    uctx
  else
    (* We let the first obligation declare the monomorphic universe
      context of the main constant (goes together with
      update_global_obligation_uctx) *)
    UState.union prg.prg_uctx uctx

let update_global_obligation_uctx prg uctx =
  let uctx =
    if prg.prg_info.Info.poly then
      (* Accumulate the polymorphic constraints *)
      UState.union prg.prg_uctx uctx
    else
      (* The monomorphic universe context of the main constant has
         been declared by the first obligation; it is now in the
         global env and we now remove it for the further
         declarations *)
      UState.Internal.reboot (Global.env ()) prg.prg_uctx in
  ProgramDecl.Internal.set_uctx ~uctx prg

let instance_of_univs = function
  | UState.Polymorphic_entry uctx, _ -> UVars.UContext.instance uctx
  | UState.Monomorphic_entry _, _ -> UVars.Instance.empty

let declare_obligation prg obl ~uctx ~types ~body =
  let body = prg.prg_reduce body in
  let types = Option.map prg.prg_reduce types in
  match obl.obl_status with
  | _, Evar_kinds.Expand ->
    let prg_uctx = UState.union prg.prg_uctx uctx in
    let prg = ProgramDecl.Internal.set_uctx ~uctx:prg_uctx prg in
    (prg, {obl with obl_body = Some (TermObl body)}, [])
  | force, Evar_kinds.Define opaque ->
    let opaque = (not force) && opaque in
    let poly = prg.prg_info.Info.poly in
    let ctx, body, ty, args =
      if not poly then shrink_body body types
      else ([], body, types, [||])
    in
    let uctx' = current_obligation_uctx prg uctx (universes_of_decl body types) in
    let univs = UState.univ_entry ~poly uctx' in
    let inst = instance_of_univs univs in
    let ce = definition_entry ?types:ty ~opaque ~univs body in
    (* ppedrot: seems legit to have obligations as local *)
    let constant =
      declare_constant ~name:obl.obl_name
        ~typing_flags:prg.prg_info.Info.typing_flags
        ~local:Locality.ImportNeedQualified
        ~kind:Decls.(IsProof Property)
        (DefinitionEntry ce)
    in
    definition_message obl.obl_name;
    let prg = update_global_obligation_uctx prg uctx in
    let body =
      if poly then DefinedObl (constant, inst)
      else
        let const = mkConstU (constant, inst) in
        TermObl (it_mkLambda_or_LetIn_or_clean (mkApp (const, args)) ctx)
    in
    (prg, {obl with obl_body = Some body}, [GlobRef.ConstRef constant])

(* Updating the obligation meta-info on close *)

let not_transp_msg =
  Pp.(
    str "Obligation should be transparent but was declared opaque."
    ++ spc ()
    ++ str "Use 'Defined' instead.")

let err_not_transp () =
  CErrors.user_err not_transp_msg

module ProgMap = Id.Map

module State = struct

  type t = prg_hook ProgramDecl.t CEphemeron.key ProgMap.t
  and prg_hook = PrgHook of t Hook.g

  let call_prg_hook { prg_hook=hook } x pm =
    let hook = Option.map (fun (PrgHook h) -> h) hook in
    Hook.call_g ?hook x pm


  let empty = ProgMap.empty

  let pending pm =
    ProgMap.filter
      (fun _ v -> (CEphemeron.get v).prg_obligations.remaining > 0)
      pm

  let num_pending pm = pending pm |> ProgMap.cardinal

  let first_pending pm =
    pending pm |> ProgMap.choose_opt
    |> Option.map (fun (_, v) -> CEphemeron.get v)

  let get_unique_open_prog pm name : (_, Id.t list) result =
    match name with
    | Some n ->
      Option.cata
        (fun p -> Ok (CEphemeron.get p))
        (Error []) (ProgMap.find_opt n pm)
    | None -> (
      let n = num_pending pm in
      match n with
      | 0 -> Error []
      | 1 -> Option.cata (fun p -> Ok p) (Error []) (first_pending pm)
      | _ ->
        let progs = Id.Set.elements (ProgMap.domain pm) in
        Error progs )

  let add t key prg = ProgMap.add key (CEphemeron.create prg) t

  let fold t ~f ~init =
    let f k v acc = f k (CEphemeron.get v) acc in
    ProgMap.fold f t init

  let all pm = ProgMap.bindings pm |> List.map (fun (_,v) -> CEphemeron.get v)
  let find m t = ProgMap.find_opt t m |> Option.map CEphemeron.get

  module View = struct
    module Obl = struct
      type t =
        { name : Id.t
        ; loc : Loc.t option
        ; status : bool * Evar_kinds.obligation_definition_status
        ; solved : bool
        }

      let make (o : Obligation.t) =
        let { obl_name; obl_location; obl_status; obl_body; _ } = o in
        { name = obl_name
        ; loc = fst obl_location
        ; status = obl_status
        ; solved = Option.has_some obl_body
        }
    end

    type t =
      { opaque : bool
      ; remaining : int
      ; obligations : Obl.t array
      }

    let make { prg_opaque; prg_obligations; _ } =
      { opaque = prg_opaque
      ; remaining = prg_obligations.remaining
      ; obligations = Array.map Obl.make prg_obligations.obls
      }

    let make eph = CEphemeron.get eph |> make
  end

  let view s = Id.Map.map View.make s

end

(* In all cases, the use of the map is read-only so we don't expose the ref *)
let map_non_empty_keys is_empty m =
  ProgMap.fold (fun k prg l -> if is_empty prg then l else k :: l) m []

let check_solved_obligations is_empty ~pm ~what_for : unit =
  if not (ProgMap.is_empty pm) then
    let keys = map_non_empty_keys is_empty pm in
    let have_string = if Int.equal (List.length keys) 1 then " has " else " have " in
    CErrors.user_err
      Pp.(
        str "Unsolved obligations when closing "
        ++ what_for ++ str ":" ++ spc ()
        ++ prlist_with_sep spc (fun x -> Id.print x) keys
        ++ str have_string
        ++ str "unsolved obligations." )

let map_replace k v m = ProgMap.add k (CEphemeron.create v) (ProgMap.remove k m)
let progmap_remove pm prg = ProgMap.remove prg.prg_cinfo.CInfo.name pm
let progmap_replace prg' pm = map_replace prg'.prg_cinfo.CInfo.name prg' pm
let obligations_solved prg = Int.equal prg.prg_obligations.remaining 0

let obligations_message rem =
  Format.asprintf "%s %s remaining"
    (if rem > 0 then string_of_int rem else "No more")
    (CString.plural rem "obligation")
  |> Pp.str |> Flags.if_verbose Feedback.msg_info

let get_obligation_body expand obl =
  match obl.obl_body with
  | None -> None
  | Some c -> (
    if expand && snd obl.obl_status == Evar_kinds.Expand then
      match c with
      | DefinedObl pc -> Some (Environ.constant_value_in (Global.env ()) pc)
      | TermObl c -> Some c
    else
      match c with DefinedObl pc -> Some (mkConstU pc) | TermObl c -> Some c )

let obl_substitution expand obls deps =
  Int.Set.fold
    (fun x acc ->
      let xobl = obls.(x) in
      match get_obligation_body expand xobl with
      | None -> acc
      | Some oblb -> (xobl.obl_name, (xobl.obl_type, oblb)) :: acc)
    deps []

let rec intset_to = function
  | -1 -> Int.Set.empty
  | n -> Int.Set.add n (intset_to (pred n))

let obligation_substitution expand prg =
  let obls = prg.prg_obligations.obls in
  let ints = intset_to (pred (Array.length obls)) in
  obl_substitution expand obls ints

let subst_prog subst prg =
  let subst' = List.map (fun (n, (_, b)) -> (n, b)) subst in
  ( Vars.replace_vars subst' prg.prg_body
  , Vars.replace_vars subst' (* Termops.refresh_universes *) prg.prg_cinfo.CInfo.typ )

let declare_definition ~pm prg =
  let varsubst = obligation_substitution true prg in
  let sigma = Evd.from_ctx prg.prg_uctx in
  let body, types = subst_prog varsubst prg in
  let body, types = EConstr.(of_constr body, of_constr types) in
  let cinfo = { prg.prg_cinfo with CInfo.typ = Some types } in
  let name, info, opaque, using = prg.prg_cinfo.CInfo.name, prg.prg_info, prg.prg_opaque, prg.prg_using in
  let obls = List.map (fun (id, (_, c)) -> (id, c)) varsubst in
  (* XXX: This is doing normalization twice *)
  let kn, uctx = declare_definition_core ~cinfo ~info ~obls ~body ~opaque ?using sigma in
  (* XXX: We call the obligation hook here, by consistency with the
     previous imperative behaviour, however I'm not sure this is right *)
  let pm = State.call_prg_hook prg
      { Hook.S.uctx; obls; scope = prg.prg_info.Info.scope; dref = kn} pm in
  let pm = progmap_remove pm prg in
  pm, kn

let declare_mutual_definitions ~pm l =
  let first = List.hd l in
  let defobl x =
    let oblsubst = obligation_substitution true x in
    let subs, typ = subst_prog oblsubst x in
    let env = Global.env () in
    let sigma = Evd.from_ctx x.prg_uctx in
    let r = Retyping.relevance_of_type env sigma (EConstr.of_constr typ) in
    let term = EConstr.of_constr subs in
    let typ = EConstr.of_constr typ in
    let term = EConstr.to_constr sigma term in
    let typ = EConstr.to_constr sigma typ in
    let r = EConstr.ERelevance.kind sigma r in
    let def = (x.prg_reduce term, r, x.prg_reduce typ, x.prg_cinfo.CInfo.impargs) in
    let oblsubst = List.map (fun (id, (_, c)) -> (id, c)) oblsubst in
    (def, oblsubst)
  in
  let defs, obls = List.split (List.map defobl l) in
  let obls = List.flatten obls in
  let fixitems = List.map2 (fun (d, relevance, typ, impargs) name -> CInfo.make ~name ~typ ~impargs ()) defs first.prg_deps in
  let fixdefs, fixrs, fixtypes, _ = List.split4 defs in
  let possible_guard = Option.get first.prg_possible_guard in
  (* Declare the recursive definitions *)
  let kns =
    declare_mutual_definitions ~info:first.prg_info
      ~uctx:first.prg_uctx ~bodies:(fixdefs, fixrs) ~possible_guard ~opaque:first.prg_opaque
      ~cinfo:fixitems ?using:first.prg_using ()
  in
  (* Only for the first constant *)
  let dref = List.hd kns in
  let scope = first.prg_info.Info.scope in
  let s_hook = {Hook.S.uctx = first.prg_uctx; obls; scope; dref} in
  Hook.call ?hook:first.prg_info.Info.hook s_hook;
  (* XXX: We call the obligation hook here, by consistency with the
     previous imperative behaviour, however I'm not sure this is right *)
  let pm = State.call_prg_hook first s_hook pm in
  let pm = List.fold_left progmap_remove pm l in
  pm, dref

let update_obls ~pm prg obls rem =
  let prg_obligations = {obls; remaining = rem} in
  let prg' = {prg with prg_obligations} in
  let pm = progmap_replace prg' pm in
  obligations_message rem;
  if rem > 0 then pm, Remain rem
  else
    match prg'.prg_deps with
    | [] ->
      let pm, kn = declare_definition ~pm prg' in
      pm, Defined kn
    | l ->
      let progs =
        List.map (fun x -> CEphemeron.get (ProgMap.find x pm)) prg'.prg_deps
      in
      if List.for_all (fun x -> obligations_solved x) progs then
        let pm, kn = declare_mutual_definitions ~pm progs in
        pm, Defined kn
      else pm, Dependent

let dependencies obls n =
  let res = ref Int.Set.empty in
  Array.iteri
    (fun i obl ->
      if (not (Int.equal i n)) && Int.Set.mem n obl.obl_deps then
        res := Int.Set.add i !res)
    obls;
  !res

let update_program_decl_on_defined ~pm prg obls num obl rem ~auto =
  let obls = Array.copy obls in
  let () = obls.(num) <- obl in
  let pm, _progress = update_obls ~pm prg obls (pred rem) in
  let pm =
    if pred rem > 0 then
      let deps = dependencies obls num in
      if not (Int.Set.is_empty deps) then
        let pm, _progress = auto ~pm (Some prg.prg_cinfo.CInfo.name) deps None in
        pm
      else pm
    else pm
  in
  pm

type obligation_resolver =
     pm:State.t
  -> Id.t option
  -> Int.Set.t
  -> unit Proofview.tactic option
  -> State.t * progress

type obl_check_final = AllFinal | SpecificFinal of Id.t

type obligation_qed_info = {
  name : Id.t;
  num : int;
  auto : obligation_resolver;
  check_final : obl_check_final option;
}

let not_final_obligation n =
  let msg = match n with
    | AllFinal -> str "This obligation is not final."
    | SpecificFinal n -> str "This obligation is not final for program " ++ Id.print n ++ str "."
  in
  CErrors.user_err msg

let do_check_final ~pm = function
  | None -> ()
  | Some check_final ->
    let final = match check_final with
      | AllFinal -> begin match State.first_pending pm with
          | Some _ -> false
          | None -> true
        end
      | SpecificFinal n -> begin match State.get_unique_open_prog pm (Some n) with
          | Error _ -> true
          | Ok _ -> false
        end
    in
    if not final then not_final_obligation check_final

let obligation_terminator ~pm ~entry ~uctx ~oinfo:{name; num; auto; check_final} =
  let env = Global.env () in
  let ty = entry.proof_entry_type in
  let body, uctx = inline_private_constants ~uctx env entry in
  let sigma = Evd.from_ctx uctx in
  Inductiveops.control_only_guard (Global.env ()) sigma
    (EConstr.of_constr body);
  (* Declare the obligation ourselves and drop the hook *)
  let prg = Option.get (State.find pm name) in
  let {obls; remaining = rem} = prg.prg_obligations in
  let obl = obls.(num) in
  let status =
    match (obl.obl_status, entry.proof_entry_opaque) with
    | (_, Evar_kinds.Expand), true -> err_not_transp ()
    | (true, _), true -> err_not_transp ()
    | (false, _), true -> Evar_kinds.Define true
    | (_, Evar_kinds.Define true), false -> Evar_kinds.Define false
    | (_, status), false -> status
  in
  let obl = {obl with obl_status = (false, status)} in
  let prg, obl, cst = declare_obligation prg obl ~body ~types:ty ~uctx in
  let pm = update_program_decl_on_defined ~pm prg obls num obl rem ~auto in
  let () = do_check_final ~pm check_final in
  pm, cst

(* Similar to the terminator but for the admitted path; this assumes
   the admitted constant was already declared.

   FIXME: There is duplication of this code with obligation_terminator
   and Obligations.admit_obligations *)
let obligation_admitted_terminator ~pm typ {name; num; auto; check_final} declare_fun uctx =
  let prg = Option.get (State.find pm name) in
  let {obls; remaining = rem} = prg.prg_obligations in
  let obl = obls.(num) in
  let () =
    match obl.obl_status with
    | true, Evar_kinds.Expand | true, Evar_kinds.Define true -> err_not_transp ()
    | _ -> ()
  in
  let uctx' = current_obligation_uctx prg uctx (Vars.universes_of_constr typ) in
  let sec_vars = None in (* Not using "using" for obligations *)
  let univs = UState.univ_entry ~poly:prg.prg_info.Info.poly uctx' in
  let cst = declare_fun ~uctx ~sec_vars ~univs in
  let inst = instance_of_univs univs in
  let obl = {obl with obl_body = Some (DefinedObl (cst, inst))} in
  let prg = update_global_obligation_uctx prg uctx in
  let pm = update_program_decl_on_defined ~pm prg obls num obl rem ~auto in
  let () = do_check_final ~pm check_final in
  pm

end

(************************************************************************)
(* Handling of interactive proofs                                       *)
(************************************************************************)

module Proof_ending = struct

  type t =
    | Regular
    | End_obligation of Obls_.obligation_qed_info
    | End_derive of { f : Id.t; name : Id.t }
    | End_equations of
        { hook : pm:Obls_.State.t -> Constant.t list -> Evd.evar_map -> Obls_.State.t
        ; i : Id.t
        ; types : (Environ.env * Evar.t * Evd.undefined Evd.evar_info * EConstr.named_context * Evd.econstr) list
        ; sigma : Evd.evar_map
        }

end

(* Alias *)
module Proof = struct

module Proof_info = struct

  type t =
    { cinfo : Constr.t CInfo.t list
    (** cinfo contains each individual constant info in a mutual decl *)
    ; info : Info.t
    ; proof_ending : Proof_ending.t CEphemeron.key
    (* This could be improved and the CEphemeron removed *)
    ; possible_guard : Pretyping.possible_guard option (* None = not recursive *)
    (** thms and compute guard are specific only to
       start_definition + regular terminator, so we
       could make this per-proof kind *)
    }

  let make ~cinfo ~info ?possible_guard ?(proof_ending=Proof_ending.Regular) () =
    { cinfo
    ; info
    ; possible_guard
    ; proof_ending = CEphemeron.create proof_ending
    }

end

type t =
  { endline_tactic : Genarg.glob_generic_argument option
  ; using : Id.Set.t option
  ; proof : Proof.t
  ; initial_euctx : UState.t
  (** The initial universe context (for the statement) *)
  ; pinfo : Proof_info.t
  }

(*** Proof Global manipulation ***)

let get ps = ps.proof
let get_name ps = (Proof.data ps.proof).Proof.name
let get_initial_euctx ps = ps.initial_euctx

let fold ~f p = f p.proof
let map ~f p = { p with proof = f p.proof }
let map_fold ~f p = let proof, res = f p.proof in { p with proof }, res

let map_fold_endline ~f ps =
  let et =
    match ps.endline_tactic with
    | None -> Proofview.tclUNIT ()
    | Some tac ->
      let open Geninterp in
      let {Proof.poly} = Proof.data ps.proof in
      let ist = { lfun = Id.Map.empty; poly; extra = TacStore.empty } in
      let Genarg.GenArg (Genarg.Glbwit tag, tac) = tac in
      let tac = Geninterp.interp tag ist tac in
      Ftactic.run tac (fun _ -> Proofview.tclUNIT ())
  in
  let (newpr,ret) = f et ps.proof in
  let ps = { ps with proof = newpr } in
  ps, ret

let compact pf = map ~f:Proof.compact pf

(* Sets the tactic to be used when a tactic line is closed with [...] *)
let set_endline_tactic tac ps =
  { ps with endline_tactic = Some tac }

let initialize_named_context_for_proof () =
  let sign = Global.named_context () in
  List.fold_right
    (fun d signv ->
      let id = NamedDecl.get_id d in
      let d = if Decls.variable_opacity id then NamedDecl.drop_body d else d in
      Environ.push_named_context_val d signv) sign Environ.empty_named_context_val

let start_proof_core ~name ~typ ~pinfo ?(sign=initialize_named_context_for_proof ()) ?using sigma =
  (* In ?sign, we remove the bodies of variables in the named context
     marked "opaque", this is a hack tho, see #10446, and
     build_constant_by_tactic uses a different method that would break
     program_inference_hook *)
  let { Proof_info.info = { Info.poly; typing_flags; _ }; _ } = pinfo in
  let goals = [Global.env_of_context sign, typ] in
  let proof = Proof.start ~name ~poly ?typing_flags sigma goals in
  let initial_euctx = Evd.evar_universe_context Proof.((data proof).sigma) in
  { proof
  ; endline_tactic = None
  ; using
  ; initial_euctx
  ; pinfo
  }

(** [start_proof ~info ~cinfo sigma] starts a proof of [cinfo].
   The proof is started in the evar map [sigma] (which
   can typically contain universe constraints) *)
let start_core ~info ~cinfo ?proof_ending ?using sigma =
  let { CInfo.name; typ; _ } = cinfo in
  check_exists name;
  let cinfo = [{ cinfo with CInfo.typ = EConstr.Unsafe.to_constr cinfo.CInfo.typ }] in
  let pinfo = Proof_info.make ~cinfo ~info ?proof_ending () in
  start_proof_core ~name ~typ ~pinfo ?sign:None ?using sigma

let start = start_core ?proof_ending:None

let start_dependent ~info ~name ~proof_ending goals =
  let { Info.poly; typing_flags; _ } = info in
  let proof = Proof.dependent_start ~name ~poly ?typing_flags goals in
  let initial_euctx = Evd.evar_universe_context Proof.((data proof).sigma) in
  let cinfo = [] in
  let pinfo = Proof_info.make ~info ~cinfo ~proof_ending () in
  { proof
  ; endline_tactic = None
  ; using = None
  ; initial_euctx
  ; pinfo
  }

let start_derive ~f ~name ~info goals =
  let proof_ending = Proof_ending.End_derive {f; name} in
  start_dependent ~info ~name ~proof_ending goals

let start_equations ~name ~info ~hook ~types sigma goals =
  let proof_ending = Proof_ending.End_equations {hook; i=name; types; sigma} in
  start_dependent ~name ~info ~proof_ending goals

let rec_tac_initializer Pretyping.{possibly_cofix; possible_fix_indices} thms =
  if possibly_cofix then
    match List.map (fun { CInfo.name; typ } -> name, (EConstr.of_constr typ)) thms with
    | (id,_)::l -> Tactics.mutual_cofix id l 0
    | _ -> assert false
  else
    (* nl is set to its maximal possible value for the purpose of mutual_fix; it will then be recomputed at Qed-time *)
    let nl = List.map succ (List.map List.last possible_fix_indices)
    in match List.map2 (fun { CInfo.name; typ } n -> (name, n, (EConstr.of_constr typ))) thms nl with
       | (id,n,_)::l -> Tactics.mutual_fix id n l 0
       | _ -> assert false

let start_definition ~info ~cinfo ?using sigma =
  let { CInfo.name; typ; args } = cinfo in
  let init_tac = Tactics.auto_intros_tac args in
  let pinfo = Proof_info.make ~cinfo:[cinfo] ~info () in
  let env = Global.env () in
  let using = Option.map (interp_proof_using_cinfo env sigma [cinfo]) using in
  let lemma = start_proof_core ~name ~typ:(EConstr.of_constr typ) ~pinfo ?sign:None ?using sigma in
  map lemma ~f:(fun p ->
      pi1 @@ Proof.run_tactic Global.(env ()) init_tac p)

let start_mutual_definitions ~info ~cinfo ?bodies ~possible_guard ?using sigma =
  let intro_tac { CInfo.args; _ } = Tactics.auto_intros_tac args in
  let init_tac =
    let rec_tac = rec_tac_initializer possible_guard cinfo in
    let term_tac =
      match bodies with
      | None ->
        List.map intro_tac cinfo
      | Some bodies ->
        (* This is the case for hybrid proof mode / definition
           fixpoint, where terms for some constants are given with := *)
        let tacl = List.map (Option.cata (EConstr.of_constr %> Tactics.exact_no_check) Tacticals.tclIDTAC) bodies in
        List.map2 (fun tac thm -> Tacticals.tclTHEN tac (intro_tac thm)) tacl cinfo
    in
    Tacticals.tclTHENS rec_tac term_tac
  in
  match cinfo with
  | [] -> CErrors.anomaly (Pp.str "No proof to start.")
  | { CInfo.name; typ; _} :: thms ->
    let pinfo = Proof_info.make ~cinfo ~info ~possible_guard () in
    (* start_lemma has the responsibility to add (name, impargs, typ)
       to thms, once Info.t is more refined this won't be necessary *)
    let typ = EConstr.of_constr typ in
    let env = Global.env () in
    let using = Option.map (interp_proof_using_cinfo env sigma cinfo) using in
    let lemma = start_proof_core ~name ~typ ~pinfo ?using sigma in
    let lemma = map lemma ~f:(fun p ->
        pi1 @@ Proof.run_tactic Global.(env ()) init_tac p) in
    let () =
      (* Temporary declaration of notations for the time of the proofs *)
      let ntn_env =
        (* We simulate the goal context in which the fixpoint bodies have to be proved (exact relevance does not matter) *)
        let make_decl CInfo.{name; typ} = Context.Named.Declaration.LocalAssum (Context.annotR name, typ) in
        Environ.push_named_context (List.map make_decl cinfo) (Global.env()) in
      List.iter (Metasyntax.add_notation_interpretation ~local:(info.scope=Locality.Discharge) ntn_env) info.ntns in
    lemma

let get_used_variables pf = pf.using
let get_universe_decl pf = pf.pinfo.Proof_info.info.Info.udecl

let definition_scope ps = ps.pinfo.info.scope

let set_used_variables ps ~using =
  let open Context.Named.Declaration in
  let env = Global.env () in
  let ctx = Environ.keep_hyps env using in
  let ctx_set =
    List.fold_right Id.Set.add (List.map NamedDecl.get_id ctx) Id.Set.empty in
  let vars_of = Environ.global_vars_set in
  let aux env entry (ctx, all_safe as orig) =
    match entry with
    | LocalAssum ({Context.binder_name=x},_) ->
       if Id.Set.mem x all_safe then orig
       else (ctx, all_safe)
    | LocalDef ({Context.binder_name=x},bo, ty) as decl ->
       if Id.Set.mem x all_safe then orig else
       let vars = Id.Set.union (vars_of env bo) (vars_of env ty) in
       if Id.Set.subset vars all_safe
       then (decl :: ctx, Id.Set.add x all_safe)
       else (ctx, all_safe) in
  let ctx, _ =
    Environ.fold_named_context aux env ~init:(ctx,ctx_set) in
  if not (Option.is_empty ps.using) then
    CErrors.user_err Pp.(str "Used section variables can be declared only once");
  ctx, { ps with using = Some (Context.Named.to_vars ctx) }

(* Interprets the expression in the current proof context, from vernacentries *)
let get_recnames pf =
  if Option.has_some pf.pinfo.Proof_info.possible_guard then
    List.map (fun c -> c.CInfo.name) pf.pinfo.Proof_info.cinfo
  else
    []

let interpret_proof_using pstate using =
  let env = Global.env () in
  let pf = get pstate in
  let sigma, _ = Proof.get_proof_context pf in
  let fixnames = get_recnames pstate in
  let initial_goals pf = Proofview.initial_goals Proof.((data pf).entry) in
  let terms = List.map pi3 (initial_goals (get pstate)) in
  Proof_using.definition_using env sigma ~fixnames ~using ~terms

let set_proof_using pstate using =
  let using = interpret_proof_using pstate using in
  set_used_variables pstate ~using

let get_open_goals ps =
  let Proof.{ goals; stack; sigma } = Proof.data ps.proof in
  List.length goals +
  List.fold_left (+) 0
    (List.map (fun (l1,l2) -> List.length l1 + List.length l2) stack) +
  List.length (Evd.shelf sigma)

type proof_object =
  { entries : proof_entry list
  ; uctx: UState.t
  ; pinfo : Proof_info.t
  }

let { Goptions.get = private_poly_univs } =
  Goptions.declare_bool_option_and_ref
    ~key:["Private";"Polymorphic";"Universes"]
    ~value:true
    ()

let warn_remaining_shelved_goals =
  CWarnings.create ~name:"remaining-shelved-goals" ~category:CWarnings.CoreCategories.tactics
    (fun () -> Pp.str"The proof has remaining shelved goals.")

let warn_given_up =
  CWarnings.create ~name:"remaining-given-up" ~category:CWarnings.CoreCategories.tactics
    (fun () -> Pp.str"The proof has given up (admitted) goals." )

let warn_remaining_unresolved_evars =
  CWarnings.create ~name:"remaining-unresolved-evars" ~category:CWarnings.CoreCategories.tactics
    (fun () -> Pp.str"The proof has unresolved variables.")

type open_proof_kind =
  | OpenGoals
  | NonGroundResult of bool (* true = at least some of the evars in the proof term are given up *)

exception OpenProof of Names.Id.t * open_proof_kind

let () = CErrors.register_handler begin function
  | OpenProof (pid, reason) ->
    let open Pp in
    let ppreason = match reason with
      | OpenGoals -> str "(there are remaining open goals)"
      | NonGroundResult has_given_up ->
        str "(the proof term is not complete" ++
        (if has_given_up then str " because of given up (admitted) goals" else mt()) ++
        str ")"
    in
    let how_to_admit = match reason with
      | OpenGoals | NonGroundResult false -> mt()
      | NonGroundResult true ->
        fnl() ++ str "If this is really what you want to do, use Admitted in place of Qed."
    in
    Some (str " (in proof " ++ Names.Id.print pid ++ str "): " ++
          str "Attempt to save an incomplete proof" ++ spc() ++ ppreason ++ str "." ++
          how_to_admit)
  | _ -> None
  end

(* XXX: This is still separate from close_proof below due to drop_pt in the STM *)
let prepare_proof ?(warn_incomplete=true) { proof } =
  let Proof.{name=pid;entry;poly;sigma=evd} = Proof.data proof in
  let initial_goals = Proofview.initial_goals entry in
  let () = if not @@ Proof.is_done proof then raise (OpenProof (pid, OpenGoals)) in
  let _ : Proof.t =
    (* checks that we closed all brackets ("}") *)
    Proof.unfocus_all proof
  in
  let eff = Evd.eval_side_effects evd in
  let evd = Evd.minimize_universes evd in
  let to_constr c =
    match EConstr.to_constr_opt evd c with
    | Some p ->
      Vars.universes_of_constr p, p
    | None ->
      let has_given_up =
        let exception Found in
        let rec aux c =
          let () = match EConstr.kind evd c with
          | Evar (e,_) -> if Evar.Set.mem e (Evd.given_up evd) then raise Found
          | _ -> ()
          in
          EConstr.iter evd aux c
        in
        try aux c; false with Found -> true
      in
      raise (OpenProof (pid, NonGroundResult has_given_up))
  in
  (* ppedrot: FIXME, this is surely wrong. There is no reason to duplicate
     side-effects... This may explain why one need to uniquize side-effects
     thereafter... *)
  (* EJGA: actually side-effects de-duplication and this codepath is
     unrelated. Duplicated side-effects arise from incorrect scheme
     generation code, the main bulk of it was mostly fixed by #9836
     but duplication can still happen because of rewriting schemes I
     think; however the code below is mostly untested, the only
     code-paths that generate several proof entries are derive and
     equations and so far there is no code in the CI that will
     actually call those and do a side-effect, TTBOMK *)
  (* EJGA: likely the right solution is to attach side effects to the first constant only? *)
  let proofs = List.map (fun (_, body, typ) -> (to_constr body, eff), to_constr typ) initial_goals in
  let () =
    if warn_incomplete then begin
      if Evd.has_shelved evd then warn_remaining_shelved_goals ()
      else if Evd.has_given_up evd then warn_given_up ()
      else if Evd.has_undefined evd then warn_remaining_unresolved_evars ()
    end
  in
  proofs, Evd.evar_universe_context evd

let make_univs_deferred ~poly ~initial_euctx ~uctx ~udecl
    (used_univs_typ, typ) (used_univs_body, body) =
  let used_univs = Univ.Level.Set.union used_univs_body used_univs_typ in
  let utyp = UState.univ_entry ~poly initial_euctx in
  let uctx = UState.constrain_variables (fst (UState.context_set initial_euctx)) uctx in
  (* For vi2vo compilation proofs are computed now but we need to
     complement the univ constraints of the typ with the ones of
     the body.  So we keep the two sets distinct. *)
  let uctx_body = UState.restrict uctx used_univs in
  let ubody = UState.check_mono_univ_decl uctx_body udecl in
  utyp, ubody

let make_univs_private_poly ~poly ~uctx ~udecl (used_univs_typ, typ) (used_univs_body, body) =
  let used_univs = Univ.Level.Set.union used_univs_body used_univs_typ in
  let uctx = UState.restrict uctx used_univs in
  let uctx' = UState.restrict uctx used_univs_typ in
  let utyp = UState.check_univ_decl ~poly uctx' udecl in
  let ubody = Univ.ContextSet.diff
      (UState.context_set uctx)
      (UState.context_set uctx')
  in
  utyp, ubody

let make_univs ~poly ~uctx ~udecl eff (used_univs_typ, typ) (used_univs_body, body) =
  let used_univs = Univ.Level.Set.union used_univs_body used_univs_typ in
  (* Since the proof is computed now, we can simply have 1 set of
     constraints in which we merge the ones for the body and the ones
     for the typ. We recheck the declaration after restricting with
     the actually used universes.
     TODO: check if restrict is really necessary now. *)
  let uctx = UState.restrict uctx used_univs in
  let utyp = UState.check_univ_decl ~poly uctx udecl in
  let utyp = match fst utyp with
    | Polymorphic_entry _ -> utyp
    | Monomorphic_entry uctx ->
      (* the constraints from the body may depend on universes from
         the side effects, so merge it all together.
         Example failure if we don't is "l1" in test-suite/success/rewrite.v.

         Not sure if it makes more sense to merge them in the ustate
         before restrict/check_univ_decl or here. Since we only do it
         when monomorphic it shouldn't really matter. *)
      Monomorphic_entry (Univ.ContextSet.union uctx (Safe_typing.universes_of_private eff)), snd utyp
  in
  utyp, Univ.ContextSet.empty

let close_proof ?warn_incomplete ~opaque ~keep_body_ucst_separate ps =

  let { using; proof; initial_euctx; pinfo } = ps in
  let { Proof_info.info = { Info.udecl } } = pinfo in
  let { Proof.poly } = Proof.data proof in
  let elist, uctx = prepare_proof ?warn_incomplete ps in
  let opaque = match opaque with
    | Vernacexpr.Opaque -> true
    | Vernacexpr.Transparent -> false in

  let make_entry ((((_ub, body) as b), eff), ((_ut, typ) as t)) =
    let utyp, ubody =
      (* allow_deferred case *)
      if not poly && keep_body_ucst_separate
      then make_univs_deferred ~initial_euctx ~poly ~uctx ~udecl t b
      (* private_poly_univs case *)
      else if poly && opaque && private_poly_univs ()
      then make_univs_private_poly ~poly ~uctx ~udecl t b
      else make_univs ~poly ~uctx ~udecl eff.Evd.seff_private t b
    in
    definition_entry_core ~opaque ?using ~univs:utyp ~univsbody:ubody ~types:typ ~eff body
  in
  let entries = CList.map make_entry elist  in
  { entries; uctx; pinfo }

type closed_proof_output = (Constr.t * Evd.side_effects) list * UState.t

let close_proof_delayed ~feedback_id ps (fpl : closed_proof_output Future.computation) =
  let { using; proof; initial_euctx; pinfo } = ps in
  let { Proof_info.info = { Info.udecl } } = pinfo in
  let { Proof.poly; entry; sigma } = Proof.data proof in

  (* We don't allow poly = true in this path *)
  if poly then
    CErrors.anomaly (Pp.str "Cannot delay universe-polymorphic constants.");

  (* Because of dependent subgoals at the beginning of proofs, we could
     have existential variables in the initial types of goals, we need to
     normalise them for the kernel. *)
  let nf = Evarutil.nf_evars_universes (Evd.set_universe_context sigma initial_euctx) in

  (* We only support opaque proofs, this will be enforced by using
     different entries soon *)
  let opaque = true in
  let make_entry i (_, _, types) =
    (* Already checked the univ_decl for the type universes when starting the proof. *)
    let univs = UState.univ_entry ~poly:false initial_euctx in
    let types = nf (EConstr.Unsafe.to_constr types) in

    (* NB: for Admitted proofs [fpl] is not valid (raises anomaly when forced) *)
    Future.chain fpl (fun (pf, uctx) ->
        let (pt, eff) = List.nth pf i in
        (* Deferred proof, we already checked the universe declaration with
             the initial universes, ensure that the final universes respect
             the declaration as well. If the declaration is non-extensible,
             this will prevent the body from adding universes and constraints. *)
        let uctx = UState.constrain_variables (fst (UState.context_set initial_euctx)) uctx in
        let used_univs = Univ.Level.Set.union
            (Vars.universes_of_constr types)
            (Vars.universes_of_constr pt)
        in
        let uctx = UState.restrict uctx used_univs in
        let uctx = UState.check_mono_univ_decl uctx udecl in
        (pt,uctx),eff)
    |> delayed_definition_entry ~opaque ~feedback_id ~using ~univs ~types
  in
  let entries = CList.map_i make_entry 0 (Proofview.initial_goals entry) in
  { entries; uctx = initial_euctx; pinfo }

let close_future_proof = close_proof_delayed

let return_proof ps =
  let p, uctx = prepare_proof ps in
  List.map (fun (((_ub, body),eff),_) -> (body,eff)) p, uctx

let update_sigma_univs ugraph p =
  map ~f:(Proof.update_sigma_univs ugraph) p

let next = let n = ref 0 in fun () -> incr n; !n

let by tac = map_fold ~f:(Proof.solve (Goal_select.SelectNth 1) None tac)

let build_constant_by_tactic ~name ?warn_incomplete ?(opaque=Vernacexpr.Transparent) ~sigma ~sign ~poly (typ : EConstr.t) tac =
  let typ_ = EConstr.Unsafe.to_constr typ in
  let cinfo = [CInfo.make ~name ~typ:typ_ ()] in
  let info = Info.make ~poly () in
  let pinfo = Proof_info.make ~cinfo ~info () in
  let pf = start_proof_core ~name ~typ ~pinfo ~sign sigma in
  let pf, status = by tac pf in
  let { entries; uctx } = close_proof ?warn_incomplete ~opaque ~keep_body_ucst_separate:false pf in
  let { Proof.sigma } = Proof.data pf.proof in
  let sigma = Evd.set_universe_context sigma uctx in
  match entries with
  | [entry] ->
    let entry = Internal.pmap_entry_body ~f:Future.force entry in
    entry, status, sigma
  | _ ->
    CErrors.anomaly Pp.(str "[build_constant_by_tactic] close_proof returned more than one proof term")

let build_by_tactic env ~uctx ~poly ~typ tac =
  let name = Id.of_string ("temporary_proof"^string_of_int (next())) in
  let sign = Environ.(val_of_named_context (named_context env)) in
  let sigma = Evd.from_ctx uctx in
  let ce, status, sigma = build_constant_by_tactic ~name ~sigma ~sign ~poly typ tac in
  let uctx = Evd.evar_universe_context sigma in
  (* ignore side effect universes:
     we don't reset the global env in this code path so the side effects are still present
     cf #13271 and discussion in #18874
     (but due to #13324 we still want to inline them) *)
  let cb, _uctx = inline_private_constants ~uctx env ce in
  cb, ce.proof_entry_type, ce.proof_entry_universes, status, uctx

let declare_abstract ~name ~poly ~kind ~sign ~secsign ~opaque ~solve_tac sigma concl =
  let (const, safe, sigma') =
    try build_constant_by_tactic ~warn_incomplete:false ~name ~opaque:Vernacexpr.Transparent ~poly ~sigma ~sign:secsign concl solve_tac
    with Logic_monad.TacticFailure e as src ->
    (* if the tactic [tac] fails, it reports a [TacticFailure e],
       which is an error irrelevant to the proof system (in fact it
       means that [e] comes from [tac] failing to yield enough
       success). Hence it reraises [e]. *)
    let (_, info) = Exninfo.capture src in
    Exninfo.iraise (e, info)
  in
  let sigma = Evd.drop_new_defined ~original:sigma sigma' in
  let body, effs = const.proof_entry_body in
  (* We drop the side-effects from the entry, they already exist in the ambient environment *)
  let const = Internal.pmap_entry_body const ~f:(fun _ -> body, ()) in
  (* EJGA: Hack related to the above call to
     `build_constant_by_tactic` with `~opaque:Transparent`. Even if
     the abstracted term is destined to be opaque, if we trigger the
     `if poly && opaque && private_poly_univs ()` in `close_proof`
     kernel will boom. This deserves more investigation. *)
  let const = Internal.set_opacity ~opaque const in
  let const, args = Internal.shrink_entry sign const in
  let cst () =
    (* do not compute the implicit arguments, it may be costly *)
    let () = Impargs.make_implicit_args false in
    (* ppedrot: seems legit to have abstracted subproofs as local*)
    declare_private_constant ~local:Locality.ImportNeedQualified ~name ~kind const
  in
  let cst, eff = Impargs.with_implicit_protection cst () in
  let inst = match fst const.proof_entry_universes with
  | UState.Monomorphic_entry _ -> EConstr.EInstance.empty
  | UState.Polymorphic_entry ctx ->
    (* We mimic what the kernel does, that is ensuring that no additional
       constraints appear in the body of polymorphic constants. Ideally this
       should be enforced statically. *)
    let (_, body_uctx), _ = const.proof_entry_body in
    let () = assert (Univ.ContextSet.is_empty body_uctx) in
    EConstr.EInstance.make (UVars.UContext.instance ctx)
  in
  let args = List.map EConstr.of_constr args in
  let lem = EConstr.mkConstU (cst, inst) in
  let effs = Evd.concat_side_effects eff effs in
  effs, sigma, lem, args, safe

let get_goal_context pf i =
  let p = get pf in
  Proof.get_goal_context_gen p i

let get_current_goal_context pf =
  let p = get pf in
  try Proof.get_goal_context_gen p 1
  with
  | Proof.NoSuchGoal _ ->
    (* spiwack: returning empty evar_map, since if there is no goal,
       under focus, there is no accessible evar either. EJGA: this
       seems strange, as we have pf *)
    let env = Global.env () in
    Evd.from_env env, env

let get_current_context pf =
  let p = get pf in
  Proof.get_proof_context p

(* Support for mutually proved theorems *)

(* XXX: this should be unified with the code for non-interactive
   mutuals previously on this file. *)
module MutualEntry : sig

  val declare_possibly_mutual_parameters
    : pinfo:Proof_info.t
    -> uctx:UState.t
    -> sec_vars:Id.Set.t option
    -> univs:UState.named_universes_entry
    -> Names.GlobRef.t list

  val declare_possibly_mutual_definitions
    (* Common to all recthms *)
    : pinfo:Proof_info.t
    -> uctx:UState.t
    -> entry:proof_entry
    -> Names.GlobRef.t list

end = struct

  (* XXX: Refactor this with the code in [Declare.declare_possibly_mutual_definitions] *)
  let guess_decreasing env possible_guard ((body, ctx), eff) =
    let open Constr in
    match Constr.kind body with
    | Fix (_,(_,_,fixdefs as fixdecls)) | CoFix (_,(_,_,fixdefs as fixdecls)) ->
      let env = Safe_typing.push_private_constants env eff.Evd.seff_private in
      let body, _ = make_recursive_body env possible_guard fixdecls in
      (body, ctx), eff
    | _ -> assert false

  let update_mutual_entry i entry uctx typ =
    { entry with
      proof_entry_body = Future.chain entry.proof_entry_body (fun ((body, uctx), eff) -> ((select_body i body, uctx), eff));
      proof_entry_type = Some (UState.nf_universes uctx typ) }

  let declare_possibly_mutual_definitions ~pinfo ~uctx ~entry =
    let entries = match pinfo.Proof_info.possible_guard with
    | None ->
      (* Not a recursive statement *)
      [entry]
    | Some possible_guard ->
      (* Try all combinations... not optimal *)
      let env = Global.env() in
      let typing_flags = pinfo.Proof_info.info.Info.typing_flags in
      let env = Environ.update_typing_flags ?typing_flags env in
      let entry = Internal.map_entry_body entry ~f:(guess_decreasing env possible_guard) in
      List.map_i (fun i CInfo.{typ} -> update_mutual_entry i entry uctx typ) 0 pinfo.Proof_info.cinfo
    in
    let { Proof_info.info = { Info.hook; scope; clearbody; kind; typing_flags; user_warns; _ } } = pinfo in
    let refs = List.map2 (fun CInfo.{name; impargs} ->
        declare_entry ~name ~scope ~clearbody ~kind ?hook ~impargs ~typing_flags ~user_warns ~uctx) pinfo.Proof_info.cinfo entries in
    let () =
      (* We override the temporary notations used while proving, now using the global names *)
      let local = pinfo.info.scope=Locality.Discharge in
      CWarnings.with_warn ("-"^Notation.warning_overridden_name)
        (List.iter (Metasyntax.add_notation_interpretation ~local (Global.env()))) pinfo.info.ntns
    in
    refs

  let declare_possibly_mutual_parameters ~pinfo ~uctx ~sec_vars ~univs =
    let { Info.scope; hook } = pinfo.Proof_info.info in
    List.map_i (
      fun i { CInfo.name; typ; impargs } ->
        let pe = {
            parameter_entry_secctx = sec_vars;
            parameter_entry_type = Evarutil.nf_evars_universes (Evd.from_ctx uctx) typ;
            parameter_entry_universes = univs;
            parameter_entry_inline_code = None;
          } in
        declare_parameter ~name ~scope ~hook ~impargs ~uctx pe
    ) 0 pinfo.Proof_info.cinfo

end

(************************************************************************)
(* Admitting a lemma-like constant                                      *)
(************************************************************************)

(* Admitted *)
let { Goptions.get = get_keep_admitted_vars } =
  Goptions.declare_bool_option_and_ref
    ~key:["Keep"; "Admitted"; "Variables"]
    ~value:true
    ()

let compute_proof_using_for_admitted proof typ iproof =
  if not (get_keep_admitted_vars ()) || not (Lib.sections_are_opened()) then None
  else match get_used_variables proof with
    | Some _ as x -> x
    | None ->
      match Proof.partial_proof iproof with
      | pproof :: _ ->
        let env = Global.env () in
        let sigma = (Proof.data iproof).Proof.sigma in
        let ids_typ = Termops.global_vars_set env sigma typ in
        (* [pproof] is evar-normalized by [partial_proof]. We don't
           count variables appearing only in the type of evars. *)
        let ids_def = Termops.global_vars_set env sigma pproof in
        Some (Environ.really_needed env (Id.Set.union ids_typ ids_def))
      | [] -> None

let finish_admitted ~pm ~pinfo ~uctx ~sec_vars ~univs =
  (* If the constant was an obligation we need to update the program map *)
  match CEphemeron.default pinfo.Proof_info.proof_ending Proof_ending.Regular with
  | Proof_ending.End_obligation oinfo ->
    let declare_fun ~uctx ~sec_vars ~univs =
      match MutualEntry.declare_possibly_mutual_parameters ~pinfo ~uctx ~sec_vars ~univs with
      | [GlobRef.ConstRef cst] -> cst
      | _ -> assert false in
    let typ = Evarutil.nf_evars_universes (Evd.from_ctx uctx) (List.hd pinfo.Proof_info.cinfo).CInfo.typ in
    Obls_.obligation_admitted_terminator ~pm typ oinfo declare_fun uctx
  | _ ->
    let _cst = MutualEntry.declare_possibly_mutual_parameters ~pinfo ~uctx ~sec_vars ~univs in
    pm

let save_admitted ~pm ~proof =
  let udecl = get_universe_decl proof in
  let Proof.{ poly; entry } = Proof.data (get proof) in
  let typ = match Proofview.initial_goals entry with
    | [_, _, typ] -> typ
    | _ -> CErrors.anomaly ~label:"Lemmas.save_lemma_admitted" (Pp.str "more than one statement.")
  in
  let iproof = get proof in
  let sec_vars = compute_proof_using_for_admitted proof typ iproof in
  let uctx = get_initial_euctx proof in
  let univs = UState.check_univ_decl ~poly uctx udecl in
  finish_admitted ~pm ~pinfo:proof.pinfo ~uctx ~sec_vars ~univs

(************************************************************************)
(* Saving a lemma-like constant                                         *)
(************************************************************************)

let finish_derived ~f ~name ~entries =
  (* [f] and [name] correspond to the proof of [f] and of [suchthat], respectively. *)

  let f_def, lemma_def =
    match entries with
    | [_;f_def;lemma_def] ->
      f_def, lemma_def
    | _ -> assert false
  in
  (* The opacity of [f_def] is adjusted to be [false], as it
     must. Then [f] is declared in the global environment. *)
  let f_def = Internal.set_opacity ~opaque:false f_def in
  let f_kind = Decls.(IsDefinition Definition) in
  let f_def = DefinitionEntry f_def in
  let f_kn = declare_constant ~name:f ~kind:f_kind f_def ~typing_flags:None in
  (* Derive does not support univ poly *)
  let () = assert (not (Global.is_polymorphic (ConstRef f_kn))) in
  let f_kn_term = Constr.UnsafeMonomorphic.mkConst f_kn in
  (* In the type and body of the proof of [suchthat] there can be
     references to the variable [f]. It needs to be replaced by
     references to the constant [f] declared above. This substitution
     performs this precise action. *)
  let substf c = Vars.replace_vars [f,f_kn_term] c in
  (* Extracts the type of the proof of [suchthat]. *)
  let lemma_pretype typ =
    match typ with
    | Some t -> Some (substf t)
    | None -> assert false (* Declare always sets type here. *)
  in
  (* The references of [f] are subsituted appropriately. *)
  let lemma_def = Internal.map_entry_type lemma_def ~f:lemma_pretype in
  (* The same is done in the body of the proof. *)
  let lemma_def = Internal.map_entry_body lemma_def ~f:(fun ((b,ctx),fx) -> (substf b, ctx), fx) in
  let lemma_def = DefinitionEntry lemma_def in
  let ct = declare_constant ~name ~typing_flags:None ~kind:Decls.(IsProof Proposition) lemma_def in
  [GlobRef.ConstRef f_kn; GlobRef.ConstRef ct]

let finish_proved_equations ~pm ~kind ~hook i proof_obj types sigma0 =

  let obls = ref 1 in
  let sigma, recobls =
    CList.fold_left2_map (fun sigma (_evar_env, ev, _evi, local_context, _type) entry ->
        let id =
          match Evd.evar_ident ev sigma0 with
          | Some id -> id
          | None -> let n = !obls in incr obls; Nameops.add_suffix i ("_obligation_" ^ string_of_int n)
        in
        let entry = Internal.pmap_entry_body ~f:Future.force entry in
        let entry, args = Internal.shrink_entry local_context entry in
        let entry = Internal.pmap_entry_body ~f:Future.from_val entry in
        let cst = declare_constant ~name:id ~kind ~typing_flags:None (DefinitionEntry entry) in
        let sigma, app = Evd.fresh_global (Global.env ()) sigma (GlobRef.ConstRef cst) in
        let sigma = Evd.define ev (EConstr.applist (app, List.map EConstr.of_constr args)) sigma in
        sigma, cst) sigma0
      types proof_obj.entries
  in
  let pm = hook ~pm recobls sigma in
  pm, List.map (fun cst -> GlobRef.ConstRef cst) recobls

let check_single_entry { entries; uctx } label =
  match entries with
  | [entry] -> entry, uctx
  | _ ->
    CErrors.anomaly ~label Pp.(str "close_proof returned more than one proof term")

let finish_proof ~pm proof_obj proof_info =
  let open Proof_ending in
  match CEphemeron.default proof_info.Proof_info.proof_ending Regular with
  | Regular ->
    let entry, uctx = check_single_entry proof_obj "Proof.save" in
    pm, MutualEntry.declare_possibly_mutual_definitions ~entry ~uctx ~pinfo:proof_info
  | End_obligation oinfo ->
    let entry, uctx = check_single_entry proof_obj "Obligation.save" in
    let entry = Internal.pmap_entry_body ~f:Future.force entry in
    Obls_.obligation_terminator ~pm ~entry ~uctx ~oinfo
  | End_derive { f ; name } ->
    pm, finish_derived ~f ~name ~entries:proof_obj.entries
  | End_equations { hook; i; types; sigma } ->
    let kind = proof_info.Proof_info.info.Info.kind in
    finish_proved_equations ~pm ~kind ~hook i proof_obj types sigma

let err_save_forbidden_in_place_of_qed () =
  CErrors.user_err (Pp.str "Cannot use Save with more than one constant or in this proof mode")

let process_idopt_for_save ~idopt info =
  match idopt with
  | None -> info
  | Some { CAst.v = save_name } ->
    (* Save foo was used; we override the info in the first theorem *)
    let cinfo =
      match info.Proof_info.cinfo, CEphemeron.default info.Proof_info.proof_ending Proof_ending.Regular with
      | [ { CInfo.name; _} as decl ], Proof_ending.Regular ->
        [ { decl with CInfo.name = save_name } ]
      | _ ->
        err_save_forbidden_in_place_of_qed ()
    in { info with Proof_info.cinfo }

let save ~pm ~proof ~opaque ~idopt =
  (* Env and sigma are just used for error printing in save_remaining_recthms *)
  let proof_obj = close_proof ~opaque ~keep_body_ucst_separate:false proof in
  let proof_info = process_idopt_for_save ~idopt proof.pinfo in
  finish_proof ~pm proof_obj proof_info

let save_regular ~(proof : t) ~opaque ~idopt =
  let open Proof_ending in
  match CEphemeron.default proof.pinfo.Proof_info.proof_ending Regular with
  | Regular ->
    let (_, grs) : Obls_.State.t * _ = save ~pm:Obls_.State.empty ~proof ~opaque ~idopt in
    grs
  | _ -> CErrors.anomaly Pp.(str "save_regular: unexpected proof ending")

(***********************************************************************)
(* Special case to close a lemma without forcing a proof               *)
(***********************************************************************)
let save_lemma_admitted_delayed ~pm ~proof =
  let { entries; uctx; pinfo } = proof in
  if List.length entries <> 1 then
    CErrors.user_err Pp.(str "Admitted does not support multiple statements");
  let { proof_entry_secctx; proof_entry_type; proof_entry_universes } = List.hd entries in
  let poly = match fst (proof_entry_universes) with
    | UState.Monomorphic_entry _ -> false
    | UState.Polymorphic_entry _ -> true in
  let univs = UState.univ_entry ~poly uctx in
  let sec_vars = if get_keep_admitted_vars () then proof_entry_secctx else None in
  finish_admitted ~pm ~uctx ~pinfo ~sec_vars ~univs

let save_lemma_proved_delayed ~pm ~proof ~idopt =
  (* vio2vo used to call this with invalid [pinfo], now it should work fine. *)
  let pinfo = process_idopt_for_save ~idopt proof.pinfo in
  let pm, _ = finish_proof ~pm proof pinfo in
  pm

end (* Proof module *)

let _ = Ind_tables.declare_definition_scheme := declare_definition_scheme
let _ = Abstract.declare_abstract := Proof.declare_abstract

let build_by_tactic = Proof.build_by_tactic

(* This module could be merged with Obl, and placed before [Proof],
   however there is a single dependency on [Proof.start] for the interactive case *)
module Obls = struct
(* For the records fields, opens should go away one these types are private *)
open Obls_
open Obls_.Obligation
open Obls_.ProgramDecl

let reduce c =
  let env = Global.env () in
  let sigma = Evd.from_env env in
  EConstr.Unsafe.to_constr (Reductionops.clos_norm_flags RedFlags.betaiota env sigma (EConstr.of_constr c))

let explain_no_obligations = function
    Some ident -> str "No obligations for program " ++ Id.print ident
  | None -> str "No obligations remaining"

module Error = struct

  let no_obligations n =
    CErrors.user_err (explain_no_obligations n)

  let ambiguous_program id ids =
    CErrors.user_err
      Pp.(str "More than one program with unsolved obligations: " ++ prlist Id.print ids
          ++ str "; use the \"of\" clause to specify, as in \"Obligation 1 of " ++ Id.print id ++ str "\"")

  let unknown_obligation num =
    CErrors.user_err (Pp.str (Printf.sprintf "Unknown obligation number %i" (succ num)))

  let already_solved num =
    CErrors.user_err Pp.(str "Obligation " ++ int num ++ str " already solved." )

  let depends num rem =
    CErrors.user_err
      ( str "Obligation " ++ int num
        ++ str " depends on obligation(s) "
        ++ pr_sequence (fun x -> int (succ x)) rem)

end

let default_tactic = ref (Proofview.tclUNIT ())

let subst_deps expand obls deps t =
  let osubst = Obls_.obl_substitution expand obls deps in
    (Vars.replace_vars (List.map (fun (n, (_, b)) -> n, b) osubst) t)

let subst_deps_obl obls obl =
  let t' = subst_deps true obls obl.obl_deps obl.obl_type in
  Obligation.set_type ~typ:t' obl

let is_defined obls x = not (Option.is_empty obls.(x).obl_body)

let deps_remaining obls deps =
  Int.Set.fold
    (fun x acc ->
      if is_defined obls x then acc
      else x :: acc)
    deps []

let goal_kind = Decls.(IsDefinition Definition)
let goal_proof_kind = Decls.(IsProof Lemma)

let kind_of_obligation o =
  match o with
  | Evar_kinds.Define false
  | Evar_kinds.Expand -> goal_kind
  | _ -> goal_proof_kind

(* Solve an obligation using tactics, return the corresponding proof term *)
let warn_solve_errored =
  CWarnings.create ~name:"solve_obligation_error" ~category:CWarnings.CoreCategories.tactics
    (fun err ->
      Pp.seq
        [ str "Solve Obligations tactic returned error: "
        ; err
        ; fnl ()
        ; str "This will become an error in the future" ])

let solve_by_tac prg obls i tac =
  let obl = obls.(i) in
  let obl = subst_deps_obl obls obl in
  let tac = Option.(default !default_tactic (append tac obl.obl_tac)) in
  let uctx = Internal.get_uctx prg in
  let uctx = UState.update_sigma_univs uctx (Global.universes ()) in
  let poly = Internal.get_poly prg in
  (* the status of [build_by_tactic] is dropped. *)
  try
    let env = Global.env () in
    let body, types, _univs, _, uctx =
      build_by_tactic env ~uctx ~poly ~typ:(EConstr.of_constr obl.obl_type) tac in
    Inductiveops.control_only_guard env (Evd.from_ctx uctx) (EConstr.of_constr body);
    Some (body, types, uctx)
  with
  | Tacticals.FailError (_, s) as exn ->
    let _ = Exninfo.capture exn in
    let loc = fst obl.obl_location in
    CErrors.user_err ?loc (Lazy.force s)
  (* If the proof is open we absorb the error and leave the obligation open *)
  | Proof.OpenProof _ ->
    None
  | e when CErrors.noncritical e ->
    let err = CErrors.print e in
    let loc = fst obl.obl_location in
    warn_solve_errored ?loc err;
    None

let solve_and_declare_by_tac prg obls i tac =
  match solve_by_tac prg obls i tac with
  | None -> None
  | Some (t, ty, uctx) ->
    let obl = obls.(i) in
    let prg, obl', _cst = declare_obligation prg obl ~body:t ~types:ty ~uctx in
    obls.(i) <- obl';
    Some prg

let solve_obligation_by_tac prg obls i tac =
  let obl = obls.(i) in
  match obl.obl_body with
  | Some _ -> None
  | None ->
    if List.is_empty (deps_remaining obls obl.obl_deps)
    then solve_and_declare_by_tac prg obls i tac
    else None

let get_unique_prog ~pm prg =
  match State.get_unique_open_prog pm prg with
  | Ok prg -> prg
  | Error [] ->
    Error.no_obligations None
  | Error ((id :: _) as ids) ->
    Error.ambiguous_program id ids

let solve_prg_obligations ~pm prg ?oblset tac =
  let { obls; remaining } = Internal.get_obligations prg in
  let rem = ref remaining in
  let obls' = Array.copy obls in
  let set = ref Int.Set.empty in
  let p = match oblset with
    | None -> (fun _ -> true)
    | Some s -> set := s;
      (fun i -> Int.Set.mem i !set)
  in
  let prg =
    Array.fold_left_i
      (fun i prg x ->
        if p i then (
          match solve_obligation_by_tac prg obls' i tac with
          | None -> prg
          | Some prg ->
            let deps = dependencies obls i in
            set := Int.Set.union !set deps;
            decr rem;
            prg)
        else prg)
      prg obls'
  in
  update_obls ~pm prg obls' !rem

let auto_solve_obligations ~pm n ?oblset tac : State.t * progress =
  Flags.if_verbose Feedback.msg_info
    (str "Solving obligations automatically...");
  let prg = get_unique_prog ~pm n in
  solve_prg_obligations ~pm prg ?oblset tac

let solve_obligation ?check_final prg num tac =
  let user_num = succ num in
  let { obls; remaining=rem } = Internal.get_obligations prg in
  let obl = obls.(num) in
  let remaining = deps_remaining obls obl.obl_deps in
  let () =
    if not (Option.is_empty obl.obl_body)
    then Error.already_solved user_num;
    if not (List.is_empty remaining)
    then Error.depends user_num remaining
  in
  let obl = subst_deps_obl obls obl in
  let kind = kind_of_obligation (snd obl.obl_status) in
  let evd = Evd.from_ctx (Internal.get_uctx prg) in
  let evd = Evd.update_sigma_univs (Global.universes ()) evd in
  let auto ~pm n oblset tac = auto_solve_obligations ~pm n ~oblset tac in
  let proof_ending =
    let name = Internal.get_name prg in
    Proof_ending.End_obligation {name; num; auto; check_final}
  in
  let cinfo = CInfo.make ~name:obl.obl_name ~typ:(EConstr.of_constr obl.obl_type) () in
  let using =
    let using = Internal.get_using prg in
    let env = Global.env () in
    let f {CInfo.name; typ; _} = name, [typ] in
    Option.map (interp_proof_using_gen f env evd [cinfo]) using
  in
  let poly = Internal.get_poly prg in
  let info = Info.make ~kind ~poly () in
  let lemma = Proof.start_core ~cinfo ~info ~proof_ending ?using evd  in
  let lemma = fst @@ Proof.by !default_tactic lemma in
  let lemma = Option.cata (fun tac -> Proof.set_endline_tactic tac lemma) lemma tac in
  lemma

let solve_obligations ~pm n tac =
  let prg = get_unique_prog ~pm n in
  solve_prg_obligations ~pm prg tac

let solve_all_obligations ~pm tac =
  State.fold pm ~init:pm ~f:(fun k v pm ->
      solve_prg_obligations ~pm v tac |> fst)

let try_solve_obligations ~pm n tac =
  solve_obligations ~pm n tac |> fst

let obligation (user_num, name, typ) ~pm tac =
  let num = pred user_num in
  let prg = get_unique_prog ~pm name in
  let { obls; remaining } = Internal.get_obligations prg in
  if num >= 0 && num < Array.length obls then
    let obl = obls.(num) in
    match obl.obl_body with
    | None -> solve_obligation prg num tac
    | Some r -> Error.already_solved user_num
  else Error.unknown_obligation num

let show_single_obligation i n obls x =
  let x = subst_deps_obl obls x in
  let env = Global.env () in
  let sigma = Evd.from_env env in
  let msg =
    str "Obligation" ++ spc ()
    ++ int (succ i)
    ++ spc () ++ str "of" ++ spc () ++ Id.print n ++ str ":" ++ spc ()
    ++ hov 1 (Printer.pr_constr_env env sigma x.obl_type
              ++ str "." ++ fnl ()) in
  Feedback.msg_info msg

let show_obligations_of_prg ?(msg = true) prg =
  let n = Internal.get_name prg in
  let {obls; remaining} = Internal.get_obligations prg in
  let showed = ref 5 in
    if msg then Feedback.msg_info (int remaining ++ str " obligation(s) remaining: ");
    Array.iteri
      (fun i x ->
         match x.obl_body with
         | None ->
           if !showed > 0 then begin
             decr showed;
             show_single_obligation i n obls x
           end
         | Some _ -> ())
      obls

let show_obligations ~pm ?(msg = true) n =
  let progs =
    match n with
    | None ->
      State.all pm
    | Some n ->
      (match State.find pm n with
       | Some prg -> [prg]
       | None -> Error.no_obligations (Some n))
  in
  List.iter (fun x -> show_obligations_of_prg ~msg x) progs

let show_term ~pm n =
  let prg = get_unique_prog ~pm n in
  ProgramDecl.show prg

let msg_generating_obl name obls =
  let len = Array.length obls in
  let info = Id.print name ++ str " has type-checked" in
  Feedback.msg_info
    (if len = 0 then info ++ str "."
     else
       info ++ str ", generating " ++ int len ++
       str (String.plural len " obligation"))

let add_definition ~pm ~info ~cinfo ~opaque ~uctx ?body
    ?tactic ?(reduce = reduce) ?using ?obl_hook obls =
  let obl_hook = Option.map (fun h -> State.PrgHook h) obl_hook in
  let prg =
    ProgramDecl.make ~info ~cinfo ~body ~opaque ~uctx ~reduce ~deps:[] ~possible_guard:None ?obl_hook ?using obls
  in
  let name = CInfo.get_name cinfo in
  let {obls;_} = Internal.get_obligations prg in
  if Int.equal (Array.length obls) 0 then (
    Flags.if_verbose (msg_generating_obl name) obls;
    let pm, cst = Obls_.declare_definition ~pm prg in
    pm, Defined cst)
  else
    let () = Flags.if_verbose (msg_generating_obl name) obls in
    let pm = State.add pm name prg in
    let pm, res = auto_solve_obligations ~pm (Some name) tactic in
    match res with
    | Remain rem ->
      Flags.if_verbose (show_obligations ~pm ~msg:false) (Some name);
      pm, res
    | _ -> pm, res

let add_mutual_definitions ~pm ~info ~cinfo ~opaque ~uctx ~bodies ~possible_guard
    ?tactic ?(reduce = reduce) ?using ?obl_hook obls =
  let obl_hook = Option.map (fun h -> State.PrgHook h) obl_hook in
  let deps = List.map CInfo.get_name cinfo in
  let pm =
    List.fold_left3
      (fun pm cinfo body obls ->
        let prg =
          ProgramDecl.make ~info ~cinfo ~opaque ~body:(Some body) ~uctx ~deps
            ~possible_guard:(Some possible_guard) ~reduce ?obl_hook ?using obls
        in
        State.add pm (CInfo.get_name cinfo) prg)
      pm cinfo bodies obls
  in
  let pm, _defined =
    List.fold_left
      (fun (pm, finished) x ->
        if finished then (pm, finished)
        else
          let pm, res = auto_solve_obligations ~pm (Some x) tactic in
          match res with
          | Defined _ ->
            (* If one definition is turned into a constant,
               the whole block is defined. *)
            (pm, true)
          | _ -> (pm, false))
      (pm, false) deps
  in
  pm

let rec admit_prog ~pm prg =
  let {obls} = Internal.get_obligations prg in
  let is_open _ x = Option.is_empty x.obl_body && List.is_empty (deps_remaining obls x.obl_deps) in
  let i = match Array.findi is_open obls with
    | Some i -> i
    | None -> CErrors.anomaly (Pp.str "Could not find a solvable obligation.")
  in
  let proof = solve_obligation prg i None in
  let pm = Proof.save_admitted ~pm ~proof in
  match ProgMap.find_opt (Internal.get_name prg) pm with
  | Some prg -> admit_prog ~pm (CEphemeron.get prg)
  | None -> pm

let rec admit_all_obligations ~pm =
  let prg = State.first_pending pm in
  match prg with
  | None -> pm
  | Some prg ->
    let pm = admit_prog ~pm prg in
    admit_all_obligations ~pm

let admit_obligations ~pm n =
  match n with
  | None -> admit_all_obligations ~pm
  | Some _ ->
    let prg = get_unique_prog ~pm n in
    let pm = admit_prog ~pm prg in
    pm

let next_obligation ~pm ?(final=false) n tac =
  let prg = match n with
    | None ->
      begin match State.first_pending pm with
        | Some prg -> prg
        | None ->
          Error.no_obligations None
      end
    | Some _ -> get_unique_prog ~pm n
  in
  let {obls; remaining} = Internal.get_obligations prg in
  let is_open _ x = Option.is_empty x.obl_body && List.is_empty (deps_remaining obls x.obl_deps) in
  let i = match Array.findi is_open obls with
    | Some i -> i
    | None ->
      match n with
      | None -> CErrors.anomaly (Pp.str "Could not find a solvable obligation.")
      | Some n -> CErrors.user_err (str "No more obligations for " ++ Id.print n ++ str ".")
  in
  let check_final = if not final then None
    else match n with
      | None -> Some AllFinal
      | Some n -> Some (SpecificFinal n)
  in
  solve_obligation ?check_final prg i tac

let check_program_libraries () =
  Coqlib.check_required_library Coqlib.datatypes_module_name;
  Coqlib.check_required_library ["Coq";"Init";"Specif"]

(* aliases *)
let prepare_obligations = prepare_obligations
let check_solved_obligations =
  let is_empty prg =
    let obls = (Internal.get_obligations (CEphemeron.get prg)).obls in
    let is_open x = Option.is_empty x.obl_body && List.is_empty (deps_remaining obls x.obl_deps) in
    Array.exists is_open obls in
  Obls_.check_solved_obligations is_empty
type fixpoint_kind = Obls_.fixpoint_kind =
  | IsFixpoint of lident option list | IsCoFixpoint
type nonrec progress = progress =
  | Remain of int | Dependent | Defined of GlobRef.t

end

module OblState = Obls_.State

let declare_constant ?local ~name ~kind ?typing_flags =
  declare_constant ?local ~name ~kind ~typing_flags

let declare_entry ~name ?scope ~kind ?user_warns =
  declare_entry ~name ?scope ~kind ~typing_flags:None ?clearbody:None ~user_warns
OCaml

Innovation. Community. Security.