package coq-core

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file comRewrite.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

open Util
open Names
open Nameops
open Constr
open Constrexpr
open EConstr
open Libnames

let () = CErrors.register_handler begin function
| Rewrite.RewriteFailure (env, sigma, e) ->
  let e = Himsg.explain_pretype_error env sigma e in
  Some Pp.(str"setoid rewrite failed: " ++ e)
| _ -> None
end

module TC = Typeclasses

let classes_dirpath =
  Names.DirPath.make (List.map Id.of_string ["Classes";"Coq"])

let init_setoid () =
  if is_dirpath_prefix_of classes_dirpath (Lib.cwd ()) then ()
  else Coqlib.check_required_library ["Coq";"Setoids";"Setoid"]

type rewrite_attributes = {
  polymorphic : bool;
  locality : Hints.hint_locality;
}

let rewrite_attributes =
  let open Attributes.Notations in
  Attributes.(polymorphic ++ locality) >>= fun (polymorphic, locality) ->
  let locality =
    if Locality.make_section_locality locality then Hints.Local else SuperGlobal
  in
  Attributes.Notations.return { polymorphic; locality }

(** Utility functions *)

let find_reference dir s =
  Coqlib.find_reference "generalized rewriting" dir s
[@@warning "-3"]

let lazy_find_reference dir s =
  let gr = lazy (find_reference dir s) in
  fun () -> Lazy.force gr

module PropGlobal = struct

  let morphisms = ["Coq"; "Classes"; "Morphisms"]

  let respectful_ref = lazy_find_reference morphisms "respectful"

  let proper_class =
    let r = lazy (find_reference morphisms "Proper") in
    fun () -> Option.get (TC.class_info (Lazy.force r))

  let proper_proj () =
    UnsafeMonomorphic.mkConst (Option.get (List.hd (proper_class ()).TC.cl_projs).TC.meth_const)

end

(* By default the strategy for "rewrite_db" is top-down *)

let mkappc s l = CAst.make @@ CAppExpl ((qualid_of_ident (Id.of_string s),None),l)

let declare_an_instance n s args =
  (((CAst.make @@ Name n),None),
   CAst.make @@ CAppExpl ((qualid_of_string s,None), args))

let declare_instance a aeq n s = declare_an_instance n s [a;aeq]

let anew_instance atts binders (name,t) fields =
  let _id = Classes.new_instance ~poly:atts.polymorphic
      name binders t (true, CAst.make @@ CRecord (fields))
      ~locality:atts.locality Hints.empty_hint_info
  in
  ()

let declare_instance_refl atts binders a aeq n lemma =
  let instance = declare_instance a aeq (add_suffix n "_Reflexive") "Coq.Classes.RelationClasses.Reflexive"
  in anew_instance atts binders instance
       [(qualid_of_ident (Id.of_string "reflexivity"),lemma)]

let declare_instance_sym atts binders a aeq n lemma =
  let instance = declare_instance a aeq (add_suffix n "_Symmetric") "Coq.Classes.RelationClasses.Symmetric"
  in anew_instance atts binders instance
       [(qualid_of_ident (Id.of_string "symmetry"),lemma)]

let declare_instance_trans atts binders a aeq n lemma =
  let instance = declare_instance a aeq (add_suffix n "_Transitive") "Coq.Classes.RelationClasses.Transitive"
  in anew_instance atts binders instance
       [(qualid_of_ident (Id.of_string "transitivity"),lemma)]

let declare_relation atts ?(binders=[]) a aeq n refl symm trans =
  init_setoid ();
  let instance = declare_instance a aeq (add_suffix n "_relation") "Coq.Classes.RelationClasses.RewriteRelation" in
  let () = anew_instance atts binders instance [] in
  match (refl,symm,trans) with
    (None, None, None) -> ()
  | (Some lemma1, None, None) ->
    declare_instance_refl atts binders a aeq n lemma1
  | (None, Some lemma2, None) ->
    declare_instance_sym atts binders a aeq n lemma2
  | (None, None, Some lemma3) ->
    declare_instance_trans atts binders a aeq n lemma3
  | (Some lemma1, Some lemma2, None) ->
    let () = declare_instance_refl atts binders a aeq n lemma1 in
    declare_instance_sym atts binders a aeq n lemma2
  | (Some lemma1, None, Some lemma3) ->
    let () = declare_instance_refl atts binders a aeq n lemma1 in
    let () = declare_instance_trans atts binders a aeq n lemma3 in
    let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.PreOrder" in
    anew_instance atts binders instance
      [(qualid_of_ident (Id.of_string "PreOrder_Reflexive"), lemma1);
       (qualid_of_ident (Id.of_string "PreOrder_Transitive"),lemma3)]
  | (None, Some lemma2, Some lemma3) ->
    let () = declare_instance_sym atts binders a aeq n lemma2 in
    let () = declare_instance_trans atts binders a aeq n lemma3 in
    let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.PER" in
    anew_instance atts binders instance
      [(qualid_of_ident (Id.of_string "PER_Symmetric"), lemma2);
       (qualid_of_ident (Id.of_string "PER_Transitive"),lemma3)]
  | (Some lemma1, Some lemma2, Some lemma3) ->
    let () = declare_instance_refl atts binders a aeq n lemma1 in
    let () = declare_instance_sym atts binders a aeq n lemma2 in
    let () = declare_instance_trans atts binders a aeq n lemma3 in
    let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.Equivalence" in
    anew_instance atts binders instance
      [(qualid_of_ident (Id.of_string "Equivalence_Reflexive"), lemma1);
       (qualid_of_ident (Id.of_string "Equivalence_Symmetric"), lemma2);
       (qualid_of_ident (Id.of_string "Equivalence_Transitive"), lemma3)]

let cHole = CAst.make @@ CHole (None, Namegen.IntroAnonymous)

let proper_projection env sigma r ty =
  let rel_vect n m = Array.init m (fun i -> mkRel(n+m-i)) in
  let ctx, inst = decompose_prod_decls sigma ty in
  let mor, args = destApp sigma inst in
  let instarg = mkApp (r, rel_vect 0 (List.length ctx)) in
  let app = mkApp (PropGlobal.proper_proj (),
                  Array.append args [| instarg |]) in
    it_mkLambda_or_LetIn app ctx

let declare_projection name instance_id r =
  let env = Global.env () in
  let poly = Environ.is_polymorphic env r in
  let sigma = Evd.from_env env in
  let sigma,c = Evd.fresh_global env sigma r in
  let ty = Retyping.get_type_of env sigma c in
  let body = proper_projection env sigma c ty in
  let sigma, typ = Typing.type_of env sigma body in
  let ctx, typ = decompose_prod_decls sigma typ in
  let typ =
    let n =
      let rec aux t =
        match EConstr.kind sigma t with
        | App (f, [| a ; a' ; rel; rel' |])
            when isRefX env sigma (PropGlobal.respectful_ref ()) f ->
          succ (aux rel')
        | _ -> 0
      in
      let init =
        match EConstr.kind sigma typ with
            App (f, args) when isRefX env sigma (PropGlobal.respectful_ref ()) f  ->
              mkApp (f, fst (Array.chop (Array.length args - 2) args))
          | _ -> typ
      in aux init
    in
    let ctx,ccl = Reductionops.hnf_decompose_prod_n_decls env sigma (3 * n) typ
    in it_mkProd_or_LetIn ccl ctx
  in
  let types = Some (it_mkProd_or_LetIn typ ctx) in
  let kind = Decls.(IsDefinition Definition) in
  let impargs, udecl = [], UState.default_univ_decl in
  let cinfo = Declare.CInfo.make ~name ~impargs ~typ:types () in
  let info = Declare.Info.make ~kind ~udecl ~poly () in
  let _r : GlobRef.t =
    Declare.declare_definition ~cinfo ~info ~opaque:false ~body sigma
  in ()

let add_setoid atts binders a aeq t n =
  init_setoid ();
  let () = declare_instance_refl atts binders a aeq n (mkappc "Seq_refl" [a;aeq;t]) in
  let () = declare_instance_sym atts binders a aeq n (mkappc "Seq_sym" [a;aeq;t]) in
  let () = declare_instance_trans atts binders a aeq n (mkappc "Seq_trans" [a;aeq;t]) in
  let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.Equivalence"
  in
  anew_instance atts binders instance
    [(qualid_of_ident (Id.of_string "Equivalence_Reflexive"), mkappc "Seq_refl" [a;aeq;t]);
     (qualid_of_ident (Id.of_string "Equivalence_Symmetric"), mkappc "Seq_sym" [a;aeq;t]);
     (qualid_of_ident (Id.of_string "Equivalence_Transitive"), mkappc "Seq_trans" [a;aeq;t])]

let add_morphism_as_parameter atts m n : unit =
  init_setoid ();
  let instance_id = add_suffix n "_Proper" in
  let env = Global.env () in
  let evd = Evd.from_env env in
  let poly = atts.polymorphic in
  let kind = Decls.(IsAssumption Logical) in
  let impargs, udecl = [], UState.default_univ_decl in
  let evd, types = Rewrite.Internal.build_morphism_signature env evd m in
  let evd, pe = Declare.prepare_parameter ~poly ~udecl ~types evd in
  let cst = Declare.declare_constant ~name:instance_id ~kind (Declare.ParameterEntry pe) in
  let cst = GlobRef.ConstRef cst in
  Classes.Internal.add_instance
    (PropGlobal.proper_class ()) Hints.empty_hint_info atts.locality cst;
  declare_projection n instance_id cst

let add_morphism_interactive atts ~tactic m n : Declare.Proof.t =
  init_setoid ();
  let instance_id = add_suffix n "_Proper" in
  let env = Global.env () in
  let evd = Evd.from_env env in
  let evd, morph = Rewrite.Internal.build_morphism_signature env evd m in
  let poly = atts.polymorphic in
  let kind = Decls.(IsDefinition Instance) in
  let hook { Declare.Hook.S.dref; _ } = dref |> function
    | GlobRef.ConstRef cst ->
      Classes.Internal.add_instance (PropGlobal.proper_class ()) Hints.empty_hint_info
        atts.locality (GlobRef.ConstRef cst);
      declare_projection n instance_id (GlobRef.ConstRef cst)
    | _ -> assert false
  in
  let hook = Declare.Hook.make hook in
  Flags.silently
    (fun () ->
       let cinfo = Declare.CInfo.make ~name:instance_id ~typ:morph () in
       let info = Declare.Info.make ~poly ~hook ~kind () in
       let lemma = Declare.Proof.start ~cinfo ~info evd in
       fst (Declare.Proof.by tactic lemma)) ()

let add_morphism atts ~tactic binders m s n =
  init_setoid ();
  let instance_id = add_suffix n "_Proper" in
  let instance_name = (CAst.make @@ Name instance_id),None in
  let instance_t =
    CAst.make @@ CAppExpl
      ((Libnames.qualid_of_string "Coq.Classes.Morphisms.Proper",None),
       [cHole; s; m])
  in
  let _id, lemma = Classes.new_instance_interactive
      ~locality:atts.locality ~poly:atts.polymorphic
      instance_name binders instance_t
      ~tac:tactic ~hook:(declare_projection n instance_id)
      Hints.empty_hint_info None
  in
  lemma (* no instance body -> always open proof *)
OCaml

Innovation. Community. Security.