Source file cClosure.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
[@@@ocaml.warning "+4"]
open CErrors
open Util
open Names
open Constr
open Declarations
open Context
open Environ
open Vars
open Esubst
module RelDecl = Context.Rel.Declaration
let all_opaque = TransparentState.empty
module type RedFlagsSig = sig
type reds
type red_kind
val fBETA : red_kind
val fDELTA : red_kind
val fMATCH : red_kind
val fFIX : red_kind
val fCOFIX : red_kind
val fZETA : red_kind
val fCONST : Constant.t -> red_kind
val fVAR : Id.t -> red_kind
val no_red : reds
val red_add : reds -> red_kind -> reds
val red_sub : reds -> red_kind -> reds
val red_add_transparent : reds -> TransparentState.t -> reds
val red_transparent : reds -> TransparentState.t
val mkflags : red_kind list -> reds
val mkfullflags : red_kind list -> reds
val red_set : reds -> red_kind -> bool
val red_projection : reds -> Projection.t -> bool
end
module RedFlags : RedFlagsSig = struct
open TransparentState
type reds = {
r_beta : bool;
r_delta : bool;
r_const : TransparentState.t;
r_zeta : bool;
r_match : bool;
r_fix : bool;
r_cofix : bool }
type red_kind = BETA | DELTA | MATCH | FIX
| COFIX | ZETA
| CONST of Constant.t | VAR of Id.t
let fBETA = BETA
let fDELTA = DELTA
let fMATCH = MATCH
let fFIX = FIX
let fCOFIX = COFIX
let fZETA = ZETA
let fCONST kn = CONST kn
let fVAR id = VAR id
let no_red = {
r_beta = false;
r_delta = false;
r_const = all_opaque;
r_zeta = false;
r_match = false;
r_fix = false;
r_cofix = false }
let red_add red = function
| BETA -> { red with r_beta = true }
| DELTA -> { red with r_delta = true }
| CONST kn ->
let r = red.r_const in
{ red with r_const = { r with tr_cst = Cpred.add kn r.tr_cst } }
| MATCH -> { red with r_match = true }
| FIX -> { red with r_fix = true }
| COFIX -> { red with r_cofix = true }
| ZETA -> { red with r_zeta = true }
| VAR id ->
let r = red.r_const in
{ red with r_const = { r with tr_var = Id.Pred.add id r.tr_var } }
let red_sub red = function
| BETA -> { red with r_beta = false }
| DELTA -> { red with r_delta = false }
| CONST kn ->
let r = red.r_const in
{ red with r_const = { r with tr_cst = Cpred.remove kn r.tr_cst } }
| MATCH -> { red with r_match = false }
| FIX -> { red with r_fix = false }
| COFIX -> { red with r_cofix = false }
| ZETA -> { red with r_zeta = false }
| VAR id ->
let r = red.r_const in
{ red with r_const = { r with tr_var = Id.Pred.remove id r.tr_var } }
let red_transparent red = red.r_const
let red_add_transparent red tr =
{ red with r_const = tr }
let mkflags = List.fold_left red_add no_red
let mkfullflags = List.fold_left red_add { no_red with r_const = TransparentState.full }
let red_set red = function
| BETA -> red.r_beta
| CONST kn ->
is_transparent_constant red.r_const kn
| VAR id ->
is_transparent_variable red.r_const id
| ZETA -> red.r_zeta
| MATCH -> red.r_match
| FIX -> red.r_fix
| COFIX -> red.r_cofix
| DELTA ->
red.r_delta
let red_projection red p =
if Projection.unfolded p then true
else red_set red (fCONST (Projection.constant p))
end
open RedFlags
let all = mkfullflags [fBETA;fDELTA;fZETA;fMATCH;fFIX;fCOFIX]
let allnolet = mkfullflags [fBETA;fDELTA;fMATCH;fFIX;fCOFIX]
let beta = mkflags [fBETA]
let betadeltazeta = mkfullflags [fBETA;fDELTA;fZETA]
let betaiota = mkflags [fBETA;fMATCH;fFIX;fCOFIX]
let betaiotazeta = mkflags [fBETA;fMATCH;fFIX;fCOFIX;fZETA]
let betazeta = mkflags [fBETA;fZETA]
let delta = mkfullflags [fDELTA]
let zeta = mkflags [fZETA]
let nored = no_red
type table_key = Constant.t Univ.puniverses tableKey
let eq_pconstant_key (c,u) (c',u') =
eq_constant_key c c' && Univ.Instance.equal u u'
module IdKeyHash =
struct
open Hashset.Combine
type t = table_key
let equal = Names.eq_table_key eq_pconstant_key
let hash = function
| ConstKey (c, _) -> combinesmall 1 (Constant.UserOrd.hash c)
| VarKey id -> combinesmall 2 (Id.hash id)
| RelKey i -> combinesmall 3 (Int.hash i)
end
module KeyTable = Hashtbl.Make(IdKeyHash)
open Context.Named.Declaration
exception Irrelevant
type mode = Conversion | Reduction
type red_state = Ntrl | Cstr | Red
let neutr = function
| Ntrl -> Ntrl
| Red | Cstr -> Red
type 'a usubs = 'a subs Univ.puniverses
type evar_repack = Evar.t * constr list -> constr
type fconstr = {
mutable mark : red_state;
mutable term: fterm;
}
and fterm =
| FRel of int
| FAtom of constr
| FFlex of table_key
| FInd of pinductive
| FConstruct of pconstructor
| FApp of fconstr * fconstr array
| FProj of Projection.t * fconstr
| FFix of fixpoint * fconstr usubs
| FCoFix of cofixpoint * fconstr usubs
| FCaseT of case_info * Univ.Instance.t * constr array * case_return * fconstr * case_branch array * fconstr usubs
| FCaseInvert of case_info * Univ.Instance.t * constr array * case_return * finvert * fconstr * case_branch array * fconstr usubs
| FLambda of int * (Name.t Context.binder_annot * constr) list * constr * fconstr usubs
| FProd of Name.t Context.binder_annot * fconstr * constr * fconstr usubs
| FLetIn of Name.t Context.binder_annot * fconstr * fconstr * constr * fconstr usubs
| FEvar of Evar.t * constr list * fconstr usubs * evar_repack
| FInt of Uint63.t
| FFloat of Float64.t
| FArray of Univ.Instance.t * fconstr Parray.t * fconstr
| FLIFT of int * fconstr
| FCLOS of constr * fconstr usubs
| FIrrelevant
| FLOCKED
and finvert = fconstr array
let fterm_of v = v.term
let set_ntrl v = v.mark <- Ntrl
let mk_atom c = {mark=Ntrl;term=FAtom c}
let mk_red f = {mark=Red;term=f}
let update v1 mark t =
v1.mark <- mark; v1.term <- t
(** Reduction cache *)
type infos_cache = {
i_env : env;
i_sigma : constr evar_handler;
i_share : bool;
i_univs : UGraph.t;
i_mode : mode;
}
type clos_infos = {
i_flags : reds;
i_relevances : Sorts.relevance Range.t;
i_cache : infos_cache }
type clos_tab = (fconstr, Empty.t) constant_def KeyTable.t
let info_flags info = info.i_flags
let info_env info = info.i_cache.i_env
let info_univs info = info.i_cache.i_univs
let push_relevance infos r =
{ infos with i_relevances = Range.cons r.Context.binder_relevance infos.i_relevances }
let push_relevances infos nas =
{ infos with i_relevances = Array.fold_left (fun l x -> Range.cons x.Context.binder_relevance l)
infos.i_relevances nas }
let set_info_relevances info r = { info with i_relevances = r }
let info_relevances info = info.i_relevances
type 'a next_native_args = (CPrimitives.arg_kind * 'a) list
type stack_member =
| Zapp of fconstr array
| ZcaseT of case_info * Univ.Instance.t * constr array * case_return * case_branch array * fconstr usubs
| Zproj of Projection.Repr.t
| Zfix of fconstr * stack
| Zprimitive of CPrimitives.t * pconstant * fconstr list * fconstr next_native_args
| Zshift of int
| Zupdate of fconstr
and stack = stack_member list
let empty_stack = []
let append_stack v s =
if Int.equal (Array.length v) 0 then s else
match s with
| Zapp l :: s -> Zapp (Array.append v l) :: s
| (ZcaseT _ | Zproj _ | Zfix _ | Zshift _ | Zupdate _ | Zprimitive _) :: _ | [] ->
Zapp v :: s
let zshift n s =
match (n,s) with
(0,_) -> s
| (_,Zshift(k)::s) -> Zshift(n+k)::s
| (_,(ZcaseT _ | Zproj _ | Zfix _ | Zapp _ | Zupdate _ | Zprimitive _) :: _) | _,[] -> Zshift(n)::s
let rec stack_args_size = function
| Zapp v :: s -> Array.length v + stack_args_size s
| Zshift(_)::s -> stack_args_size s
| Zupdate(_)::s -> stack_args_size s
| (ZcaseT _ | Zproj _ | Zfix _ | Zprimitive _) :: _ | [] -> 0
let usubs_shft (n,(e,u)) = subs_shft (n, e), u
let rec lft_fconstr n ft =
match ft.term with
| (FInd _|FConstruct _|FFlex(ConstKey _|VarKey _)|FInt _|FFloat _|FIrrelevant) -> ft
| FRel i -> {mark=ft.mark;term=FRel(i+n)}
| FLambda(k,tys,f,e) -> {mark=Cstr; term=FLambda(k,tys,f,usubs_shft(n,e))}
| FFix(fx,e) ->
{mark=Cstr; term=FFix(fx,usubs_shft(n,e))}
| FCoFix(cfx,e) ->
{mark=Cstr; term=FCoFix(cfx,usubs_shft(n,e))}
| FLIFT(k,m) -> lft_fconstr (n+k) m
| FLOCKED -> assert false
| FFlex (RelKey _) | FAtom _ | FApp _ | FProj _ | FCaseT _ | FCaseInvert _ | FProd _
| FLetIn _ | FEvar _ | FCLOS _ | FArray _ -> {mark=ft.mark; term=FLIFT(n,ft)}
let lift_fconstr k f =
if Int.equal k 0 then f else lft_fconstr k f
let lift_fconstr_vect k v =
if Int.equal k 0 then v else Array.Fun1.map lft_fconstr k v
let clos_rel e i =
match expand_rel i e with
| Inl(n,mt) -> lift_fconstr n mt
| Inr(k,None) -> {mark=Ntrl; term= FRel k}
| Inr(k,Some p) ->
lift_fconstr (k-p) {mark=Red;term=FFlex(RelKey p)}
let compact_stack head stk =
let rec strip_rec depth = function
| Zshift(k)::s -> strip_rec (depth+k) s
| Zupdate(m)::s ->
let h' = lft_fconstr depth head in
(** The stack contains [Zupdate] marks only if in sharing mode *)
let () = update m h'.mark h'.term in
strip_rec depth s
| ((ZcaseT _ | Zproj _ | Zfix _ | Zapp _ | Zprimitive _) :: _ | []) as stk -> zshift depth stk
in
strip_rec 0 stk
let zupdate info m s =
let share = info.i_cache.i_share in
if share && begin match m.mark with Red -> true | Ntrl | Cstr -> false end
then
let s' = compact_stack m s in
let _ = m.term <- FLOCKED in
Zupdate(m)::s'
else s
let mk_lambda env t =
let (rvars,t') = Term.decompose_lambda t in
FLambda(List.length rvars, List.rev rvars, t', env)
let usubs_lift (e,u) = subs_lift e, u
let usubs_liftn n (e,u) = subs_liftn n e, u
let destFLambda clos_fun t =
match [@ocaml.warning "-4"] t.term with
FLambda(_,[(na,ty)],b,e) -> (na,clos_fun e ty,clos_fun (usubs_lift e) b)
| FLambda(n,(na,ty)::tys,b,e) ->
(na,clos_fun e ty,{mark=t.mark;term=FLambda(n-1,tys,b,usubs_lift e)})
| _ -> assert false
let usubst_instance (_,u) u' =
if Univ.Instance.is_empty u then u'
else Univ.subst_instance_instance u u'
let usubst_punivs (_,u) (v,u' as orig) =
if Univ.Instance.is_empty u then orig
else v, Univ.subst_instance_instance u u'
let usubst_sort (_,u) s = match s with
| Sorts.Type su ->
if Univ.Instance.is_empty u then s
else Sorts.(sort_of_univ (Univ.subst_instance_universe u su))
| Sorts.QSort (q, v) ->
if Univ.Instance.is_empty u then s
else Sorts.qsort q (Univ.subst_instance_universe u v)
| Sorts.(SProp | Prop | Set) -> s
let mk_clos (e:_ usubs) t =
match kind t with
| Rel i -> clos_rel (fst e) i
| Var x -> {mark = Red; term = FFlex (VarKey x) }
| Const c -> {mark = Red; term = FFlex (ConstKey (usubst_punivs e c)) }
| Sort s ->
let s = usubst_sort e s in
{mark = Ntrl; term = FAtom (mkSort s) }
| Meta _ -> {mark = Ntrl; term = FAtom t }
| Ind kn -> {mark = Ntrl; term = FInd (usubst_punivs e kn) }
| Construct kn -> {mark = Cstr; term = FConstruct (usubst_punivs e kn) }
| Int i -> {mark = Cstr; term = FInt i}
| Float f -> {mark = Cstr; term = FFloat f}
| (CoFix _|Lambda _|Fix _|Prod _|Evar _|App _|Case _|Cast _|LetIn _|Proj _|Array _) ->
{mark = Red; term = FCLOS(t,e)}
let injectu c u = mk_clos (subs_id 0, u) c
let inject c = injectu c Univ.Instance.empty
let mk_irrelevant = { mark = Cstr; term = FIrrelevant }
(** Hand-unrolling of the map function to bypass the call to the generic array
allocation *)
let mk_clos_vect env v = match v with
| [||] -> [||]
| [|v0|] -> [|mk_clos env v0|]
| [|v0; v1|] -> [|mk_clos env v0; mk_clos env v1|]
| [|v0; v1; v2|] -> [|mk_clos env v0; mk_clos env v1; mk_clos env v2|]
| [|v0; v1; v2; v3|] ->
[|mk_clos env v0; mk_clos env v1; mk_clos env v2; mk_clos env v3|]
| v -> Array.Fun1.map mk_clos env v
let is_irrelevant info r = match info.i_cache.i_mode, r with
| Conversion, Sorts.Irrelevant -> true
| Conversion, Sorts.RelevanceVar q -> not (info.i_cache.i_sigma.qvar_relevant q)
| (Conversion | Reduction), (Sorts.Relevant | Sorts.Irrelevant | Sorts.RelevanceVar _) -> false
let shortcut_irrelevant info r =
if is_irrelevant info r then raise Irrelevant
let assoc_defined = function
| LocalDef (_, c, _) -> inject c
| LocalAssum (_, _) -> raise Not_found
let constant_value_in u = function
| Def b -> injectu b u
| OpaqueDef _ -> raise (NotEvaluableConst Opaque)
| Undef _ -> raise (NotEvaluableConst NoBody)
| Primitive p -> raise (NotEvaluableConst (IsPrimitive (u,p)))
let ref_value_cache info flags tab ref =
let env = info.i_cache.i_env in
try
KeyTable.find tab ref
with Not_found ->
let v =
try
let body =
match ref with
| RelKey n ->
let open! Context.Rel.Declaration in
let i = n - 1 in
let d =
try Range.get env.env_rel_context.env_rel_map i
with Invalid_argument _ -> raise Not_found
in
let () = shortcut_irrelevant info (get_relevance d) in
let body = match d with
| LocalAssum _ -> raise Not_found
| LocalDef (_, t, _) -> lift n t
in
inject body
| VarKey id ->
let def = Environ.lookup_named id env in
let () = shortcut_irrelevant info (binder_relevance (get_annot def)) in
if TransparentState.is_transparent_variable flags id then assoc_defined def
else raise Not_found
| ConstKey (cst,u) ->
let cb = lookup_constant cst env in
let () = shortcut_irrelevant info (cb.const_relevance) in
if TransparentState.is_transparent_constant flags cst then constant_value_in u cb.const_body
else raise Not_found
in
Def body
with
| Irrelevant -> Def mk_irrelevant
| NotEvaluableConst (IsPrimitive (_u,op)) -> Primitive op
| Not_found
| NotEvaluableConst _
-> Undef None
in
KeyTable.add tab ref v; v
let rec subst_constr (subst,usubst as e) c = match [@ocaml.warning "-4"] Constr.kind c with
| Rel i ->
begin match expand_rel i subst with
| Inl (k, lazy v) -> Vars.lift k v
| Inr (m, _) -> mkRel m
end
| Const _ | Ind _ | Construct _ | Sort _ -> subst_instance_constr usubst c
| Case (ci, u, pms, p, iv, discr, br) ->
let u' = usubst_instance e u in
let c = if u == u' then c else mkCase (ci, u', pms, p, iv, discr, br) in
Constr.map_with_binders usubs_lift subst_constr e c
| Array (u,elems,def,ty) ->
let u' = usubst_instance e u in
let c = if u == u' then c else mkArray (u',elems,def,ty) in
Constr.map_with_binders usubs_lift subst_constr e c
| _ ->
Constr.map_with_binders usubs_lift subst_constr e c
let rec to_constr (lfts, usubst as ulfts) v =
let subst_us c = subst_instance_constr usubst c in
match v.term with
| FRel i -> mkRel (reloc_rel i lfts)
| FFlex (RelKey p) -> mkRel (reloc_rel p lfts)
| FFlex (VarKey x) -> mkVar x
| FAtom c -> subst_us (exliftn lfts c)
| FFlex (ConstKey op) -> subst_us (mkConstU op)
| FInd op -> subst_us (mkIndU op)
| FConstruct op -> subst_us (mkConstructU op)
| FCaseT (ci, u, pms, p, c, ve, env) ->
to_constr_case ulfts ci u pms p NoInvert c ve env
| FCaseInvert (ci, u, pms, p, indices, c, ve, env) ->
let iv = CaseInvert {indices=Array.Fun1.map to_constr ulfts indices} in
to_constr_case ulfts ci u pms p iv c ve env
| FFix ((op,(lna,tys,bds)) as fx, e) ->
if is_subs_id (fst e) && is_lift_id lfts then
subst_instance_constr (usubst_instance ulfts (snd e)) (mkFix fx)
else
let n = Array.length bds in
let subs_ty = comp_subs ulfts e in
let subs_bd = comp_subs (on_fst (el_liftn n) ulfts) (on_fst (subs_liftn n) e) in
let tys = Array.Fun1.map subst_constr subs_ty tys in
let bds = Array.Fun1.map subst_constr subs_bd bds in
mkFix (op, (lna, tys, bds))
| FCoFix ((op,(lna,tys,bds)) as cfx, e) ->
if is_subs_id (fst e) && is_lift_id lfts then
subst_instance_constr (usubst_instance ulfts (snd e)) (mkCoFix cfx)
else
let n = Array.length bds in
let subs_ty = comp_subs ulfts e in
let subs_bd = comp_subs (on_fst (el_liftn n) ulfts) (on_fst (subs_liftn n) e) in
let tys = Array.Fun1.map subst_constr subs_ty tys in
let bds = Array.Fun1.map subst_constr subs_bd bds in
mkCoFix (op, (lna, tys, bds))
| FApp (f,ve) ->
mkApp (to_constr ulfts f,
Array.Fun1.map to_constr ulfts ve)
| FProj (p,c) ->
mkProj (p,to_constr ulfts c)
| FLambda (len, tys, f, e) ->
if is_subs_id (fst e) && is_lift_id lfts then
subst_instance_constr (usubst_instance ulfts (snd e)) (Term.compose_lam (List.rev tys) f)
else
let subs = comp_subs ulfts e in
let tys = List.mapi (fun i (na, c) -> na, subst_constr (usubs_liftn i subs) c) tys in
let f = subst_constr (usubs_liftn len subs) f in
Term.compose_lam (List.rev tys) f
| FProd (n, t, c, e) ->
if is_subs_id (fst e) && is_lift_id lfts then
mkProd (n, to_constr ulfts t, subst_instance_constr (usubst_instance ulfts (snd e)) c)
else
let subs' = comp_subs ulfts e in
mkProd (n, to_constr ulfts t, subst_constr (usubs_lift subs') c)
| FLetIn (n,b,t,f,e) ->
let subs = comp_subs (on_fst el_lift ulfts) (usubs_lift e) in
mkLetIn (n, to_constr ulfts b,
to_constr ulfts t,
subst_constr subs f)
| FEvar (ev, args, env, repack) ->
let subs = comp_subs ulfts env in
repack (ev, List.map (fun a -> subst_constr subs a) args)
| FLIFT (k,a) -> to_constr (el_shft k lfts, usubst) a
| FInt i ->
Constr.mkInt i
| FFloat f ->
Constr.mkFloat f
| FArray (u,t,ty) ->
let u = usubst_instance ((),usubst) u in
let def = to_constr ulfts (Parray.default t) in
let t = Array.init (Parray.length_int t) (fun i ->
to_constr ulfts (Parray.get t (Uint63.of_int i)))
in
let ty = to_constr ulfts ty in
mkArray(u, t, def,ty)
| FCLOS (t,env) ->
if is_subs_id (fst env) && is_lift_id lfts then
subst_instance_constr (usubst_instance ulfts (snd env)) t
else
let subs = comp_subs ulfts env in
subst_constr subs t
| FIrrelevant -> assert (!Flags.in_debugger); mkVar(Id.of_string"_IRRELEVANT_")
| FLOCKED -> assert (!Flags.in_debugger); mkVar(Id.of_string"_LOCKED_")
and to_constr_case (lfts,_ as ulfts) ci u pms p iv c ve env =
let subs = comp_subs ulfts env in
if is_subs_id (fst env) && is_lift_id lfts then
mkCase (ci, usubst_instance subs u, pms, p, iv, to_constr ulfts c, ve)
else
let f_ctx (nas, c) =
let c = subst_constr (usubs_liftn (Array.length nas) subs) c in
(nas, c)
in
mkCase (ci, usubst_instance subs u, Array.map (fun c -> subst_constr subs c) pms,
f_ctx p,
iv,
to_constr ulfts c,
Array.map f_ctx ve)
and comp_subs (el,u) (s,u') =
Esubst.lift_subst (fun el c -> lazy (to_constr (el,u) c)) el s, u'
let term_of_fconstr c = to_constr (el_id, Univ.Instance.empty) c
let rec zip m stk =
match stk with
| [] -> m
| Zapp args :: s -> zip {mark=neutr m.mark; term=FApp(m, args)} s
| ZcaseT(ci, u, pms, p, br, e)::s ->
let t = FCaseT(ci, u, pms, p, m, br, e) in
let mark = (neutr m.mark) in
zip {mark; term=t} s
| Zproj p :: s ->
let mark = (neutr m.mark) in
zip {mark; term=FProj(Projection.make p true,m)} s
| Zfix(fx,par)::s ->
zip fx (par @ append_stack [|m|] s)
| Zshift(n)::s ->
zip (lift_fconstr n m) s
| Zupdate(rf)::s ->
(** The stack contains [Zupdate] marks only if in sharing mode *)
let () = update rf m.mark m.term in
zip rf s
| Zprimitive(_op,c,rargs,kargs)::s ->
let args = List.rev_append rargs (m::List.map snd kargs) in
let f = {mark = Red; term = FFlex (ConstKey c)} in
zip {mark=(neutr m.mark); term = FApp (f, Array.of_list args)} s
let fapp_stack (m,stk) = zip m stk
let term_of_process c stk = term_of_fconstr (zip c stk)
let strip_update_shift_app_red head stk =
let rec strip_rec rstk h depth = function
| Zshift(k) as e :: s ->
strip_rec (e::rstk) (lift_fconstr k h) (depth+k) s
| (Zapp args :: s) ->
strip_rec (Zapp args :: rstk)
{mark=h.mark;term=FApp(h,args)} depth s
| Zupdate(m)::s ->
(** The stack contains [Zupdate] marks only if in sharing mode *)
let () = update m h.mark h.term in
strip_rec rstk m depth s
| ((ZcaseT _ | Zproj _ | Zfix _ | Zprimitive _) :: _ | []) as stk ->
(depth,List.rev rstk, stk)
in
strip_rec [] head 0 stk
let strip_update_shift_app head stack =
assert (match head.mark with Red -> false | Ntrl | Cstr -> true);
strip_update_shift_app_red head stack
let get_nth_arg head n stk =
assert (match head.mark with Red -> false | Ntrl | Cstr -> true);
let rec strip_rec rstk h n = function
| Zshift(k) as e :: s ->
strip_rec (e::rstk) (lift_fconstr k h) n s
| Zapp args::s' ->
let q = Array.length args in
if n >= q
then
strip_rec (Zapp args::rstk) {mark=h.mark;term=FApp(h,args)} (n-q) s'
else
let bef = Array.sub args 0 n in
let aft = Array.sub args (n+1) (q-n-1) in
let stk' =
List.rev (if Int.equal n 0 then rstk else (Zapp bef :: rstk)) in
(Some (stk', args.(n)), append_stack aft s')
| Zupdate(m)::s ->
(** The stack contains [Zupdate] mark only if in sharing mode *)
let () = update m h.mark h.term in
strip_rec rstk m n s
| ((ZcaseT _ | Zproj _ | Zfix _ | Zprimitive _) :: _ | []) as s -> (None, List.rev rstk @ s) in
strip_rec [] head n stk
let usubs_cons x (s,u) = subs_cons x s, u
let rec subs_consn v i n s =
if Int.equal i n then s
else subs_consn v (i + 1) n (subs_cons v.(i) s)
let usubs_consn v i n s = on_fst (subs_consn v i n) s
let usubs_consv v s =
usubs_consn v 0 (Array.length v) s
let rec get_args n tys f e = function
| Zupdate r :: s ->
(** The stack contains [Zupdate] mark only if in sharing mode *)
let () = update r Cstr (FLambda(n,tys,f,e)) in
get_args n tys f e s
| Zshift k :: s ->
get_args n tys f (usubs_shft (k,e)) s
| Zapp l :: s ->
let na = Array.length l in
if n == na then (Inl (usubs_consn l 0 na e), s)
else if n < na then
let eargs = Array.sub l n (na-n) in
(Inl (usubs_consn l 0 n e), Zapp eargs :: s)
else
let etys = List.skipn na tys in
get_args (n-na) etys f (usubs_consn l 0 na e) s
| ((ZcaseT _ | Zproj _ | Zfix _ | Zprimitive _) :: _ | []) as stk ->
(Inr {mark=Cstr; term=FLambda(n,tys,f,e)}, stk)
let rec eta_expand_stack info na = function
| (Zapp _ | Zfix _ | ZcaseT _ | Zproj _
| Zshift _ | Zupdate _ | Zprimitive _ as e) :: s ->
e :: eta_expand_stack info na s
| [] ->
let arg =
if is_irrelevant info na.binder_relevance then mk_irrelevant
else {mark = Ntrl; term = FRel 1}
in
[Zshift 1; Zapp [|arg|]]
let rec skip_native_args rargs nargs =
match nargs with
| (kd, a) :: nargs' ->
if kd = CPrimitives.Kwhnf then rargs, nargs
else skip_native_args (a::rargs) nargs'
| [] -> rargs, []
let get_native_args op c stk =
let kargs = CPrimitives.kind op in
let rec get_args rnargs kargs args =
match kargs, args with
| kd::kargs, a::args -> get_args ((kd,a)::rnargs) kargs args
| _, _ -> rnargs, kargs, args in
let rec strip_rec rnargs h depth kargs = function
| Zshift k :: s ->
strip_rec (List.map (fun (kd,f) -> kd,lift_fconstr k f) rnargs)
(lift_fconstr k h) (depth+k) kargs s
| Zapp args :: s' ->
begin match get_args rnargs kargs (Array.to_list args) with
| rnargs, [], [] ->
(skip_native_args [] (List.rev rnargs), s')
| rnargs, [], eargs ->
(skip_native_args [] (List.rev rnargs),
Zapp (Array.of_list eargs) :: s')
| rnargs, kargs, _ ->
strip_rec rnargs {mark = h.mark;term=FApp(h, args)} depth kargs s'
end
| Zupdate(m) :: s ->
let () = update m h.mark h.term in
strip_rec rnargs m depth kargs s
| (Zprimitive _ | ZcaseT _ | Zproj _ | Zfix _) :: _ | [] -> assert false
in strip_rec [] {mark = Red; term = FFlex(ConstKey c)} 0 kargs stk
let get_native_args1 op c stk =
match get_native_args op c stk with
| ((rargs, (kd,a):: nargs), stk) ->
assert (kd = CPrimitives.Kwhnf);
(rargs, a, nargs, stk)
| _ -> assert false
let check_native_args op stk =
let nargs = CPrimitives.arity op in
let rargs = stack_args_size stk in
nargs <= rargs
let rec reloc_rargs_rec depth = function
| Zapp args :: s ->
Zapp (lift_fconstr_vect depth args) :: reloc_rargs_rec depth s
| Zshift(k)::s -> if Int.equal k depth then s else reloc_rargs_rec (depth-k) s
| ((ZcaseT _ | Zproj _ | Zfix _ | Zupdate _ | Zprimitive _) :: _ | []) as stk -> stk
let reloc_rargs depth stk =
if Int.equal depth 0 then stk else reloc_rargs_rec depth stk
let rec try_drop_parameters depth n = function
| Zapp args::s ->
let q = Array.length args in
if n > q then try_drop_parameters depth (n-q) s
else if Int.equal n q then reloc_rargs depth s
else
let aft = Array.sub args n (q-n) in
reloc_rargs depth (append_stack aft s)
| Zshift(k)::s -> try_drop_parameters (depth-k) n s
| [] ->
if Int.equal n 0 then []
else raise Not_found
| (ZcaseT _ | Zproj _ | Zfix _ | Zupdate _ | Zprimitive _) :: _ -> assert false
let drop_parameters depth n argstk =
try try_drop_parameters depth n argstk
with Not_found ->
anomaly (Pp.str "ill-typed term: found a match on a partially applied constructor.")
let inductive_subst mib u pms =
let rec mk_pms i ctx = match ctx with
| [] -> subs_id 0
| RelDecl.LocalAssum _ :: ctx ->
let subs = mk_pms (i - 1) ctx in
subs_cons pms.(i) subs
| RelDecl.LocalDef (_, c, _) :: ctx ->
let subs = mk_pms i ctx in
subs_cons (mk_clos (subs,u) c) subs
in
mk_pms (Array.length pms - 1) mib.mind_params_ctxt, u
let get_branch infos depth ci u pms (ind, c) br e args =
let i = c - 1 in
let args = drop_parameters depth ci.ci_npar args in
let (_nas, br) = br.(i) in
if Int.equal ci.ci_cstr_ndecls.(i) ci.ci_cstr_nargs.(i) then
let rec push e stk = match stk with
| [] -> e
| Zapp v :: stk -> push (usubs_consv v e) stk
| (Zshift _ | ZcaseT _ | Zproj _ | Zfix _ | Zupdate _ | Zprimitive _) :: _ ->
assert false
in
let e = push e args in
(br, e)
else
let env = info_env infos in
let mib = Environ.lookup_mind (fst ind) env in
let mip = mib.mind_packets.(snd ind) in
let (ctx, _) = mip.mind_nf_lc.(i) in
let ctx, _ = List.chop mip.mind_consnrealdecls.(i) ctx in
let map = function
| Zapp args -> args
| Zshift _ | ZcaseT _ | Zproj _ | Zfix _ | Zupdate _ | Zprimitive _ ->
assert false
in
let ind_subst = inductive_subst mib u (Array.map (mk_clos e) pms) in
let args = Array.concat (List.map map args) in
let rec push i e = function
| [] -> []
| RelDecl.LocalAssum _ :: ctx ->
let ans = push (pred i) e ctx in
args.(i) :: ans
| RelDecl.LocalDef (_, b, _) :: ctx ->
let ans = push i e ctx in
let b = subst_instance_constr u b in
let s = Array.rev_of_list ans in
let e = usubs_consv s ind_subst in
let v = mk_clos e b in
v :: ans
in
let ext = push (Array.length args - 1) [] ctx in
(br, usubs_consv (Array.rev_of_list ext) e)
(** [eta_expand_ind_stack env ind c s t] computes stacks corresponding
to the conversion of the eta expansion of t, considered as an inhabitant
of ind, and the Constructor c of this inductive type applied to arguments
s.
@assumes [t] is an irreducible term, and not a constructor. [ind] is the inductive
of the constructor term [c]
@raise Not_found if the inductive is not a primitive record, or if the
constructor is partially applied.
*)
let eta_expand_ind_stack env ind m s (f, s') =
let open Declarations in
let mib = lookup_mind (fst ind) env in
if not (mib.mind_finite == BiFinite) then raise Not_found;
match Declareops.inductive_make_projections ind mib with
| Some projs ->
let pars = mib.Declarations.mind_nparams in
let right = fapp_stack (f, s') in
let (depth, args, _s) = strip_update_shift_app m s in
(** Try to drop the params, might fail on partially applied constructors. *)
let argss = try_drop_parameters depth pars args in
let hstack = Array.map (fun p ->
{ mark = Red;
term = FProj (Projection.make p true, right) })
projs
in
argss, [Zapp hstack]
| None -> raise Not_found
let rec project_nth_arg n = function
| Zapp args :: s ->
let q = Array.length args in
if n >= q then project_nth_arg (n - q) s
else args.(n)
| (ZcaseT _ | Zproj _ | Zfix _ | Zupdate _ | Zshift _ | Zprimitive _) :: _ | [] -> assert false
let contract_fix_vect fix =
let (thisbody, make_body, env, nfix) =
match [@ocaml.warning "-4"] fix with
| FFix (((reci,i),(_,_,bds as rdcl)),env) ->
(bds.(i),
(fun j -> { mark = Cstr;
term = FFix (((reci,j),rdcl),env) }),
env, Array.length bds)
| FCoFix ((i,(_,_,bds as rdcl)),env) ->
(bds.(i),
(fun j -> { mark = Cstr;
term = FCoFix ((j,rdcl),env) }),
env, Array.length bds)
| _ -> assert false
in
let rec mk_subs env i =
if Int.equal i nfix then env
else mk_subs (subs_cons (make_body i) env) (i + 1)
in
(on_fst (fun env -> mk_subs env 0) env, thisbody)
let unfold_projection info p =
if red_projection info.i_flags p
then
Some (Zproj (Projection.repr p))
else None
open Primred
module FNativeEntries =
struct
type elem = fconstr
type args = fconstr array
type evd = unit
type uinstance = Univ.Instance.t
let mk_construct c =
{ mark = Cstr; term = FConstruct (Univ.in_punivs c) }
let get = Array.get
let get_int () e =
match [@ocaml.warning "-4"] e.term with
| FInt i -> i
| _ -> assert false
let get_float () e =
match [@ocaml.warning "-4"] e.term with
| FFloat f -> f
| _ -> assert false
let get_parray () e =
match [@ocaml.warning "-4"] e.term with
| FArray (_u,t,_ty) -> t
| _ -> assert false
let dummy = {mark = Ntrl; term = FRel 0}
let current_retro = ref Retroknowledge.empty
let defined_int = ref false
let fint = ref dummy
let init_int retro =
match retro.Retroknowledge.retro_int63 with
| Some c ->
defined_int := true;
fint := { mark = Ntrl; term = FFlex (ConstKey (Univ.in_punivs c)) }
| None -> defined_int := false
let defined_float = ref false
let ffloat = ref dummy
let init_float retro =
match retro.Retroknowledge.retro_float64 with
| Some c ->
defined_float := true;
ffloat := { mark = Ntrl; term = FFlex (ConstKey (Univ.in_punivs c)) }
| None -> defined_float := false
let defined_bool = ref false
let ftrue = ref dummy
let ffalse = ref dummy
let init_bool retro =
match retro.Retroknowledge.retro_bool with
| Some (ct,cf) ->
defined_bool := true;
ftrue := mk_construct ct;
ffalse := mk_construct cf;
| None -> defined_bool :=false
let defined_carry = ref false
let fC0 = ref dummy
let fC1 = ref dummy
let init_carry retro =
match retro.Retroknowledge.retro_carry with
| Some(c0,c1) ->
defined_carry := true;
fC0 := mk_construct c0;
fC1 := mk_construct c1;
| None -> defined_carry := false
let defined_pair = ref false
let fPair = ref dummy
let init_pair retro =
match retro.Retroknowledge.retro_pair with
| Some c ->
defined_pair := true;
fPair := mk_construct c;
| None -> defined_pair := false
let defined_cmp = ref false
let fEq = ref dummy
let fLt = ref dummy
let fGt = ref dummy
let fcmp = ref dummy
let init_cmp retro =
match retro.Retroknowledge.retro_cmp with
| Some (cEq, cLt, cGt) ->
defined_cmp := true;
fEq := mk_construct cEq;
fLt := mk_construct cLt;
fGt := mk_construct cGt;
let (icmp, _) = cEq in
fcmp := { mark = Ntrl; term = FInd (Univ.in_punivs icmp) }
| None -> defined_cmp := false
let defined_f_cmp = ref false
let fFEq = ref dummy
let fFLt = ref dummy
let fFGt = ref dummy
let fFNotComparable = ref dummy
let init_f_cmp retro =
match retro.Retroknowledge.retro_f_cmp with
| Some (cFEq, cFLt, cFGt, cFNotComparable) ->
defined_f_cmp := true;
fFEq := mk_construct cFEq;
fFLt := mk_construct cFLt;
fFGt := mk_construct cFGt;
fFNotComparable := mk_construct cFNotComparable;
| None -> defined_f_cmp := false
let defined_f_class = ref false
let fPNormal = ref dummy
let fNNormal = ref dummy
let fPSubn = ref dummy
let fNSubn = ref dummy
let fPZero = ref dummy
let fNZero = ref dummy
let fPInf = ref dummy
let fNInf = ref dummy
let fNaN = ref dummy
let init_f_class retro =
match retro.Retroknowledge.retro_f_class with
| Some (cPNormal, cNNormal, cPSubn, cNSubn, cPZero, cNZero,
cPInf, cNInf, cNaN) ->
defined_f_class := true;
fPNormal := mk_construct cPNormal;
fNNormal := mk_construct cNNormal;
fPSubn := mk_construct cPSubn;
fNSubn := mk_construct cNSubn;
fPZero := mk_construct cPZero;
fNZero := mk_construct cNZero;
fPInf := mk_construct cPInf;
fNInf := mk_construct cNInf;
fNaN := mk_construct cNaN;
| None -> defined_f_class := false
let defined_array = ref false
let init_array retro =
defined_array := Option.has_some retro.Retroknowledge.retro_array
let init env =
current_retro := env.retroknowledge;
init_int !current_retro;
init_float !current_retro;
init_bool !current_retro;
init_carry !current_retro;
init_pair !current_retro;
init_cmp !current_retro;
init_f_cmp !current_retro;
init_f_class !current_retro;
init_array !current_retro
let check_env env =
if not (!current_retro == env.retroknowledge) then init env
let check_int env =
check_env env;
assert (!defined_int)
let check_float env =
check_env env;
assert (!defined_float)
let check_bool env =
check_env env;
assert (!defined_bool)
let check_carry env =
check_env env;
assert (!defined_carry && !defined_int)
let check_pair env =
check_env env;
assert (!defined_pair && !defined_int)
let check_cmp env =
check_env env;
assert (!defined_cmp)
let check_f_cmp env =
check_env env;
assert (!defined_f_cmp)
let check_f_class env =
check_env env;
assert (!defined_f_class)
let check_array env =
check_env env;
assert (!defined_array)
let mkInt env i =
check_int env;
{ mark = Cstr; term = FInt i }
let mkFloat env f =
check_float env;
{ mark = Cstr; term = FFloat f }
let mkBool env b =
check_bool env;
if b then !ftrue else !ffalse
let mkCarry env b e =
check_carry env;
{mark = Cstr;
term = FApp ((if b then !fC1 else !fC0),[|!fint;e|])}
let mkIntPair env e1 e2 =
check_pair env;
{ mark = Cstr; term = FApp(!fPair, [|!fint;!fint;e1;e2|]) }
let mkFloatIntPair env f i =
check_pair env;
check_float env;
{ mark = Cstr; term = FApp(!fPair, [|!ffloat;!fint;f;i|]) }
let mkLt env =
check_cmp env;
!fLt
let mkEq env =
check_cmp env;
!fEq
let mkGt env =
check_cmp env;
!fGt
let mkFLt env =
check_f_cmp env;
!fFLt
let mkFEq env =
check_f_cmp env;
!fFEq
let mkFGt env =
check_f_cmp env;
!fFGt
let mkFNotComparable env =
check_f_cmp env;
!fFNotComparable
let mkPNormal env =
check_f_class env;
!fPNormal
let mkNNormal env =
check_f_class env;
!fNNormal
let mkPSubn env =
check_f_class env;
!fPSubn
let mkNSubn env =
check_f_class env;
!fNSubn
let mkPZero env =
check_f_class env;
!fPZero
let mkNZero env =
check_f_class env;
!fNZero
let mkPInf env =
check_f_class env;
!fPInf
let mkNInf env =
check_f_class env;
!fNInf
let mkNaN env =
check_f_class env;
!fNaN
let mkArray env u t ty =
check_array env;
{ mark = Cstr; term = FArray (u,t,ty)}
end
module FredNative = RedNative(FNativeEntries)
let rec skip_irrelevant_stack info stk = match stk with
| [] -> []
| (Zshift _ | Zapp _) :: s -> skip_irrelevant_stack info s
| (Zfix _ | Zproj _) :: s ->
skip_irrelevant_stack info s
| ZcaseT (ci, _, _, _, _, _) :: s ->
if is_irrelevant info ci.ci_relevance then skip_irrelevant_stack info s
else stk
| Zprimitive _ :: _ -> assert false
| Zupdate m :: s ->
(** The stack contains [Zupdate] marks only if in sharing mode *)
let () = update m mk_irrelevant.mark mk_irrelevant.term in
skip_irrelevant_stack info s
let is_irrelevant_constructor infos (ind,_) = match infos.i_cache.i_mode with
| Conversion -> Indset_env.mem ind infos.i_cache.i_env.irr_inds
| Reduction -> false
let is_irrelevant_projection infos p = match infos.i_cache.i_mode with
| Conversion -> not @@ Projection.Repr.relevant @@ Projection.repr p
| Reduction -> false
let rec knh info m stk =
match m.term with
| FLIFT(k,a) -> knh info a (zshift k stk)
| FCLOS(t,e) -> knht info e t (zupdate info m stk)
| FLOCKED -> assert false
| FApp(a,b) -> knh info a (append_stack b (zupdate info m stk))
| FCaseT(ci,u,pms,p,t,br,e) ->
if is_irrelevant info ci.ci_relevance then
(mk_irrelevant, skip_irrelevant_stack info stk)
else
knh info t (ZcaseT(ci,u,pms,p,br,e)::zupdate info m stk)
| FFix (((ri, n), (lna, _, _)), _) ->
if is_irrelevant info (lna.(n)).binder_relevance then
(mk_irrelevant, skip_irrelevant_stack info stk)
else
(match get_nth_arg m ri.(n) stk with
(Some(pars,arg),stk') -> knh info arg (Zfix(m,pars)::stk')
| (None, stk') -> (m,stk'))
| FProj (p,c) ->
if is_irrelevant_projection info p then
(mk_irrelevant, skip_irrelevant_stack info stk)
else
(match unfold_projection info p with
| None -> (m, stk)
| Some s -> knh info c (s :: zupdate info m stk))
| (FFlex _|FLetIn _|FConstruct _|FEvar _|FCaseInvert _|FIrrelevant|
FCoFix _|FLambda _|FRel _|FAtom _|FInd _|FProd _|FInt _|FFloat _|FArray _) ->
(m, stk)
and knht info e t stk =
match kind t with
| App(a,b) ->
knht info e a (append_stack (mk_clos_vect e b) stk)
| Case(ci,u,pms,p,NoInvert,t,br) ->
if is_irrelevant info ci.ci_relevance then
(mk_irrelevant, skip_irrelevant_stack info stk)
else
knht info e t (ZcaseT(ci, u, pms, p, br, e)::stk)
| Case(ci,u,pms,p,CaseInvert{indices},t,br) ->
if is_irrelevant info ci.ci_relevance then
(mk_irrelevant, skip_irrelevant_stack info stk)
else
let term = FCaseInvert (ci, u, pms, p, (Array.map (mk_clos e) indices), mk_clos e t, br, e) in
{ mark = Red; term }, stk
| Fix (((_, n), (lna, _, _)) as fx) ->
if is_irrelevant info (lna.(n)).binder_relevance then
(mk_irrelevant, skip_irrelevant_stack info stk)
else
knh info { mark = Cstr; term = FFix (fx, e) } stk
| Cast(a,_,_) -> knht info e a stk
| Rel n -> knh info (clos_rel (fst e) n) stk
| Proj (p, c) -> knh info { mark = Red; term = FProj (p, mk_clos e c) } stk
| (Ind _|Const _|Construct _|Var _|Meta _ | Sort _ | Int _|Float _) -> (mk_clos e t, stk)
| CoFix cfx -> { mark = Cstr; term = FCoFix (cfx,e) }, stk
| Lambda _ -> { mark = Cstr ; term = mk_lambda e t }, stk
| Prod (n, t, c) ->
{ mark = Ntrl; term = FProd (n, mk_clos e t, c, e) }, stk
| LetIn (n,b,t,c) ->
{ mark = Red; term = FLetIn (n, mk_clos e b, mk_clos e t, c, e) }, stk
| Evar ev ->
begin match info.i_cache.i_sigma.evar_expand ev with
| EvarDefined c -> knht info e c stk
| EvarUndefined (evk, args) ->
if info.i_cache.i_sigma.evar_relevant ev then
let repack = info.i_cache.i_sigma.evar_repack in
{ mark = Ntrl; term = FEvar (evk, args, e, repack) }, stk
else
(mk_irrelevant, skip_irrelevant_stack info stk)
end
| Array(u,t,def,ty) ->
let len = Array.length t in
let ty = mk_clos e ty in
let t = Parray.init (Uint63.of_int len) (fun i -> mk_clos e t.(i)) (mk_clos e def) in
let term = FArray (u,t,ty) in
knh info { mark = Cstr; term } stk
let conv : (clos_infos -> clos_tab -> fconstr -> fconstr -> bool) ref
= ref (fun _ _ _ _ -> (assert false : bool))
let set_conv f = conv := f
let rec knr info tab m stk =
match m.term with
| FLambda(n,tys,f,e) when red_set info.i_flags fBETA ->
(match get_args n tys f e stk with
Inl e', s -> knit info tab e' f s
| Inr lam, s -> (lam,s))
| FFlex fl when red_set info.i_flags fDELTA ->
(match ref_value_cache info (RedFlags.red_transparent info.i_flags) tab fl with
| Def v -> kni info tab v stk
| Primitive op ->
if check_native_args op stk then
let c = match fl with ConstKey c -> c | RelKey _ | VarKey _ -> assert false in
let rargs, a, nargs, stk = get_native_args1 op c stk in
kni info tab a (Zprimitive(op,c,rargs,nargs)::stk)
else
(m, stk)
| Undef _ | OpaqueDef _ -> (set_ntrl m; (m,stk)))
| FConstruct(c,_u) ->
let use_match = red_set info.i_flags fMATCH in
let use_fix = red_set info.i_flags fFIX in
if use_match || use_fix then
(match [@ocaml.warning "-4"] strip_update_shift_app m stk with
| (depth, args, ZcaseT(ci,u,pms,_,br,e)::s) when use_match ->
assert (ci.ci_npar>=0);
let (br, e) = get_branch info depth ci u pms c br e args in
knit info tab e br s
| (_, cargs, Zfix(fx,par)::s) when use_fix ->
let rarg = fapp_stack(m,cargs) in
let stk' = par @ append_stack [|rarg|] s in
let (fxe,fxbd) = contract_fix_vect fx.term in
knit info tab fxe fxbd stk'
| (depth, args, Zproj p::s) when use_match ->
let rargs = drop_parameters depth (Projection.Repr.npars p) args in
let rarg = project_nth_arg (Projection.Repr.arg p) rargs in
kni info tab rarg s
| (_,args,s) ->
if is_irrelevant_constructor info c then (mk_irrelevant, skip_irrelevant_stack info stk) else (m,args@s))
else if is_irrelevant_constructor info c then
(mk_irrelevant, skip_irrelevant_stack info stk)
else
(m, stk)
| FCoFix ((i, (lna, _, _)), _) ->
if is_irrelevant info (lna.(i)).binder_relevance then
(mk_irrelevant, skip_irrelevant_stack info stk)
else if red_set info.i_flags fCOFIX then
(match strip_update_shift_app m stk with
| (_, args, (((ZcaseT _|Zproj _)::_) as stk')) ->
let (fxe,fxbd) = contract_fix_vect m.term in
knit info tab fxe fxbd (args@stk')
| (_,args, ((Zapp _ | Zfix _ | Zshift _ | Zupdate _ | Zprimitive _) :: _ | [] as s)) -> (m,args@s))
else (m, stk)
| FLetIn (_,v,_,bd,e) when red_set info.i_flags fZETA ->
knit info tab (on_fst (subs_cons v) e) bd stk
| FInt _ | FFloat _ | FArray _ ->
(match [@ocaml.warning "-4"] strip_update_shift_app m stk with
| (_, _, Zprimitive(op,(_,u as c),rargs,nargs)::s) ->
let (rargs, nargs) = skip_native_args (m::rargs) nargs in
begin match nargs with
| [] ->
let args = Array.of_list (List.rev rargs) in
begin match FredNative.red_prim (info_env info) () op u args with
| Some m -> kni info tab m s
| None -> assert false
end
| (kd,a)::nargs ->
assert (kd = CPrimitives.Kwhnf);
kni info tab a (Zprimitive(op,c,rargs,nargs)::s)
end
| (_, _, s) -> (m, s))
| FCaseInvert (ci, u, pms, _p,iv,_c,v,env) when red_set info.i_flags fMATCH ->
let pms = mk_clos_vect env pms in
let u = usubst_instance env u in
begin match case_inversion info tab ci u pms iv v with
| Some c -> knit info tab env c stk
| None -> (m, stk)
end
| FIrrelevant ->
let stk = skip_irrelevant_stack info stk in
(m, stk)
| FProd _ | FAtom _ | FInd _
| FCaseInvert _ | FProj _ | FFix _ | FEvar _
| FLambda _ | FFlex _ | FRel _
| FLetIn _ ->
(m, stk)
| FLOCKED | FCLOS _ | FApp _ | FCaseT _ | FLIFT _ ->
assert false
and kni info tab m stk =
let (hm,s) = knh info m stk in
knr info tab hm s
and knit info tab e t stk =
let (ht,s) = knht info e t stk in
knr info tab ht s
and case_inversion info tab ci u params indices v =
let open Declarations in
let v = match v with
| [| [||], v |] -> v
| _ -> assert false
in
if Array.is_empty indices then Some v
else
let env = info_env info in
let ind = ci.ci_ind in
let psubst = subs_consn params 0 ci.ci_npar (subs_id 0) in
let mib = Environ.lookup_mind (fst ind) env in
let mip = mib.mind_packets.(snd ind) in
let _, expect = mip.mind_nf_lc.(0) in
let _ind, expect_args = destApp expect in
let tab = if info.i_cache.i_mode == Conversion then tab else KeyTable.create 17 in
let info = {info with i_cache = { info.i_cache with i_mode = Conversion}; i_flags=all} in
let check_index i index =
let expected = expect_args.(ci.ci_npar + i) in
let expected = mk_clos (psubst,u) expected in
!conv info tab expected index
in
if Array.for_all_i check_index 0 indices
then Some v else None
let kh info tab v stk = fapp_stack(kni info tab v stk)
let is_val v = match v.term with
| FAtom _ | FRel _ | FInd _ | FConstruct _ | FInt _ | FFloat _ -> true
| FFlex _ -> v.mark == Ntrl
| FApp _ | FProj _ | FFix _ | FCoFix _ | FCaseT _ | FCaseInvert _ | FLambda _
| FProd _ | FLetIn _ | FEvar _ | FArray _ | FLIFT _ | FCLOS _ -> false
| FIrrelevant | FLOCKED -> assert false
let rec kl info tab m =
let share = info.i_cache.i_share in
if is_val m then term_of_fconstr m
else
let (nm,s) = kni info tab m [] in
let () = if share then ignore (fapp_stack (nm, s)) in
zip_term info tab (norm_head info tab nm) s
and klt info tab e t = match kind t with
| Rel i ->
begin match expand_rel i (fst e) with
| Inl (n, mt) -> kl info tab @@ lift_fconstr n mt
| Inr (k, None) -> if Int.equal k i then t else mkRel k
| Inr (k, Some p) -> kl info tab @@ lift_fconstr (k-p) {mark=Red;term=FFlex(RelKey p)}
end
| App (hd, args) ->
begin match kind hd with
| Ind _ | Construct _ ->
let args' = Array.Smart.map (fun c -> klt info tab e c) args in
let hd' = subst_instance_constr (snd e) hd in
if hd' == hd && args' == args then t
else mkApp (hd', args')
| Var _ | Const _ | CoFix _ | Lambda _ | Fix _ | Prod _ | Evar _ | Case _
| Cast _ | LetIn _ | Proj _ | Array _ | Rel _ | Meta _ | Sort _ | Int _ | Float _ ->
let share = info.i_cache.i_share in
let (nm,s) = knit info tab e t [] in
let () = if share then ignore (fapp_stack (nm, s)) in
zip_term info tab (norm_head info tab nm) s
| App _ -> assert false
end
| Lambda (na, u, c) ->
let u' = klt info tab e u in
let c' = klt (push_relevance info na) tab (usubs_lift e) c in
if u' == u && c' == c then t
else mkLambda (na, u', c')
| Prod (na, u, v) ->
let u' = klt info tab e u in
let v' = klt (push_relevance info na) tab (usubs_lift e) v in
if u' == u && v' == v then t
else mkProd (na, u', v')
| Cast (t, _, _) -> klt info tab e t
| Var _ | Const _ | CoFix _ | Fix _ | Evar _ | Case _ | LetIn _ | Proj _ | Array _ ->
let share = info.i_cache.i_share in
let (nm,s) = knit info tab e t [] in
let () = if share then ignore (fapp_stack (nm, s)) in
zip_term info tab (norm_head info tab nm) s
| Meta _ | Sort _ | Ind _ | Construct _ | Int _ | Float _ -> subst_instance_constr (snd e) t
and norm_head info tab m =
if is_val m then term_of_fconstr m else
match m.term with
| FLambda(_n,tys,f,e) ->
let fold (e, info, ctxt) (na, ty) =
let ty = klt info tab e ty in
let info = push_relevance info na in
(usubs_lift e, info, (na, ty) :: ctxt)
in
let (e', info, rvtys) = List.fold_left fold (e,info,[]) tys in
let bd = klt info tab e' f in
List.fold_left (fun b (na,ty) -> mkLambda(na,ty,b)) bd rvtys
| FLetIn(na,a,b,f,e) ->
let c = klt (push_relevance info na) tab (usubs_lift e) f in
mkLetIn(na, kl info tab a, kl info tab b, c)
| FProd(na,dom,rng,e) ->
let rng = klt (push_relevance info na) tab (usubs_lift e) rng in
mkProd(na, kl info tab dom, rng)
| FCoFix((n,(na,tys,bds)),e) ->
let infobd = push_relevances info na in
let ftys = Array.map (fun ty -> klt info tab e ty) tys in
let fbds = Array.map (fun bd -> klt infobd tab (usubs_liftn (Array.length na) e) bd) bds in
mkCoFix (n, (na, ftys, fbds))
| FFix((n,(na,tys,bds)),e) ->
let infobd = push_relevances info na in
let ftys = Array.map (fun ty -> klt info tab e ty) tys in
let fbds = Array.map (fun bd -> klt infobd tab (usubs_liftn (Array.length na) e) bd) bds in
mkFix (n, (na, ftys, fbds))
| FEvar(ev, args, env, repack) ->
repack (ev, List.map (fun a -> klt info tab env a) args)
| FProj (p,c) ->
mkProj (p, kl info tab c)
| FArray (u, a, ty) ->
let a, def = Parray.to_array a in
let a = Array.map (kl info tab) a in
let def = kl info tab def in
let ty = kl info tab ty in
mkArray (u, a, def, ty)
| FLOCKED | FRel _ | FAtom _ | FFlex _ | FInd _ | FConstruct _
| FApp _ | FCaseT _ | FCaseInvert _ | FLIFT _ | FCLOS _ | FInt _
| FFloat _ -> term_of_fconstr m
| FIrrelevant -> assert false
and zip_term info tab m stk = match stk with
| [] -> m
| Zapp args :: s ->
zip_term info tab (mkApp(m, Array.map (kl info tab) args)) s
| ZcaseT(ci, u, pms, p, br, e) :: s ->
let zip_ctx (nas, c) =
let e = usubs_liftn (Array.length nas) e in
(nas, klt info tab e c)
in
let u = usubst_instance e u in
let t = mkCase(ci, u, Array.map (fun c -> klt info tab e c) pms, zip_ctx p,
NoInvert, m, Array.map zip_ctx br) in
zip_term info tab t s
| Zproj p::s ->
let t = mkProj (Projection.make p true, m) in
zip_term info tab t s
| Zfix(fx,par)::s ->
let h = mkApp(zip_term info tab (kl info tab fx) par,[|m|]) in
zip_term info tab h s
| Zshift(n)::s ->
zip_term info tab (lift n m) s
| Zupdate(_rf)::s ->
zip_term info tab m s
| Zprimitive(_,c,rargs, kargs)::s ->
let kargs = List.map (fun (_,a) -> kl info tab a) kargs in
let args =
List.fold_left (fun args a -> kl info tab a ::args) (m::kargs) rargs in
let h = mkApp (mkConstU c, Array.of_list args) in
zip_term info tab h s
let whd_val info tab v = term_of_fconstr (kh info tab v [])
let norm_val info tab v = kl info tab v
let norm_term info tab e t = klt info tab e t
let whd_stack infos tab m stk = match m.mark with
| Ntrl ->
(** No need to perform [kni] nor to unlock updates because
every head subterm of [m] is [Ntrl] *)
knh infos m stk
| Red | Cstr ->
let k = kni infos tab m stk in
let () =
if infos.i_cache.i_share then
let (m', stk') = k in
if not (m == m' && stk == stk') then ignore (zip m' stk')
in
k
let create_conv_infos ?univs ?(evars=default_evar_handler) flgs env =
let univs = Option.default (universes env) univs in
let share = (Environ.typing_flags env).Declarations.share_reduction in
let cache = {
i_env = env;
i_sigma = evars;
i_share = share;
i_univs = univs;
i_mode = Conversion;
} in
{ i_flags = flgs; i_relevances = Range.empty; i_cache = cache }
let create_clos_infos ?univs ?(evars=default_evar_handler) flgs env =
let univs = Option.default (universes env) univs in
let share = (Environ.typing_flags env).Declarations.share_reduction in
let cache = {
i_env = env;
i_sigma = evars;
i_share = share;
i_univs = univs;
i_mode = Reduction;
} in
{ i_flags = flgs; i_relevances = Range.empty; i_cache = cache }
let create_tab () = KeyTable.create 17
let oracle_of_infos infos = Environ.oracle infos.i_cache.i_env
let infos_with_reds infos reds =
{ infos with i_flags = reds }
let unfold_ref_with_args infos tab fl v =
let flags = RedFlags.red_transparent (info_flags infos) in
match ref_value_cache infos flags tab fl with
| Def def -> Some (def, v)
| Primitive op when check_native_args op v ->
let c = match [@ocaml.warning "-4"] fl with ConstKey c -> c | _ -> assert false in
let rargs, a, nargs, v = get_native_args1 op c v in
Some (a, (Zupdate a::(Zprimitive(op,c,rargs,nargs)::v)))
| Undef _ | OpaqueDef _ | Primitive _ -> None