package coq-core

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file uGraph.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

open Univ

module G = AcyclicGraph.Make(struct
    type t = Level.t
    module Set = Level.Set
    module Map = Level.Map

    let equal = Level.equal
    let compare = Level.compare

    let raw_pr = Level.raw_pr
  end) [@@inlined] (* without inline, +1% ish on HoTT, compcert. See jenkins 594 vs 596 *)
(* Do not include G to make it easier to control universe specific
   code (eg add_universe with a constraint vs G.add with no
   constraint) *)

type t = {
  graph: G.t;
  type_in_type : bool;
}

(* Universe inconsistency: error raised when trying to enforce a relation
   that would create a cycle in the graph of universes. *)

type path_explanation = G.explanation Lazy.t

type explanation =
  | Path of path_explanation
  | Other of Pp.t

type univ_inconsistency = constraint_type * Sorts.t * Sorts.t * explanation option

exception UniverseInconsistency of univ_inconsistency

type 'a check_function = t -> 'a -> 'a -> bool

let set_type_in_type b g = {g with type_in_type=b}

let type_in_type g = g.type_in_type

let check_smaller_expr g (u,n) (v,m) =
  let diff = n - m in
    match diff with
    | 0 -> G.check_leq g.graph u v
    | 1 -> G.check_lt g.graph u v
    | x when x < 0 -> G.check_leq g.graph u v
    | _ -> false

let exists_bigger g ul l =
  Universe.exists (fun ul' ->
    check_smaller_expr g ul ul') l

let real_check_leq g u v =
  Universe.for_all (fun ul -> exists_bigger g ul v) u

let check_leq g u v =
  type_in_type g || Universe.equal u v || (real_check_leq g u v)

let check_eq g u v =
  type_in_type g || Universe.equal u v ||
    (real_check_leq g u v && real_check_leq g v u)

let check_eq_level g u v =
  u == v || type_in_type g || G.check_eq g.graph u v

let empty_universes = {graph=G.empty; type_in_type=false}

let initial_universes =
  let big_rank = 1000000 in
  let g = G.empty in
  let g = G.add ~rank:big_rank Level.set g in
  {empty_universes with graph=g}

let initial_universes_with g = {g with graph=initial_universes.graph}

let enforce_constraint (u,d,v) g =
  match d with
  | Le -> G.enforce_leq u v g
  | Lt -> G.enforce_lt u v g
  | Eq -> G.enforce_eq u v g

let enforce_constraint0 cst g = match enforce_constraint cst g.graph with
| None -> None
| Some g' ->
  if g' == g.graph then Some g
  else Some { g with graph = g' }

let enforce_constraint cst g = match enforce_constraint0 cst g with
| None ->
  if not (type_in_type g) then
    let (u, c, v) = cst in
    let e = lazy (G.get_explanation cst g.graph) in
    let mk u = Sorts.sort_of_univ @@ Universe.make u in
    raise (UniverseInconsistency (c, mk u, mk v, Some (Path e)))
  else g
| Some g -> g

let merge_constraints csts g = Constraints.fold enforce_constraint csts g

let check_constraint { graph = g; type_in_type } (u,d,v) =
  type_in_type
  || match d with
  | Le -> G.check_leq g u v
  | Lt -> G.check_lt g u v
  | Eq -> G.check_eq g u v

let check_constraints csts g = Constraints.for_all (check_constraint g) csts

let leq_expr (u,m) (v,n) =
  let d = match m - n with
    | 1 -> Lt
    | diff -> assert (diff <= 0); Le
  in
  (u,d,v)

let enforce_leq_alg u v g =
  let open Util in
  let enforce_one (u,v) = function
    | Inr _ as orig -> orig
    | Inl (cstrs,g) as orig ->
      if check_smaller_expr g u v then orig
      else
        (let c = leq_expr u v in
         match enforce_constraint0 c g with
         | Some g -> Inl (Constraints.add c cstrs,g)
         | None -> Inr (c, g))
  in
  (* max(us) <= max(vs) <-> forall u in us, exists v in vs, u <= v *)
  let c = List.map (fun u -> List.map (fun v -> (u,v)) (Universe.repr v)) (Universe.repr u) in
  let c = List.cartesians enforce_one (Inl (Constraints.empty,g)) c in
  (* We pick a best constraint: smallest number of constraints, not an error if possible. *)
  let order x y = match x, y with
    | Inr _, Inr _ -> 0
    | Inl _, Inr _ -> -1
    | Inr _, Inl _ -> 1
    | Inl (c,_), Inl (c',_) ->
      Int.compare (Constraints.cardinal c) (Constraints.cardinal c')
  in
  match List.min order c with
  | Inl x -> x
  | Inr ((u, c, v), g) ->
    let e = lazy (G.get_explanation (u, c, v) g.graph) in
    let mk u = Sorts.sort_of_univ @@ Universe.make u in
    let e = UniverseInconsistency (c, mk u, mk v, Some (Path e)) in
    raise e

module Bound =
struct
  type t = Prop | Set
end

exception AlreadyDeclared = G.AlreadyDeclared
let add_universe u ~lbound ~strict g = match lbound with
| Bound.Set ->
  let graph = G.add u g.graph in
  let d = if strict then Lt else Le in
  enforce_constraint (Level.set, d, u) { g with graph }
| Bound.Prop ->
  (* Do not actually add any constraint. This is a hack for template. *)
  { g with graph = G.add u g.graph }

exception UndeclaredLevel = G.Undeclared
let check_declared_universes g l =
  G.check_declared g.graph l

let constraints_of_universes g =
  let add cst accu = Constraints.add cst accu in
  G.constraints_of g.graph add Constraints.empty
let constraints_for ~kept g =
  let add cst accu = Constraints.add cst accu in
  G.constraints_for ~kept g.graph add Constraints.empty

(** Subtyping of polymorphic contexts *)

let check_subtype univs ctxT ctx =
  if AbstractContext.size ctxT == AbstractContext.size ctx then
    let uctx = AbstractContext.repr ctx in
    let inst = UContext.instance uctx in
    let cst = UContext.constraints uctx in
    let cstT = UContext.constraints (AbstractContext.repr ctxT) in
    let push accu v = add_universe v ~lbound:Bound.Set ~strict:false accu in
    let univs = Array.fold_left push univs (Instance.to_array inst) in
    let univs = merge_constraints cstT univs in
    check_constraints cst univs
  else false

(** Instances *)

let check_eq_instances g t1 t2 =
  let t1 = Instance.to_array t1 in
  let t2 = Instance.to_array t2 in
  t1 == t2 ||
    (Int.equal (Array.length t1) (Array.length t2) &&
        let rec aux i =
          (Int.equal i (Array.length t1)) || (check_eq_level g t1.(i) t2.(i) && aux (i + 1))
        in aux 0)

let domain g = G.domain g.graph
let choose p g u = G.choose p g.graph u

let check_universes_invariants g = G.check_invariants ~required_canonical:Level.is_set g.graph

(** Sort comparison *)

(* The functions below rely on the invariant that no universe in the graph
   can be unified with Prop / SProp. This is ensured by UGraph, which only
   contains Set as a "small" level. *)

open Sorts

let get_algebraic = function
| Prop | SProp -> assert false
| Set -> Universe.type0
| Type u | QSort (_, u) -> u

let check_eq_sort ugraph s1 s2 = match s1, s2 with
| (SProp, SProp) | (Prop, Prop) | (Set, Set) -> true
| (SProp, _) | (_, SProp) | (Prop, _) | (_, Prop) ->
  type_in_type ugraph
| (Type _ | Set), (Type _ | Set) ->
  check_eq ugraph (get_algebraic s1) (get_algebraic s2)
| QSort (q1, u1), QSort (q2, u2) ->
  QVar.equal q1 q2 && check_eq ugraph u1 u2
| (QSort _, (Type _ | Set)) | ((Type _ | Set), QSort _) -> false

let check_leq_sort ugraph s1 s2 = match s1, s2 with
| (SProp, SProp) | (Prop, Prop) | (Set, Set) -> true
| (SProp, _) -> type_in_type ugraph
| (Prop, SProp) -> type_in_type ugraph
| (Prop, (Set | Type _)) -> true
| (Prop, QSort _) -> false
| (_, (SProp | Prop)) -> type_in_type ugraph
| (Type _ | Set), (Type _ | Set) ->
  check_leq ugraph (get_algebraic s1) (get_algebraic s2)
| QSort (q1, u1), QSort (q2, u2) ->
  QVar.equal q1 q2 && check_leq ugraph u1 u2
| (QSort _, (Type _ | Set)) | ((Type _ | Set), QSort _) -> false

(** Pretty-printing *)

let pr_pmap sep pr map =
  let cmp (u,_) (v,_) = Level.compare u v in
  Pp.prlist_with_sep sep pr (List.sort cmp (Level.Map.bindings map))

let pr_arc prl = let open Pp in
  function
  | u, G.Node ltle ->
    if Level.Map.is_empty ltle then mt ()
    else
      prl u ++ str " " ++
      v 0
        (pr_pmap spc (fun (v, strict) ->
              (if strict then str "< " else str "<= ") ++ prl v)
            ltle) ++
      fnl ()
  | u, G.Alias v ->
    prl u  ++ str " = " ++ prl v ++ fnl ()

type node = G.node =
| Alias of Level.t
| Node of bool Level.Map.t

let repr g = G.repr g.graph

let pr_universes prl g = pr_pmap Pp.mt (pr_arc prl) g

open Pp

let explain_universe_inconsistency prl (o,u,v,p : univ_inconsistency) =
  let pr_uni u = match u with
  | Sorts.Set -> str "Set"
  | Sorts.Prop -> str "Prop"
  | Sorts.SProp -> str "SProp"
  | Sorts.Type u -> Universe.pr prl u
  | Sorts.QSort (_q, u) -> Universe.pr prl u (* FIXME? *)
  in
  let pr_rel = function
    | Eq -> str"=" | Lt -> str"<" | Le -> str"<="
  in
  let reason = match p with
    | None -> mt()
    | Some (Other p) -> spc() ++ p
    | Some (Path p) ->
      let pstart, p = Lazy.force p in
      if p = [] then mt ()
      else
        str " because" ++ spc() ++ prl pstart ++
        prlist (fun (r,v) -> spc() ++ pr_rel r ++ str" " ++ prl v) p
  in
    str "Cannot enforce" ++ spc() ++ pr_uni u ++ spc() ++
      pr_rel o ++ spc() ++ pr_uni v ++ reason
OCaml

Innovation. Community. Security.