package coq-core

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file univSubst.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

open Sorts
open Util
open Constr
open Univ

type 'a universe_map = 'a Level.Map.t
type universe_subst = Universe.t universe_map
type universe_subst_fn = Level.t -> Universe.t option
type universe_level_subst_fn = Level.t -> Level.t

let subst_instance fn i =
  Instance.of_array (Array.Smart.map fn (Instance.to_array i))

let subst_univs_universe fn ul =
  let addn n u = iterate Universe.super n u in
  let subst, nosubst =
    List.fold_right (fun (u, n) (subst,nosubst) ->
        match fn u with
        | Some u' ->
          let a' = addn n u' in
          (a' :: subst, nosubst)
        | None -> (subst, (u, n) :: nosubst))
      (Universe.repr ul) ([], [])
  in
  match subst with
  | [] -> ul
  | u :: ul ->
    let substs = List.fold_left Universe.sup u subst in
    List.fold_left (fun acc (u, n) -> Universe.sup acc (addn n (Universe.make u))) substs nosubst

let enforce_eq u v c =
  if Universe.equal u v then c else match Universe.level u, Universe.level v with
  | Some u, Some v -> enforce_eq_level u v c
  | _ -> CErrors.anomaly (Pp.str "A universe comparison can only happen between variables.")

let constraint_add_leq v u c =
  let eq (x, n) (y, m) = Int.equal m n && Level.equal x y in
  (* We just discard trivial constraints like u<=u *)
  if eq v u then c
  else
    match v, u with
    | (x,n), (y,m) ->
    let j = m - n in
      if j = -1 (* n = m+1, v+1 <= u <-> v < u *) then
        Constraints.add (x,Lt,y) c
      else if j <= -1 (* n = m+k, v+k <= u and k>0 *) then
        if Level.equal x y then (* u+k <= u with k>0 *)
          Constraints.add (x,Lt,x) c
        else CErrors.anomaly (Pp.str"Unable to handle arbitrary u+k <= v constraints.")
      else if j = 0 then
        Constraints.add (x,Le,y) c
      else (* j >= 1 *) (* m = n + k, u <= v+k *)
        if Level.equal x y then c (* u <= u+k, trivial *)
        else if Level.is_set x then c (* Prop,Set <= u+S k, trivial *)
        else Constraints.add (x,Le,y) c (* u <= v implies u <= v+k *)

let check_univ_leq_one u v =
  let leq (u,n) (v,n') =
    let cmp = Level.compare u v in
      if Int.equal cmp 0 then n <= n'
      else false
  in
  Universe.exists (leq u) v

let check_univ_leq u v =
  Universe.for_all (fun u -> check_univ_leq_one u v) u

let enforce_leq u v c =
  List.fold_left (fun c v -> (List.fold_left (fun c u -> constraint_add_leq u v c) c u)) c v

let enforce_leq u v c =
  if check_univ_leq u v then c
  else enforce_leq (Universe.repr u) (Universe.repr v) c

let get_algebraic = function
| Prop | SProp | QSort _ -> assert false
| Set -> Universe.type0
| Type u -> u

let enforce_eq_sort s1 s2 cst = match s1, s2 with
| (SProp, SProp) | (Prop, Prop) | (Set, Set) -> cst
| (((Prop | Set | Type _ | QSort _) as s1), (Prop | SProp as s2))
| ((Prop | SProp as s1), ((Prop | Set | Type _ | QSort _) as s2)) ->
  raise (UGraph.UniverseInconsistency (Eq, s1, s2, None))
| (Set | Type _), (Set | Type _) ->
  enforce_eq (get_algebraic s1) (get_algebraic s2) cst
| QSort (q1, u1), QSort (q2, u2) ->
  if QVar.equal q1 q2 then enforce_eq u1 u2 cst
  else raise (UGraph.UniverseInconsistency (Eq, s1, s2, None))
| (QSort _, (Set | Type _)) | ((Set | Type _), QSort _) ->
  raise (UGraph.UniverseInconsistency (Eq, s1, s2, None))

let enforce_leq_sort s1 s2 cst = match s1, s2 with
| (SProp, SProp) | (Prop, Prop) | (Set, Set) -> cst
| (Prop, (Set | Type _)) -> cst
| (((Prop | Set | Type _ | QSort _) as s1), (Prop | SProp as s2))
| ((SProp as s1), ((Prop | Set | Type _ | QSort _) as s2)) ->
  raise (UGraph.UniverseInconsistency (Le, s1, s2, None))
| (Set | Type _), (Set | Type _) ->
  enforce_leq (get_algebraic s1) (get_algebraic s2) cst
| QSort (q1, u1), QSort (q2, u2) ->
  if QVar.equal q1 q2 then enforce_leq u1 u2 cst
  else raise (UGraph.UniverseInconsistency (Eq, s1, s2, None))
| (QSort _, (Set | Type _)) | ((Prop | Set | Type _), QSort _) ->
  raise (UGraph.UniverseInconsistency (Eq, s1, s2, None))

let enforce_leq_alg_sort s1 s2 g = match s1, s2 with
| (SProp, SProp) | (Prop, Prop) | (Set, Set) -> Constraints.empty, g
| (Prop, (Set | Type _)) -> Constraints.empty, g
| (((Prop | Set | Type _ | QSort _) as s1), (Prop | SProp as s2))
| ((SProp as s1), ((Prop | Set | Type _ | QSort _) as s2)) ->
  raise (UGraph.UniverseInconsistency (Le, s1, s2, None))
| (Set | Type _), (Set | Type _) ->
  UGraph.enforce_leq_alg (get_algebraic s1) (get_algebraic s2) g
| QSort (q1, u1), QSort (q2, u2) ->
  if QVar.equal q1 q2 then UGraph.enforce_leq_alg u1 u2 g
  else raise (UGraph.UniverseInconsistency (Eq, s1, s2, None))
| (QSort _, (Set | Type _)) | ((Prop | Set | Type _), QSort _) ->
  raise (UGraph.UniverseInconsistency (Eq, s1, s2, None))

let enforce_univ_constraint (u,d,v) =
  match d with
  | Eq -> enforce_eq u v
  | Le -> enforce_leq u v
  | Lt -> enforce_leq (Universe.super u) v

let subst_univs_constraint fn (u,d,v as c) cstrs =
  let u' = fn u in
  let v' = fn v in
  match u', v' with
  | None, None -> Constraints.add c cstrs
  | Some u, None -> enforce_univ_constraint (u,d,Universe.make v) cstrs
  | None, Some v -> enforce_univ_constraint (Universe.make u,d,v) cstrs
  | Some u, Some v -> enforce_univ_constraint (u,d,v) cstrs

let subst_univs_constraints subst csts =
  Constraints.fold
    (fun c cstrs -> subst_univs_constraint subst c cstrs)
    csts Constraints.empty

let level_subst_of f =
  fun l ->
  match f l with
  | None  -> l
  | Some u ->
    match Universe.level u with
    | None -> assert false
    | Some l -> l

let normalize_univ_variable ~find =
  let rec aux cur =
    find cur |>
    Option.map (fun b ->
        let b' = subst_univs_universe aux b in
        if Universe.equal b' b then b
        else b')
  in aux

type universe_opt_subst = Universe.t option universe_map

let normalize_univ_variable_opt_subst ectx =
  let find l = Option.flatten (Univ.Level.Map.find_opt l ectx) in
  normalize_univ_variable ~find

let normalize_universe_opt_subst subst =
  let normlevel = normalize_univ_variable_opt_subst subst in
  subst_univs_universe normlevel

let normalize_opt_subst ctx =
  let normalize = normalize_universe_opt_subst ctx in
  Univ.Level.Map.mapi (fun u -> function
      | None -> None
      | Some v -> Some (normalize v)) ctx

let normalize_univ_variables ctx =
  let ctx = normalize_opt_subst ctx in
  let def, subst =
    Univ.Level.Map.fold (fun u v (def, subst) ->
      match v with
      | None -> (def, subst)
      | Some b -> (Univ.Level.Set.add u def, Univ.Level.Map.add u b subst))
    ctx (Univ.Level.Set.empty, Univ.Level.Map.empty)
  in ctx, def, subst

let subst_univs_fn_puniverses f (c, u as cu) =
  let u' = subst_instance f u in
    if u' == u then cu else (c, u')

let nf_binder_annot frel na =
  let open Context in
  let rel' = frel na.binder_relevance in
  if rel' == na.binder_relevance then na
  else { binder_name = na.binder_name; binder_relevance = rel' }

let nf_evars_and_universes_opt_subst fevar flevel fsort frel c =
  let rec aux c =
    match kind c with
    | Evar (evk, args) ->
      let args' = SList.Smart.map aux args in
      (match try fevar (evk, args') with Not_found -> None with
      | None -> if args == args' then c else mkEvar (evk, args')
      | Some c -> aux c)
    | Const pu ->
      let pu' = subst_univs_fn_puniverses flevel pu in
        if pu' == pu then c else mkConstU pu'
    | Ind pu ->
      let pu' = subst_univs_fn_puniverses flevel pu in
        if pu' == pu then c else mkIndU pu'
    | Construct pu ->
      let pu' = subst_univs_fn_puniverses flevel pu in
        if pu' == pu then c else mkConstructU pu'
    | Sort s ->
      let s' = fsort s in
      if s' == s then c else mkSort s'
    | Case (ci,u,pms,p,iv,t,br) ->
      let u' = subst_instance flevel u in
      let ci' =
        let rel' = frel ci.ci_relevance in
        if rel' == ci.ci_relevance then ci else { ci with ci_relevance = rel' }
      in
      let pms' = Array.Smart.map aux pms in
      let p' = aux_ctx p in
      let iv' = map_invert aux iv in
      let t' = aux t in
      let br' = Array.Smart.map aux_ctx br in
      if ci' == ci && u' == u && pms' == pms && p' == p && iv' == iv && t' == t && br' == br then c
      else mkCase (ci', u', pms', p', iv', t', br')
    | Array (u,elems,def,ty) ->
      let u' = subst_instance flevel u in
      let elems' = CArray.Smart.map aux elems in
      let def' = aux def in
      let ty' = aux ty in
      if u == u' && elems == elems' && def == def' && ty == ty' then c
      else mkArray (u',elems',def',ty')
    | Prod (na, t, u) ->
      let na' = nf_binder_annot frel na in
      let t' = aux t in
      let u' = aux u in
      if na' == na && t' == t && u' == u then c
      else mkProd (na', t', u')
    | Lambda (na, t, u) ->
      let na' = nf_binder_annot frel na in
      let t' = aux t in
      let u' = aux u in
      if na' == na && t' == t && u' == u then c
      else mkLambda (na', t', u')
    | LetIn (na, b, t, u) ->
      let na' = nf_binder_annot frel na in
      let b' = aux b in
      let t' = aux t in
      let u' = aux u in
      if na' == na && b' == b && t' == t && u' == u then c
      else mkLetIn (na', b', t', u')
    | Fix (i, rc) ->
      let rc' = aux_rec rc in
      if rc' == rc then c
      else mkFix (i, rc')
    | CoFix (i, rc) ->
      let rc' = aux_rec rc in
      if rc' == rc then c
      else mkCoFix (i, rc')
    | _ -> Constr.map aux c
  and aux_rec ((nas, tys, bds) as rc) =
    let nas' = Array.Smart.map (fun na -> nf_binder_annot frel na) nas in
    let tys' = Array.Smart.map aux tys in
    let bds' = Array.Smart.map aux bds in
    if nas' == nas && tys' == tys && bds' == bds then rc
    else (nas', tys', bds')
  and aux_ctx ((nas, c) as p) =
    let nas' = Array.Smart.map (fun na -> nf_binder_annot frel na) nas in
    let c' = aux c in
    if nas' == nas && c' == c then p
    else (nas', c')
  in
  aux c

let pr_universe_subst prl =
  let open Pp in
  Level.Map.pr prl (fun u -> str" := " ++ Universe.pr prl u ++ spc ())
OCaml

Innovation. Community. Security.