package sklearn

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file Neural_network.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
let () = Wrap_utils.init ();;
let __wrap_namespace = Py.import "sklearn.neural_network"

let get_py name = Py.Module.get __wrap_namespace name
module BernoulliRBM = struct
type tag = [`BernoulliRBM]
type t = [`BaseEstimator | `BernoulliRBM | `Object | `TransformerMixin] Obj.t
let of_pyobject x = ((Obj.of_pyobject x) : t)
let to_pyobject x = Obj.to_pyobject x
let as_transformer x = (x :> [`TransformerMixin] Obj.t)
let as_estimator x = (x :> [`BaseEstimator] Obj.t)
let create ?n_components ?learning_rate ?batch_size ?n_iter ?verbose ?random_state () =
   Py.Module.get_function_with_keywords __wrap_namespace "BernoulliRBM"
     [||]
     (Wrap_utils.keyword_args [("n_components", Wrap_utils.Option.map n_components Py.Int.of_int); ("learning_rate", Wrap_utils.Option.map learning_rate Py.Float.of_float); ("batch_size", Wrap_utils.Option.map batch_size Py.Int.of_int); ("n_iter", Wrap_utils.Option.map n_iter Py.Int.of_int); ("verbose", Wrap_utils.Option.map verbose Py.Int.of_int); ("random_state", Wrap_utils.Option.map random_state Py.Int.of_int)])
     |> of_pyobject
let fit ?y ~x self =
   Py.Module.get_function_with_keywords (to_pyobject self) "fit"
     [||]
     (Wrap_utils.keyword_args [("y", y); ("X", Some(x |> Np.Obj.to_pyobject))])
     |> of_pyobject
let fit_transform ?y ?fit_params ~x self =
   Py.Module.get_function_with_keywords (to_pyobject self) "fit_transform"
     [||]
     (List.rev_append (Wrap_utils.keyword_args [("y", Wrap_utils.Option.map y Np.Obj.to_pyobject); ("X", Some(x |> Np.Obj.to_pyobject))]) (match fit_params with None -> [] | Some x -> x))
     |> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let get_params ?deep self =
   Py.Module.get_function_with_keywords (to_pyobject self) "get_params"
     [||]
     (Wrap_utils.keyword_args [("deep", Wrap_utils.Option.map deep Py.Bool.of_bool)])
     |> Dict.of_pyobject
let gibbs ~v self =
   Py.Module.get_function_with_keywords (to_pyobject self) "gibbs"
     [||]
     (Wrap_utils.keyword_args [("v", Some(v |> Np.Obj.to_pyobject))])
     |> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let partial_fit ?y ~x self =
   Py.Module.get_function_with_keywords (to_pyobject self) "partial_fit"
     [||]
     (Wrap_utils.keyword_args [("y", y); ("X", Some(x |> Np.Obj.to_pyobject))])
     |> of_pyobject
let score_samples ~x self =
   Py.Module.get_function_with_keywords (to_pyobject self) "score_samples"
     [||]
     (Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
     |> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let set_params ?params self =
   Py.Module.get_function_with_keywords (to_pyobject self) "set_params"
     [||]
     (match params with None -> [] | Some x -> x)
     |> of_pyobject
let transform ~x self =
   Py.Module.get_function_with_keywords (to_pyobject self) "transform"
     [||]
     (Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
     |> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))

let intercept_hidden_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "intercept_hidden_" with
  | None -> failwith "attribute intercept_hidden_ not found"
  | Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)

let intercept_hidden_ self = match intercept_hidden_opt self with
  | None -> raise Not_found
  | Some x -> x

let intercept_visible_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "intercept_visible_" with
  | None -> failwith "attribute intercept_visible_ not found"
  | Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)

let intercept_visible_ self = match intercept_visible_opt self with
  | None -> raise Not_found
  | Some x -> x

let components_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "components_" with
  | None -> failwith "attribute components_ not found"
  | Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)

let components_ self = match components_opt self with
  | None -> raise Not_found
  | Some x -> x

let h_samples_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "h_samples_" with
  | None -> failwith "attribute h_samples_ not found"
  | Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)

let h_samples_ self = match h_samples_opt self with
  | None -> raise Not_found
  | Some x -> x
let to_string self = Py.Object.to_string (to_pyobject self)
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)

end
module MLPClassifier = struct
type tag = [`MLPClassifier]
type t = [`BaseEstimator | `BaseMultilayerPerceptron | `ClassifierMixin | `MLPClassifier | `Object] Obj.t
let of_pyobject x = ((Obj.of_pyobject x) : t)
let to_pyobject x = Obj.to_pyobject x
let as_classifier x = (x :> [`ClassifierMixin] Obj.t)
let as_estimator x = (x :> [`BaseEstimator] Obj.t)
let as_multilayer_perceptron x = (x :> [`BaseMultilayerPerceptron] Obj.t)
                  let create ?hidden_layer_sizes ?activation ?solver ?alpha ?batch_size ?learning_rate ?learning_rate_init ?power_t ?max_iter ?shuffle ?random_state ?tol ?verbose ?warm_start ?momentum ?nesterovs_momentum ?early_stopping ?validation_fraction ?beta_1 ?beta_2 ?epsilon ?n_iter_no_change ?max_fun () =
                     Py.Module.get_function_with_keywords __wrap_namespace "MLPClassifier"
                       [||]
                       (Wrap_utils.keyword_args [("hidden_layer_sizes", hidden_layer_sizes); ("activation", Wrap_utils.Option.map activation (function
| `Identity -> Py.String.of_string "identity"
| `Logistic -> Py.String.of_string "logistic"
| `Tanh -> Py.String.of_string "tanh"
| `Relu -> Py.String.of_string "relu"
)); ("solver", Wrap_utils.Option.map solver (function
| `Lbfgs -> Py.String.of_string "lbfgs"
| `Sgd -> Py.String.of_string "sgd"
| `Adam -> Py.String.of_string "adam"
)); ("alpha", Wrap_utils.Option.map alpha Py.Float.of_float); ("batch_size", Wrap_utils.Option.map batch_size Py.Int.of_int); ("learning_rate", Wrap_utils.Option.map learning_rate (function
| `Constant -> Py.String.of_string "constant"
| `Invscaling -> Py.String.of_string "invscaling"
| `Adaptive -> Py.String.of_string "adaptive"
)); ("learning_rate_init", Wrap_utils.Option.map learning_rate_init Py.Float.of_float); ("power_t", Wrap_utils.Option.map power_t Py.Float.of_float); ("max_iter", Wrap_utils.Option.map max_iter Py.Int.of_int); ("shuffle", Wrap_utils.Option.map shuffle Py.Bool.of_bool); ("random_state", Wrap_utils.Option.map random_state Py.Int.of_int); ("tol", Wrap_utils.Option.map tol Py.Float.of_float); ("verbose", Wrap_utils.Option.map verbose Py.Int.of_int); ("warm_start", Wrap_utils.Option.map warm_start Py.Bool.of_bool); ("momentum", Wrap_utils.Option.map momentum Py.Float.of_float); ("nesterovs_momentum", Wrap_utils.Option.map nesterovs_momentum Py.Bool.of_bool); ("early_stopping", Wrap_utils.Option.map early_stopping Py.Bool.of_bool); ("validation_fraction", Wrap_utils.Option.map validation_fraction Py.Float.of_float); ("beta_1", Wrap_utils.Option.map beta_1 Py.Float.of_float); ("beta_2", Wrap_utils.Option.map beta_2 Py.Float.of_float); ("epsilon", Wrap_utils.Option.map epsilon Py.Float.of_float); ("n_iter_no_change", Wrap_utils.Option.map n_iter_no_change Py.Int.of_int); ("max_fun", Wrap_utils.Option.map max_fun Py.Int.of_int)])
                       |> of_pyobject
let fit ~x ~y self =
   Py.Module.get_function_with_keywords (to_pyobject self) "fit"
     [||]
     (Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject)); ("y", Some(y |> Np.Obj.to_pyobject))])
     |> of_pyobject
let get_params ?deep self =
   Py.Module.get_function_with_keywords (to_pyobject self) "get_params"
     [||]
     (Wrap_utils.keyword_args [("deep", Wrap_utils.Option.map deep Py.Bool.of_bool)])
     |> Dict.of_pyobject
let partial_fit ?classes ~x ~y self =
   Py.Module.get_function_with_keywords (to_pyobject self) "partial_fit"
     [||]
     (Wrap_utils.keyword_args [("classes", classes); ("X", Some(x )); ("y", Some(y ))])
     |> of_pyobject
let predict ~x self =
   Py.Module.get_function_with_keywords (to_pyobject self) "predict"
     [||]
     (Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
     |> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let predict_log_proba ~x self =
   Py.Module.get_function_with_keywords (to_pyobject self) "predict_log_proba"
     [||]
     (Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
     |> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let predict_proba ~x self =
   Py.Module.get_function_with_keywords (to_pyobject self) "predict_proba"
     [||]
     (Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
     |> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let score ?sample_weight ~x ~y self =
   Py.Module.get_function_with_keywords (to_pyobject self) "score"
     [||]
     (Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Np.Obj.to_pyobject); ("X", Some(x |> Np.Obj.to_pyobject)); ("y", Some(y |> Np.Obj.to_pyobject))])
     |> Py.Float.to_float
let set_params ?params self =
   Py.Module.get_function_with_keywords (to_pyobject self) "set_params"
     [||]
     (match params with None -> [] | Some x -> x)
     |> of_pyobject

let classes_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "classes_" with
  | None -> failwith "attribute classes_ not found"
  | Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)

let classes_ self = match classes_opt self with
  | None -> raise Not_found
  | Some x -> x

let loss_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "loss_" with
  | None -> failwith "attribute loss_ not found"
  | Some x -> if Py.is_none x then None else Some (Py.Float.to_float x)

let loss_ self = match loss_opt self with
  | None -> raise Not_found
  | Some x -> x

let coefs_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "coefs_" with
  | None -> failwith "attribute coefs_ not found"
  | Some x -> if Py.is_none x then None else Some (Wrap_utils.id x)

let coefs_ self = match coefs_opt self with
  | None -> raise Not_found
  | Some x -> x

let intercepts_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "intercepts_" with
  | None -> failwith "attribute intercepts_ not found"
  | Some x -> if Py.is_none x then None else Some (Wrap_utils.id x)

let intercepts_ self = match intercepts_opt self with
  | None -> raise Not_found
  | Some x -> x

let n_iter_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "n_iter_" with
  | None -> failwith "attribute n_iter_ not found"
  | Some x -> if Py.is_none x then None else Some (Py.Int.to_int x)

let n_iter_ self = match n_iter_opt self with
  | None -> raise Not_found
  | Some x -> x

let n_layers_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "n_layers_" with
  | None -> failwith "attribute n_layers_ not found"
  | Some x -> if Py.is_none x then None else Some (Py.Int.to_int x)

let n_layers_ self = match n_layers_opt self with
  | None -> raise Not_found
  | Some x -> x

let n_outputs_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "n_outputs_" with
  | None -> failwith "attribute n_outputs_ not found"
  | Some x -> if Py.is_none x then None else Some (Py.Int.to_int x)

let n_outputs_ self = match n_outputs_opt self with
  | None -> raise Not_found
  | Some x -> x

let out_activation_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "out_activation_" with
  | None -> failwith "attribute out_activation_ not found"
  | Some x -> if Py.is_none x then None else Some (Py.String.to_string x)

let out_activation_ self = match out_activation_opt self with
  | None -> raise Not_found
  | Some x -> x
let to_string self = Py.Object.to_string (to_pyobject self)
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)

end
module MLPRegressor = struct
type tag = [`MLPRegressor]
type t = [`BaseEstimator | `BaseMultilayerPerceptron | `MLPRegressor | `Object | `RegressorMixin] Obj.t
let of_pyobject x = ((Obj.of_pyobject x) : t)
let to_pyobject x = Obj.to_pyobject x
let as_regressor x = (x :> [`RegressorMixin] Obj.t)
let as_estimator x = (x :> [`BaseEstimator] Obj.t)
let as_multilayer_perceptron x = (x :> [`BaseMultilayerPerceptron] Obj.t)
                  let create ?hidden_layer_sizes ?activation ?solver ?alpha ?batch_size ?learning_rate ?learning_rate_init ?power_t ?max_iter ?shuffle ?random_state ?tol ?verbose ?warm_start ?momentum ?nesterovs_momentum ?early_stopping ?validation_fraction ?beta_1 ?beta_2 ?epsilon ?n_iter_no_change ?max_fun () =
                     Py.Module.get_function_with_keywords __wrap_namespace "MLPRegressor"
                       [||]
                       (Wrap_utils.keyword_args [("hidden_layer_sizes", hidden_layer_sizes); ("activation", Wrap_utils.Option.map activation (function
| `Identity -> Py.String.of_string "identity"
| `Logistic -> Py.String.of_string "logistic"
| `Tanh -> Py.String.of_string "tanh"
| `Relu -> Py.String.of_string "relu"
)); ("solver", Wrap_utils.Option.map solver (function
| `Lbfgs -> Py.String.of_string "lbfgs"
| `Sgd -> Py.String.of_string "sgd"
| `Adam -> Py.String.of_string "adam"
)); ("alpha", Wrap_utils.Option.map alpha Py.Float.of_float); ("batch_size", Wrap_utils.Option.map batch_size Py.Int.of_int); ("learning_rate", Wrap_utils.Option.map learning_rate (function
| `Constant -> Py.String.of_string "constant"
| `Invscaling -> Py.String.of_string "invscaling"
| `Adaptive -> Py.String.of_string "adaptive"
)); ("learning_rate_init", Wrap_utils.Option.map learning_rate_init Py.Float.of_float); ("power_t", Wrap_utils.Option.map power_t Py.Float.of_float); ("max_iter", Wrap_utils.Option.map max_iter Py.Int.of_int); ("shuffle", Wrap_utils.Option.map shuffle Py.Bool.of_bool); ("random_state", Wrap_utils.Option.map random_state Py.Int.of_int); ("tol", Wrap_utils.Option.map tol Py.Float.of_float); ("verbose", Wrap_utils.Option.map verbose Py.Int.of_int); ("warm_start", Wrap_utils.Option.map warm_start Py.Bool.of_bool); ("momentum", Wrap_utils.Option.map momentum Py.Float.of_float); ("nesterovs_momentum", Wrap_utils.Option.map nesterovs_momentum Py.Bool.of_bool); ("early_stopping", Wrap_utils.Option.map early_stopping Py.Bool.of_bool); ("validation_fraction", Wrap_utils.Option.map validation_fraction Py.Float.of_float); ("beta_1", Wrap_utils.Option.map beta_1 Py.Float.of_float); ("beta_2", Wrap_utils.Option.map beta_2 Py.Float.of_float); ("epsilon", Wrap_utils.Option.map epsilon Py.Float.of_float); ("n_iter_no_change", Wrap_utils.Option.map n_iter_no_change Py.Int.of_int); ("max_fun", Wrap_utils.Option.map max_fun Py.Int.of_int)])
                       |> of_pyobject
let fit ~x ~y self =
   Py.Module.get_function_with_keywords (to_pyobject self) "fit"
     [||]
     (Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject)); ("y", Some(y |> Np.Obj.to_pyobject))])
     |> of_pyobject
let get_params ?deep self =
   Py.Module.get_function_with_keywords (to_pyobject self) "get_params"
     [||]
     (Wrap_utils.keyword_args [("deep", Wrap_utils.Option.map deep Py.Bool.of_bool)])
     |> Dict.of_pyobject
let partial_fit ~x ~y self =
   Py.Module.get_function_with_keywords (to_pyobject self) "partial_fit"
     [||]
     (Wrap_utils.keyword_args [("X", Some(x )); ("y", Some(y ))])
     |> of_pyobject
let predict ~x self =
   Py.Module.get_function_with_keywords (to_pyobject self) "predict"
     [||]
     (Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
     |> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let score ?sample_weight ~x ~y self =
   Py.Module.get_function_with_keywords (to_pyobject self) "score"
     [||]
     (Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Np.Obj.to_pyobject); ("X", Some(x |> Np.Obj.to_pyobject)); ("y", Some(y |> Np.Obj.to_pyobject))])
     |> Py.Float.to_float
let set_params ?params self =
   Py.Module.get_function_with_keywords (to_pyobject self) "set_params"
     [||]
     (match params with None -> [] | Some x -> x)
     |> of_pyobject

let loss_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "loss_" with
  | None -> failwith "attribute loss_ not found"
  | Some x -> if Py.is_none x then None else Some (Py.Float.to_float x)

let loss_ self = match loss_opt self with
  | None -> raise Not_found
  | Some x -> x

let coefs_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "coefs_" with
  | None -> failwith "attribute coefs_ not found"
  | Some x -> if Py.is_none x then None else Some (Wrap_utils.id x)

let coefs_ self = match coefs_opt self with
  | None -> raise Not_found
  | Some x -> x

let intercepts_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "intercepts_" with
  | None -> failwith "attribute intercepts_ not found"
  | Some x -> if Py.is_none x then None else Some (Wrap_utils.id x)

let intercepts_ self = match intercepts_opt self with
  | None -> raise Not_found
  | Some x -> x

let n_iter_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "n_iter_" with
  | None -> failwith "attribute n_iter_ not found"
  | Some x -> if Py.is_none x then None else Some (Py.Int.to_int x)

let n_iter_ self = match n_iter_opt self with
  | None -> raise Not_found
  | Some x -> x

let n_layers_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "n_layers_" with
  | None -> failwith "attribute n_layers_ not found"
  | Some x -> if Py.is_none x then None else Some (Py.Int.to_int x)

let n_layers_ self = match n_layers_opt self with
  | None -> raise Not_found
  | Some x -> x

let n_outputs_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "n_outputs_" with
  | None -> failwith "attribute n_outputs_ not found"
  | Some x -> if Py.is_none x then None else Some (Py.Int.to_int x)

let n_outputs_ self = match n_outputs_opt self with
  | None -> raise Not_found
  | Some x -> x

let out_activation_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "out_activation_" with
  | None -> failwith "attribute out_activation_ not found"
  | Some x -> if Py.is_none x then None else Some (Py.String.to_string x)

let out_activation_ self = match out_activation_opt self with
  | None -> raise Not_found
  | Some x -> x
let to_string self = Py.Object.to_string (to_pyobject self)
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)

end
OCaml

Innovation. Community. Security.