Source file Multioutput.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
let () = Wrap_utils.init ();;
let __wrap_namespace = Py.import "sklearn.multioutput"
let get_py name = Py.Module.get __wrap_namespace name
module ClassifierChain = struct
type tag = [`ClassifierChain]
type t = [`BaseEstimator | `ClassifierChain | `ClassifierMixin | `MetaEstimatorMixin | `Object] Obj.t
let of_pyobject x = ((Obj.of_pyobject x) : t)
let to_pyobject x = Obj.to_pyobject x
let as_classifier x = (x :> [`ClassifierMixin] Obj.t)
let as_estimator x = (x :> [`BaseEstimator] Obj.t)
let as_meta_estimator x = (x :> [`MetaEstimatorMixin] Obj.t)
let create ?order ?cv ?random_state ~base_estimator () =
Py.Module.get_function_with_keywords __wrap_namespace "ClassifierChain"
[||]
(Wrap_utils.keyword_args [("order", Wrap_utils.Option.map order (function
| `Arr x -> Np.Obj.to_pyobject x
| `Random -> Py.String.of_string "random"
)); ("cv", Wrap_utils.Option.map cv (function
| `Arr x -> Np.Obj.to_pyobject x
| `BaseCrossValidator x -> Np.Obj.to_pyobject x
| `I x -> Py.Int.of_int x
)); ("random_state", Wrap_utils.Option.map random_state Py.Int.of_int); ("base_estimator", Some(base_estimator |> Np.Obj.to_pyobject))])
|> of_pyobject
let decision_function ~x self =
Py.Module.get_function_with_keywords (to_pyobject self) "decision_function"
[||]
(Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
|> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let fit ~x ~y self =
Py.Module.get_function_with_keywords (to_pyobject self) "fit"
[||]
(Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject)); ("Y", Some(y |> Np.Obj.to_pyobject))])
|> of_pyobject
let get_params ?deep self =
Py.Module.get_function_with_keywords (to_pyobject self) "get_params"
[||]
(Wrap_utils.keyword_args [("deep", Wrap_utils.Option.map deep Py.Bool.of_bool)])
|> Dict.of_pyobject
let predict ~x self =
Py.Module.get_function_with_keywords (to_pyobject self) "predict"
[||]
(Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
|> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let predict_proba ~x self =
Py.Module.get_function_with_keywords (to_pyobject self) "predict_proba"
[||]
(Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
|> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let score ?sample_weight ~x ~y self =
Py.Module.get_function_with_keywords (to_pyobject self) "score"
[||]
(Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Np.Obj.to_pyobject); ("X", Some(x |> Np.Obj.to_pyobject)); ("y", Some(y |> Np.Obj.to_pyobject))])
|> Py.Float.to_float
let set_params ?params self =
Py.Module.get_function_with_keywords (to_pyobject self) "set_params"
[||]
(match params with None -> [] | Some x -> x)
|> of_pyobject
let classes_opt self =
match Py.Object.get_attr_string (to_pyobject self) "classes_" with
| None -> failwith "attribute classes_ not found"
| Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)
let classes_ self = match classes_opt self with
| None -> raise Not_found
| Some x -> x
let estimators_opt self =
match Py.Object.get_attr_string (to_pyobject self) "estimators_" with
| None -> failwith "attribute estimators_ not found"
| Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)
let estimators_ self = match estimators_opt self with
| None -> raise Not_found
| Some x -> x
let order_opt self =
match Py.Object.get_attr_string (to_pyobject self) "order_" with
| None -> failwith "attribute order_ not found"
| Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)
let order_ self = match order_opt self with
| None -> raise Not_found
| Some x -> x
let to_string self = Py.Object.to_string (to_pyobject self)
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)
end
module MultiOutputClassifier = struct
type tag = [`MultiOutputClassifier]
type t = [`BaseEstimator | `ClassifierMixin | `MetaEstimatorMixin | `MultiOutputClassifier | `Object] Obj.t
let of_pyobject x = ((Obj.of_pyobject x) : t)
let to_pyobject x = Obj.to_pyobject x
let as_classifier x = (x :> [`ClassifierMixin] Obj.t)
let as_estimator x = (x :> [`BaseEstimator] Obj.t)
let as_meta_estimator x = (x :> [`MetaEstimatorMixin] Obj.t)
let create ?n_jobs ~estimator () =
Py.Module.get_function_with_keywords __wrap_namespace "MultiOutputClassifier"
[||]
(Wrap_utils.keyword_args [("n_jobs", Wrap_utils.Option.map n_jobs Py.Int.of_int); ("estimator", Some(estimator |> Np.Obj.to_pyobject))])
|> of_pyobject
let fit ?sample_weight ~x ~y self =
Py.Module.get_function_with_keywords (to_pyobject self) "fit"
[||]
(Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Np.Obj.to_pyobject); ("X", Some(x |> Np.Obj.to_pyobject)); ("Y", Some(y |> Np.Obj.to_pyobject))])
|> of_pyobject
let get_params ?deep self =
Py.Module.get_function_with_keywords (to_pyobject self) "get_params"
[||]
(Wrap_utils.keyword_args [("deep", Wrap_utils.Option.map deep Py.Bool.of_bool)])
|> Dict.of_pyobject
let partial_fit ?classes ?sample_weight ~x ~y self =
Py.Module.get_function_with_keywords (to_pyobject self) "partial_fit"
[||]
(Wrap_utils.keyword_args [("classes", Wrap_utils.Option.map classes (fun ml -> Py.List.of_list_map Np.Obj.to_pyobject ml)); ("sample_weight", Wrap_utils.Option.map sample_weight Np.Obj.to_pyobject); ("X", Some(x |> Np.Obj.to_pyobject)); ("y", Some(y |> Np.Obj.to_pyobject))])
|> of_pyobject
let predict ~x self =
Py.Module.get_function_with_keywords (to_pyobject self) "predict"
[||]
(Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
|> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let score ~x ~y self =
Py.Module.get_function_with_keywords (to_pyobject self) "score"
[||]
(Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject)); ("y", Some(y |> Np.Obj.to_pyobject))])
|> Py.Float.to_float
let set_params ?params self =
Py.Module.get_function_with_keywords (to_pyobject self) "set_params"
[||]
(match params with None -> [] | Some x -> x)
|> of_pyobject
let estimators_opt self =
match Py.Object.get_attr_string (to_pyobject self) "estimators_" with
| None -> failwith "attribute estimators_ not found"
| Some x -> if Py.is_none x then None else Some (Wrap_utils.id x)
let estimators_ self = match estimators_opt self with
| None -> raise Not_found
| Some x -> x
let to_string self = Py.Object.to_string (to_pyobject self)
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)
end
module MultiOutputEstimator = struct
type tag = [`MultiOutputEstimator]
type t = [`BaseEstimator | `MetaEstimatorMixin | `MultiOutputEstimator | `Object] Obj.t
let of_pyobject x = ((Obj.of_pyobject x) : t)
let to_pyobject x = Obj.to_pyobject x
let as_estimator x = (x :> [`BaseEstimator] Obj.t)
let as_meta_estimator x = (x :> [`MetaEstimatorMixin] Obj.t)
let fit ?sample_weight ~x ~y self =
Py.Module.get_function_with_keywords (to_pyobject self) "fit"
[||]
(Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Np.Obj.to_pyobject); ("X", Some(x |> Np.Obj.to_pyobject)); ("y", Some(y |> Np.Obj.to_pyobject))])
|> of_pyobject
let get_params ?deep self =
Py.Module.get_function_with_keywords (to_pyobject self) "get_params"
[||]
(Wrap_utils.keyword_args [("deep", Wrap_utils.Option.map deep Py.Bool.of_bool)])
|> Dict.of_pyobject
let partial_fit ?classes ?sample_weight ~x ~y self =
Py.Module.get_function_with_keywords (to_pyobject self) "partial_fit"
[||]
(Wrap_utils.keyword_args [("classes", Wrap_utils.Option.map classes (fun ml -> Py.List.of_list_map Np.Obj.to_pyobject ml)); ("sample_weight", Wrap_utils.Option.map sample_weight Np.Obj.to_pyobject); ("X", Some(x |> Np.Obj.to_pyobject)); ("y", Some(y |> Np.Obj.to_pyobject))])
|> of_pyobject
let predict ~x self =
Py.Module.get_function_with_keywords (to_pyobject self) "predict"
[||]
(Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
|> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let set_params ?params self =
Py.Module.get_function_with_keywords (to_pyobject self) "set_params"
[||]
(match params with None -> [] | Some x -> x)
|> of_pyobject
let to_string self = Py.Object.to_string (to_pyobject self)
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)
end
module MultiOutputRegressor = struct
type tag = [`MultiOutputRegressor]
type t = [`BaseEstimator | `MetaEstimatorMixin | `MultiOutputRegressor | `Object | `RegressorMixin] Obj.t
let of_pyobject x = ((Obj.of_pyobject x) : t)
let to_pyobject x = Obj.to_pyobject x
let as_regressor x = (x :> [`RegressorMixin] Obj.t)
let as_estimator x = (x :> [`BaseEstimator] Obj.t)
let as_meta_estimator x = (x :> [`MetaEstimatorMixin] Obj.t)
let create ?n_jobs ~estimator () =
Py.Module.get_function_with_keywords __wrap_namespace "MultiOutputRegressor"
[||]
(Wrap_utils.keyword_args [("n_jobs", Wrap_utils.Option.map n_jobs Py.Int.of_int); ("estimator", Some(estimator |> Np.Obj.to_pyobject))])
|> of_pyobject
let fit ?sample_weight ~x ~y self =
Py.Module.get_function_with_keywords (to_pyobject self) "fit"
[||]
(Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Np.Obj.to_pyobject); ("X", Some(x |> Np.Obj.to_pyobject)); ("y", Some(y |> Np.Obj.to_pyobject))])
|> of_pyobject
let get_params ?deep self =
Py.Module.get_function_with_keywords (to_pyobject self) "get_params"
[||]
(Wrap_utils.keyword_args [("deep", Wrap_utils.Option.map deep Py.Bool.of_bool)])
|> Dict.of_pyobject
let partial_fit ?sample_weight ~x ~y self =
Py.Module.get_function_with_keywords (to_pyobject self) "partial_fit"
[||]
(Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Np.Obj.to_pyobject); ("X", Some(x |> Np.Obj.to_pyobject)); ("y", Some(y |> Np.Obj.to_pyobject))])
|> of_pyobject
let predict ~x self =
Py.Module.get_function_with_keywords (to_pyobject self) "predict"
[||]
(Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
|> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let score ?sample_weight ~x ~y self =
Py.Module.get_function_with_keywords (to_pyobject self) "score"
[||]
(Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Np.Obj.to_pyobject); ("X", Some(x |> Np.Obj.to_pyobject)); ("y", Some(y |> Np.Obj.to_pyobject))])
|> Py.Float.to_float
let set_params ?params self =
Py.Module.get_function_with_keywords (to_pyobject self) "set_params"
[||]
(match params with None -> [] | Some x -> x)
|> of_pyobject
let estimators_opt self =
match Py.Object.get_attr_string (to_pyobject self) "estimators_" with
| None -> failwith "attribute estimators_ not found"
| Some x -> if Py.is_none x then None else Some (Wrap_utils.id x)
let estimators_ self = match estimators_opt self with
| None -> raise Not_found
| Some x -> x
let to_string self = Py.Object.to_string (to_pyobject self)
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)
end
module RegressorChain = struct
type tag = [`RegressorChain]
type t = [`BaseEstimator | `MetaEstimatorMixin | `Object | `RegressorChain | `RegressorMixin] Obj.t
let of_pyobject x = ((Obj.of_pyobject x) : t)
let to_pyobject x = Obj.to_pyobject x
let as_regressor x = (x :> [`RegressorMixin] Obj.t)
let as_estimator x = (x :> [`BaseEstimator] Obj.t)
let as_meta_estimator x = (x :> [`MetaEstimatorMixin] Obj.t)
let create ?order ?cv ?random_state ~base_estimator () =
Py.Module.get_function_with_keywords __wrap_namespace "RegressorChain"
[||]
(Wrap_utils.keyword_args [("order", Wrap_utils.Option.map order (function
| `Arr x -> Np.Obj.to_pyobject x
| `Random -> Py.String.of_string "random"
)); ("cv", Wrap_utils.Option.map cv (function
| `Arr x -> Np.Obj.to_pyobject x
| `BaseCrossValidator x -> Np.Obj.to_pyobject x
| `I x -> Py.Int.of_int x
)); ("random_state", Wrap_utils.Option.map random_state Py.Int.of_int); ("base_estimator", Some(base_estimator |> Np.Obj.to_pyobject))])
|> of_pyobject
let fit ~x ~y self =
Py.Module.get_function_with_keywords (to_pyobject self) "fit"
[||]
(Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject)); ("Y", Some(y |> Np.Obj.to_pyobject))])
|> of_pyobject
let get_params ?deep self =
Py.Module.get_function_with_keywords (to_pyobject self) "get_params"
[||]
(Wrap_utils.keyword_args [("deep", Wrap_utils.Option.map deep Py.Bool.of_bool)])
|> Dict.of_pyobject
let predict ~x self =
Py.Module.get_function_with_keywords (to_pyobject self) "predict"
[||]
(Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
|> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let score ?sample_weight ~x ~y self =
Py.Module.get_function_with_keywords (to_pyobject self) "score"
[||]
(Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Np.Obj.to_pyobject); ("X", Some(x |> Np.Obj.to_pyobject)); ("y", Some(y |> Np.Obj.to_pyobject))])
|> Py.Float.to_float
let set_params ?params self =
Py.Module.get_function_with_keywords (to_pyobject self) "set_params"
[||]
(match params with None -> [] | Some x -> x)
|> of_pyobject
let estimators_opt self =
match Py.Object.get_attr_string (to_pyobject self) "estimators_" with
| None -> failwith "attribute estimators_ not found"
| Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)
let estimators_ self = match estimators_opt self with
| None -> raise Not_found
| Some x -> x
let order_opt self =
match Py.Object.get_attr_string (to_pyobject self) "order_" with
| None -> failwith "attribute order_ not found"
| Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)
let order_ self = match order_opt self with
| None -> raise Not_found
| Some x -> x
let to_string self = Py.Object.to_string (to_pyobject self)
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)
end
let abstractmethod funcobj =
Py.Module.get_function_with_keywords __wrap_namespace "abstractmethod"
[||]
(Wrap_utils.keyword_args [("funcobj", Some(funcobj ))])
let check_X_y ?accept_sparse ?accept_large_sparse ?dtype ?order ?copy ?force_all_finite ?ensure_2d ?allow_nd ?multi_output ?ensure_min_samples ?ensure_min_features ?y_numeric ?warn_on_dtype ?estimator ~x ~y () =
Py.Module.get_function_with_keywords __wrap_namespace "check_X_y"
[||]
(Wrap_utils.keyword_args [("accept_sparse", Wrap_utils.Option.map accept_sparse (function
| `StringList x -> (Py.List.of_list_map Py.String.of_string) x
| `S x -> Py.String.of_string x
| `Bool x -> Py.Bool.of_bool x
)); ("accept_large_sparse", Wrap_utils.Option.map accept_large_sparse Py.Bool.of_bool); ("dtype", Wrap_utils.Option.map dtype (function
| `S x -> Py.String.of_string x
| `Dtype x -> Np.Dtype.to_pyobject x
| `Dtypes x -> (fun ml -> Py.List.of_list_map Np.Dtype.to_pyobject ml) x
| `None -> Py.none
)); ("order", Wrap_utils.Option.map order (function
| `F -> Py.String.of_string "F"
| `C -> Py.String.of_string "C"
)); ("copy", Wrap_utils.Option.map copy Py.Bool.of_bool); ("force_all_finite", Wrap_utils.Option.map force_all_finite (function
| `Allow_nan -> Py.String.of_string "allow-nan"
| `Bool x -> Py.Bool.of_bool x
)); ("ensure_2d", Wrap_utils.Option.map ensure_2d Py.Bool.of_bool); ("allow_nd", Wrap_utils.Option.map allow_nd Py.Bool.of_bool); ("multi_output", Wrap_utils.Option.map multi_output Py.Bool.of_bool); ("ensure_min_samples", Wrap_utils.Option.map ensure_min_samples Py.Int.of_int); ("ensure_min_features", Wrap_utils.Option.map ensure_min_features Py.Int.of_int); ("y_numeric", Wrap_utils.Option.map y_numeric Py.Bool.of_bool); ("warn_on_dtype", Wrap_utils.Option.map warn_on_dtype Py.Bool.of_bool); ("estimator", Wrap_utils.Option.map estimator Np.Obj.to_pyobject); ("X", Some(x |> Np.Obj.to_pyobject)); ("y", Some(y |> Np.Obj.to_pyobject))])
|> (fun x -> ((Wrap_utils.id (Py.Tuple.get x 0)), (Wrap_utils.id (Py.Tuple.get x 1))))
let check_array ?accept_sparse ?accept_large_sparse ?dtype ?order ?copy ?force_all_finite ?ensure_2d ?allow_nd ?ensure_min_samples ?ensure_min_features ?warn_on_dtype ?estimator ~array () =
Py.Module.get_function_with_keywords __wrap_namespace "check_array"
[||]
(Wrap_utils.keyword_args [("accept_sparse", Wrap_utils.Option.map accept_sparse (function
| `StringList x -> (Py.List.of_list_map Py.String.of_string) x
| `S x -> Py.String.of_string x
| `Bool x -> Py.Bool.of_bool x
)); ("accept_large_sparse", Wrap_utils.Option.map accept_large_sparse Py.Bool.of_bool); ("dtype", Wrap_utils.Option.map dtype (function
| `S x -> Py.String.of_string x
| `Dtype x -> Np.Dtype.to_pyobject x
| `Dtypes x -> (fun ml -> Py.List.of_list_map Np.Dtype.to_pyobject ml) x
| `None -> Py.none
)); ("order", Wrap_utils.Option.map order (function
| `F -> Py.String.of_string "F"
| `C -> Py.String.of_string "C"
)); ("copy", Wrap_utils.Option.map copy Py.Bool.of_bool); ("force_all_finite", Wrap_utils.Option.map force_all_finite (function
| `Allow_nan -> Py.String.of_string "allow-nan"
| `Bool x -> Py.Bool.of_bool x
)); ("ensure_2d", Wrap_utils.Option.map ensure_2d Py.Bool.of_bool); ("allow_nd", Wrap_utils.Option.map allow_nd Py.Bool.of_bool); ("ensure_min_samples", Wrap_utils.Option.map ensure_min_samples Py.Int.of_int); ("ensure_min_features", Wrap_utils.Option.map ensure_min_features Py.Int.of_int); ("warn_on_dtype", Wrap_utils.Option.map warn_on_dtype Py.Bool.of_bool); ("estimator", Wrap_utils.Option.map estimator Np.Obj.to_pyobject); ("array", Some(array ))])
let check_classification_targets y =
Py.Module.get_function_with_keywords __wrap_namespace "check_classification_targets"
[||]
(Wrap_utils.keyword_args [("y", Some(y |> Np.Obj.to_pyobject))])
let check_is_fitted ?attributes ?msg ?all_or_any ~estimator () =
Py.Module.get_function_with_keywords __wrap_namespace "check_is_fitted"
[||]
(Wrap_utils.keyword_args [("attributes", Wrap_utils.Option.map attributes (function
| `S x -> Py.String.of_string x
| `Arr x -> Np.Obj.to_pyobject x
| `StringList x -> (Py.List.of_list_map Py.String.of_string) x
)); ("msg", Wrap_utils.Option.map msg Py.String.of_string); ("all_or_any", Wrap_utils.Option.map all_or_any (function
| `Callable x -> Wrap_utils.id x
| `PyObject x -> Wrap_utils.id x
)); ("estimator", Some(estimator |> Np.Obj.to_pyobject))])
let check_random_state seed =
Py.Module.get_function_with_keywords __wrap_namespace "check_random_state"
[||]
(Wrap_utils.keyword_args [("seed", Some(seed |> (function
| `Optional x -> (function
| `I x -> Py.Int.of_int x
| `None -> Py.none
) x
| `RandomState x -> Wrap_utils.id x
)))])
let clone ?safe ~estimator () =
Py.Module.get_function_with_keywords __wrap_namespace "clone"
[||]
(Wrap_utils.keyword_args [("safe", Wrap_utils.Option.map safe Py.Bool.of_bool); ("estimator", Some(estimator |> Np.Obj.to_pyobject))])
let cross_val_predict ?y ?groups ?cv ?n_jobs ?verbose ?fit_params ?pre_dispatch ?method_ ~estimator ~x () =
Py.Module.get_function_with_keywords __wrap_namespace "cross_val_predict"
[||]
(Wrap_utils.keyword_args [("y", Wrap_utils.Option.map y Np.Obj.to_pyobject); ("groups", Wrap_utils.Option.map groups Np.Obj.to_pyobject); ("cv", Wrap_utils.Option.map cv (function
| `Arr x -> Np.Obj.to_pyobject x
| `BaseCrossValidator x -> Np.Obj.to_pyobject x
| `I x -> Py.Int.of_int x
)); ("n_jobs", Wrap_utils.Option.map n_jobs Py.Int.of_int); ("verbose", Wrap_utils.Option.map verbose Py.Int.of_int); ("fit_params", Wrap_utils.Option.map fit_params Dict.to_pyobject); ("pre_dispatch", Wrap_utils.Option.map pre_dispatch (function
| `S x -> Py.String.of_string x
| `I x -> Py.Int.of_int x
)); ("method", Wrap_utils.Option.map method_ Py.String.of_string); ("estimator", Some(estimator |> Np.Obj.to_pyobject)); ("X", Some(x |> Np.Obj.to_pyobject))])
|> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let delayed ?check_pickle ~function_ () =
Py.Module.get_function_with_keywords __wrap_namespace "delayed"
[||]
(Wrap_utils.keyword_args [("check_pickle", check_pickle); ("function", Some(function_ ))])
let has_fit_parameter ~estimator ~parameter () =
Py.Module.get_function_with_keywords __wrap_namespace "has_fit_parameter"
[||]
(Wrap_utils.keyword_args [("estimator", Some(estimator |> Np.Obj.to_pyobject)); ("parameter", Some(parameter |> Py.String.of_string))])
|> Py.Bool.to_bool
let if_delegate_has_method delegate =
Py.Module.get_function_with_keywords __wrap_namespace "if_delegate_has_method"
[||]
(Wrap_utils.keyword_args [("delegate", Some(delegate |> (function
| `S x -> Py.String.of_string x
| `StringList x -> (Py.List.of_list_map Py.String.of_string) x
)))])
let is_classifier estimator =
Py.Module.get_function_with_keywords __wrap_namespace "is_classifier"
[||]
(Wrap_utils.keyword_args [("estimator", Some(estimator |> Np.Obj.to_pyobject))])
|> Py.Bool.to_bool