package sklearn

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file Mixture.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
let () = Wrap_utils.init ();;
let __wrap_namespace = Py.import "sklearn.mixture"

let get_py name = Py.Module.get __wrap_namespace name
module BayesianGaussianMixture = struct
type tag = [`BayesianGaussianMixture]
type t = [`BaseEstimator | `BaseMixture | `BayesianGaussianMixture | `DensityMixin | `Object] Obj.t
let of_pyobject x = ((Obj.of_pyobject x) : t)
let to_pyobject x = Obj.to_pyobject x
let as_density x = (x :> [`DensityMixin] Obj.t)
let as_estimator x = (x :> [`BaseEstimator] Obj.t)
let as_mixture x = (x :> [`BaseMixture] Obj.t)
                  let create ?n_components ?covariance_type ?tol ?reg_covar ?max_iter ?n_init ?init_params ?weight_concentration_prior_type ?weight_concentration_prior ?mean_precision_prior ?mean_prior ?degrees_of_freedom_prior ?covariance_prior ?random_state ?warm_start ?verbose ?verbose_interval () =
                     Py.Module.get_function_with_keywords __wrap_namespace "BayesianGaussianMixture"
                       [||]
                       (Wrap_utils.keyword_args [("n_components", Wrap_utils.Option.map n_components Py.Int.of_int); ("covariance_type", Wrap_utils.Option.map covariance_type (function
| `Full -> Py.String.of_string "full"
| `Tied -> Py.String.of_string "tied"
| `Diag -> Py.String.of_string "diag"
| `Spherical -> Py.String.of_string "spherical"
)); ("tol", Wrap_utils.Option.map tol Py.Float.of_float); ("reg_covar", Wrap_utils.Option.map reg_covar Py.Float.of_float); ("max_iter", Wrap_utils.Option.map max_iter Py.Int.of_int); ("n_init", Wrap_utils.Option.map n_init Py.Int.of_int); ("init_params", Wrap_utils.Option.map init_params (function
| `Kmeans -> Py.String.of_string "kmeans"
| `Random -> Py.String.of_string "random"
)); ("weight_concentration_prior_type", Wrap_utils.Option.map weight_concentration_prior_type Py.String.of_string); ("weight_concentration_prior", Wrap_utils.Option.map weight_concentration_prior Py.Float.of_float); ("mean_precision_prior", Wrap_utils.Option.map mean_precision_prior Py.Float.of_float); ("mean_prior", Wrap_utils.Option.map mean_prior Np.Obj.to_pyobject); ("degrees_of_freedom_prior", Wrap_utils.Option.map degrees_of_freedom_prior Py.Float.of_float); ("covariance_prior", Wrap_utils.Option.map covariance_prior Np.Obj.to_pyobject); ("random_state", Wrap_utils.Option.map random_state Py.Int.of_int); ("warm_start", Wrap_utils.Option.map warm_start Py.Bool.of_bool); ("verbose", Wrap_utils.Option.map verbose Py.Int.of_int); ("verbose_interval", Wrap_utils.Option.map verbose_interval Py.Int.of_int)])
                       |> of_pyobject
let fit ?y ~x self =
   Py.Module.get_function_with_keywords (to_pyobject self) "fit"
     [||]
     (Wrap_utils.keyword_args [("y", y); ("X", Some(x |> Np.Obj.to_pyobject))])
     |> of_pyobject
let fit_predict ?y ~x self =
   Py.Module.get_function_with_keywords (to_pyobject self) "fit_predict"
     [||]
     (Wrap_utils.keyword_args [("y", y); ("X", Some(x |> Np.Obj.to_pyobject))])
     |> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let get_params ?deep self =
   Py.Module.get_function_with_keywords (to_pyobject self) "get_params"
     [||]
     (Wrap_utils.keyword_args [("deep", Wrap_utils.Option.map deep Py.Bool.of_bool)])
     |> Dict.of_pyobject
let predict ~x self =
   Py.Module.get_function_with_keywords (to_pyobject self) "predict"
     [||]
     (Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
     |> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let predict_proba ~x self =
   Py.Module.get_function_with_keywords (to_pyobject self) "predict_proba"
     [||]
     (Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
     |> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let sample ?n_samples self =
   Py.Module.get_function_with_keywords (to_pyobject self) "sample"
     [||]
     (Wrap_utils.keyword_args [("n_samples", Wrap_utils.Option.map n_samples Py.Int.of_int)])
     |> (fun x -> (((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) (Py.Tuple.get x 0)), ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) (Py.Tuple.get x 1))))
let score ?y ~x self =
   Py.Module.get_function_with_keywords (to_pyobject self) "score"
     [||]
     (Wrap_utils.keyword_args [("y", y); ("X", Some(x |> Np.Obj.to_pyobject))])
     |> Py.Float.to_float
let score_samples ~x self =
   Py.Module.get_function_with_keywords (to_pyobject self) "score_samples"
     [||]
     (Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
     |> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let set_params ?params self =
   Py.Module.get_function_with_keywords (to_pyobject self) "set_params"
     [||]
     (match params with None -> [] | Some x -> x)
     |> of_pyobject

let weights_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "weights_" with
  | None -> failwith "attribute weights_ not found"
  | Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)

let weights_ self = match weights_opt self with
  | None -> raise Not_found
  | Some x -> x

let means_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "means_" with
  | None -> failwith "attribute means_ not found"
  | Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)

let means_ self = match means_opt self with
  | None -> raise Not_found
  | Some x -> x

let covariances_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "covariances_" with
  | None -> failwith "attribute covariances_ not found"
  | Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)

let covariances_ self = match covariances_opt self with
  | None -> raise Not_found
  | Some x -> x

let precisions_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "precisions_" with
  | None -> failwith "attribute precisions_ not found"
  | Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)

let precisions_ self = match precisions_opt self with
  | None -> raise Not_found
  | Some x -> x

let precisions_cholesky_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "precisions_cholesky_" with
  | None -> failwith "attribute precisions_cholesky_ not found"
  | Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)

let precisions_cholesky_ self = match precisions_cholesky_opt self with
  | None -> raise Not_found
  | Some x -> x

let converged_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "converged_" with
  | None -> failwith "attribute converged_ not found"
  | Some x -> if Py.is_none x then None else Some (Py.Bool.to_bool x)

let converged_ self = match converged_opt self with
  | None -> raise Not_found
  | Some x -> x

let n_iter_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "n_iter_" with
  | None -> failwith "attribute n_iter_ not found"
  | Some x -> if Py.is_none x then None else Some (Py.Int.to_int x)

let n_iter_ self = match n_iter_opt self with
  | None -> raise Not_found
  | Some x -> x

let lower_bound_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "lower_bound_" with
  | None -> failwith "attribute lower_bound_ not found"
  | Some x -> if Py.is_none x then None else Some (Py.Float.to_float x)

let lower_bound_ self = match lower_bound_opt self with
  | None -> raise Not_found
  | Some x -> x

let weight_concentration_prior_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "weight_concentration_prior_" with
  | None -> failwith "attribute weight_concentration_prior_ not found"
  | Some x -> if Py.is_none x then None else Some (Wrap_utils.id x)

let weight_concentration_prior_ self = match weight_concentration_prior_opt self with
  | None -> raise Not_found
  | Some x -> x

let weight_concentration_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "weight_concentration_" with
  | None -> failwith "attribute weight_concentration_ not found"
  | Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)

let weight_concentration_ self = match weight_concentration_opt self with
  | None -> raise Not_found
  | Some x -> x

let mean_precision_prior_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "mean_precision_prior_" with
  | None -> failwith "attribute mean_precision_prior_ not found"
  | Some x -> if Py.is_none x then None else Some (Py.Float.to_float x)

let mean_precision_prior_ self = match mean_precision_prior_opt self with
  | None -> raise Not_found
  | Some x -> x

let mean_precision_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "mean_precision_" with
  | None -> failwith "attribute mean_precision_ not found"
  | Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)

let mean_precision_ self = match mean_precision_opt self with
  | None -> raise Not_found
  | Some x -> x

let mean_prior_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "mean_prior_" with
  | None -> failwith "attribute mean_prior_ not found"
  | Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)

let mean_prior_ self = match mean_prior_opt self with
  | None -> raise Not_found
  | Some x -> x

let degrees_of_freedom_prior_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "degrees_of_freedom_prior_" with
  | None -> failwith "attribute degrees_of_freedom_prior_ not found"
  | Some x -> if Py.is_none x then None else Some (Py.Float.to_float x)

let degrees_of_freedom_prior_ self = match degrees_of_freedom_prior_opt self with
  | None -> raise Not_found
  | Some x -> x

let degrees_of_freedom_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "degrees_of_freedom_" with
  | None -> failwith "attribute degrees_of_freedom_ not found"
  | Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)

let degrees_of_freedom_ self = match degrees_of_freedom_opt self with
  | None -> raise Not_found
  | Some x -> x

let covariance_prior_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "covariance_prior_" with
  | None -> failwith "attribute covariance_prior_ not found"
  | Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)

let covariance_prior_ self = match covariance_prior_opt self with
  | None -> raise Not_found
  | Some x -> x
let to_string self = Py.Object.to_string (to_pyobject self)
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)

end
module GaussianMixture = struct
type tag = [`GaussianMixture]
type t = [`BaseEstimator | `BaseMixture | `DensityMixin | `GaussianMixture | `Object] Obj.t
let of_pyobject x = ((Obj.of_pyobject x) : t)
let to_pyobject x = Obj.to_pyobject x
let as_density x = (x :> [`DensityMixin] Obj.t)
let as_estimator x = (x :> [`BaseEstimator] Obj.t)
let as_mixture x = (x :> [`BaseMixture] Obj.t)
                  let create ?n_components ?covariance_type ?tol ?reg_covar ?max_iter ?n_init ?init_params ?weights_init ?means_init ?precisions_init ?random_state ?warm_start ?verbose ?verbose_interval () =
                     Py.Module.get_function_with_keywords __wrap_namespace "GaussianMixture"
                       [||]
                       (Wrap_utils.keyword_args [("n_components", Wrap_utils.Option.map n_components Py.Int.of_int); ("covariance_type", Wrap_utils.Option.map covariance_type (function
| `Full -> Py.String.of_string "full"
| `Tied -> Py.String.of_string "tied"
| `Diag -> Py.String.of_string "diag"
| `Spherical -> Py.String.of_string "spherical"
)); ("tol", Wrap_utils.Option.map tol Py.Float.of_float); ("reg_covar", Wrap_utils.Option.map reg_covar Py.Float.of_float); ("max_iter", Wrap_utils.Option.map max_iter Py.Int.of_int); ("n_init", Wrap_utils.Option.map n_init Py.Int.of_int); ("init_params", Wrap_utils.Option.map init_params (function
| `Kmeans -> Py.String.of_string "kmeans"
| `Random -> Py.String.of_string "random"
)); ("weights_init", Wrap_utils.Option.map weights_init Np.Obj.to_pyobject); ("means_init", Wrap_utils.Option.map means_init Np.Obj.to_pyobject); ("precisions_init", Wrap_utils.Option.map precisions_init Np.Obj.to_pyobject); ("random_state", Wrap_utils.Option.map random_state Py.Int.of_int); ("warm_start", Wrap_utils.Option.map warm_start Py.Bool.of_bool); ("verbose", Wrap_utils.Option.map verbose Py.Int.of_int); ("verbose_interval", Wrap_utils.Option.map verbose_interval Py.Int.of_int)])
                       |> of_pyobject
let aic ~x self =
   Py.Module.get_function_with_keywords (to_pyobject self) "aic"
     [||]
     (Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
     |> Py.Float.to_float
let bic ~x self =
   Py.Module.get_function_with_keywords (to_pyobject self) "bic"
     [||]
     (Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
     |> Py.Float.to_float
let fit ?y ~x self =
   Py.Module.get_function_with_keywords (to_pyobject self) "fit"
     [||]
     (Wrap_utils.keyword_args [("y", y); ("X", Some(x |> Np.Obj.to_pyobject))])
     |> of_pyobject
let fit_predict ?y ~x self =
   Py.Module.get_function_with_keywords (to_pyobject self) "fit_predict"
     [||]
     (Wrap_utils.keyword_args [("y", y); ("X", Some(x |> Np.Obj.to_pyobject))])
     |> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let get_params ?deep self =
   Py.Module.get_function_with_keywords (to_pyobject self) "get_params"
     [||]
     (Wrap_utils.keyword_args [("deep", Wrap_utils.Option.map deep Py.Bool.of_bool)])
     |> Dict.of_pyobject
let predict ~x self =
   Py.Module.get_function_with_keywords (to_pyobject self) "predict"
     [||]
     (Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
     |> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let predict_proba ~x self =
   Py.Module.get_function_with_keywords (to_pyobject self) "predict_proba"
     [||]
     (Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
     |> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let sample ?n_samples self =
   Py.Module.get_function_with_keywords (to_pyobject self) "sample"
     [||]
     (Wrap_utils.keyword_args [("n_samples", Wrap_utils.Option.map n_samples Py.Int.of_int)])
     |> (fun x -> (((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) (Py.Tuple.get x 0)), ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) (Py.Tuple.get x 1))))
let score ?y ~x self =
   Py.Module.get_function_with_keywords (to_pyobject self) "score"
     [||]
     (Wrap_utils.keyword_args [("y", y); ("X", Some(x |> Np.Obj.to_pyobject))])
     |> Py.Float.to_float
let score_samples ~x self =
   Py.Module.get_function_with_keywords (to_pyobject self) "score_samples"
     [||]
     (Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
     |> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let set_params ?params self =
   Py.Module.get_function_with_keywords (to_pyobject self) "set_params"
     [||]
     (match params with None -> [] | Some x -> x)
     |> of_pyobject

let weights_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "weights_" with
  | None -> failwith "attribute weights_ not found"
  | Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)

let weights_ self = match weights_opt self with
  | None -> raise Not_found
  | Some x -> x

let means_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "means_" with
  | None -> failwith "attribute means_ not found"
  | Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)

let means_ self = match means_opt self with
  | None -> raise Not_found
  | Some x -> x

let covariances_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "covariances_" with
  | None -> failwith "attribute covariances_ not found"
  | Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)

let covariances_ self = match covariances_opt self with
  | None -> raise Not_found
  | Some x -> x

let precisions_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "precisions_" with
  | None -> failwith "attribute precisions_ not found"
  | Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)

let precisions_ self = match precisions_opt self with
  | None -> raise Not_found
  | Some x -> x

let precisions_cholesky_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "precisions_cholesky_" with
  | None -> failwith "attribute precisions_cholesky_ not found"
  | Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)

let precisions_cholesky_ self = match precisions_cholesky_opt self with
  | None -> raise Not_found
  | Some x -> x

let converged_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "converged_" with
  | None -> failwith "attribute converged_ not found"
  | Some x -> if Py.is_none x then None else Some (Py.Bool.to_bool x)

let converged_ self = match converged_opt self with
  | None -> raise Not_found
  | Some x -> x

let n_iter_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "n_iter_" with
  | None -> failwith "attribute n_iter_ not found"
  | Some x -> if Py.is_none x then None else Some (Py.Int.to_int x)

let n_iter_ self = match n_iter_opt self with
  | None -> raise Not_found
  | Some x -> x

let lower_bound_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "lower_bound_" with
  | None -> failwith "attribute lower_bound_ not found"
  | Some x -> if Py.is_none x then None else Some (Py.Float.to_float x)

let lower_bound_ self = match lower_bound_opt self with
  | None -> raise Not_found
  | Some x -> x
let to_string self = Py.Object.to_string (to_pyobject self)
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)

end
OCaml

Innovation. Community. Security.