Source file setExt.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
open SetExtSig
module Make(Ord: OrderedType) =
struct
type elt = Ord.t
type t = Empty | Node of {l:t; v:elt; r:t; h:int}
let height = function
Empty -> 0
| Node {h} -> h
let create l v r =
let hl = match l with Empty -> 0 | Node {h} -> h in
let hr = match r with Empty -> 0 | Node {h} -> h in
Node{l; v; r; h=(if hl >= hr then hl + 1 else hr + 1)}
let bal l v r =
let hl = match l with Empty -> 0 | Node {h} -> h in
let hr = match r with Empty -> 0 | Node {h} -> h in
if hl > hr + 2 then begin
match l with
Empty -> invalid_arg "Set.bal"
| Node{l=ll; v=lv; r=lr} ->
if height ll >= height lr then
create ll lv (create lr v r)
else begin
match lr with
Empty -> invalid_arg "Set.bal"
| Node{l=lrl; v=lrv; r=lrr}->
create (create ll lv lrl) lrv (create lrr v r)
end
end else if hr > hl + 2 then begin
match r with
Empty -> invalid_arg "Set.bal"
| Node{l=rl; v=rv; r=rr} ->
if height rr >= height rl then
create (create l v rl) rv rr
else begin
match rl with
Empty -> invalid_arg "Set.bal"
| Node{l=rll; v=rlv; r=rlr} ->
create (create l v rll) rlv (create rlr rv rr)
end
end else
Node{l; v; r; h=(if hl >= hr then hl + 1 else hr + 1)}
let rec add x = function
Empty -> Node{l=Empty; v=x; r=Empty; h=1}
| Node{l; v; r} as t ->
let c = Ord.compare x v in
if c = 0 then t else
if c < 0 then
let ll = add x l in
if l == ll then t else bal ll v r
else
let rr = add x r in
if r == rr then t else bal l v rr
let singleton x = Node{l=Empty; v=x; r=Empty; h=1}
let rec add_min_element x = function
| Empty -> singleton x
| Node {l; v; r} ->
bal (add_min_element x l) v r
let rec add_max_element x = function
| Empty -> singleton x
| Node {l; v; r} ->
bal l v (add_max_element x r)
let rec join l v r =
match (l, r) with
(Empty, _) -> add_min_element v r
| (_, Empty) -> add_max_element v l
| (Node{l=ll; v=lv; r=lr; h=lh}, Node{l=rl; v=rv; r=rr; h=rh}) ->
if lh > rh + 2 then bal ll lv (join lr v r) else
if rh > lh + 2 then bal (join l v rl) rv rr else
create l v r
let rec min_elt = function
Empty -> raise Not_found
| Node{l=Empty; v} -> v
| Node{l} -> min_elt l
let rec min_elt_opt = function
Empty -> None
| Node{l=Empty; v} -> Some v
| Node{l} -> min_elt_opt l
let rec max_elt = function
Empty -> raise Not_found
| Node{v; r=Empty} -> v
| Node{r} -> max_elt r
let rec max_elt_opt = function
Empty -> None
| Node{v; r=Empty} -> Some v
| Node{r} -> max_elt_opt r
let rec remove_min_elt = function
Empty -> invalid_arg "Set.remove_min_elt"
| Node{l=Empty; r} -> r
| Node{l; v; r} -> bal (remove_min_elt l) v r
let merge t1 t2 =
match (t1, t2) with
(Empty, t) -> t
| (t, Empty) -> t
| (_, _) -> bal t1 (min_elt t2) (remove_min_elt t2)
let concat t1 t2 =
match (t1, t2) with
(Empty, t) -> t
| (t, Empty) -> t
| (_, _) -> join t1 (min_elt t2) (remove_min_elt t2)
let rec split x = function
Empty ->
(Empty, false, Empty)
| Node{l; v; r} ->
let c = Ord.compare x v in
if c = 0 then (l, true, r)
else if c < 0 then
let (ll, pres, rl) = split x l in (ll, pres, join rl v r)
else
let (lr, pres, rr) = split x r in (join l v lr, pres, rr)
let empty = Empty
let is_empty = function Empty -> true | _ -> false
let rec mem x = function
Empty -> false
| Node{l; v; r} ->
let c = Ord.compare x v in
c = 0 || mem x (if c < 0 then l else r)
let rec remove x = function
Empty -> Empty
| (Node{l; v; r} as t) ->
let c = Ord.compare x v in
if c = 0 then merge l r
else
if c < 0 then
let ll = remove x l in
if l == ll then t
else bal ll v r
else
let rr = remove x r in
if r == rr then t
else bal l v rr
let rec union s1 s2 =
if s1 == s2 then s1 else
match (s1, s2) with
(Empty, t2) -> t2
| (t1, Empty) -> t1
| (Node{l=l1; v=v1; r=r1; h=h1}, Node{l=l2; v=v2; r=r2; h=h2}) ->
if h1 >= h2 then
if h2 = 1 then add v2 s1 else begin
let (l2, _, r2) = split v1 s2 in
join (union l1 l2) v1 (union r1 r2)
end
else
if h1 = 1 then add v1 s2 else begin
let (l1, _, r1) = split v2 s1 in
join (union l1 l2) v2 (union r1 r2)
end
let rec inter s1 s2 =
if s1 == s2 then s1 else
match (s1, s2) with
(Empty, _) -> Empty
| (_, Empty) -> Empty
| (Node{l=l1; v=v1; r=r1}, t2) ->
match split v1 t2 with
(l2, false, r2) ->
concat (inter l1 l2) (inter r1 r2)
| (l2, true, r2) ->
join (inter l1 l2) v1 (inter r1 r2)
let rec diff s1 s2 =
if s1 == s2 then Empty else
match (s1, s2) with
(Empty, _) -> Empty
| (t1, Empty) -> t1
| (Node{l=l1; v=v1; r=r1}, t2) ->
match split v1 t2 with
(l2, false, r2) ->
join (diff l1 l2) v1 (diff r1 r2)
| (l2, true, r2) ->
concat (diff l1 l2) (diff r1 r2)
type enumeration = End | More of elt * t * enumeration
let rec cons_enum s e =
match s with
Empty -> e
| Node{l; v; r} -> cons_enum l (More(v, r, e))
let rec iter f = function
Empty -> ()
| Node{l; v; r} -> iter f l; f v; iter f r
let rec fold f s accu =
match s with
Empty -> accu
| Node{l; v; r} -> fold f r (f v (fold f l accu))
let rec for_all p = function
Empty -> true
| Node{l; v; r} -> p v && for_all p l && for_all p r
let rec exists p = function
Empty -> false
| Node{l; v; r} -> p v || exists p l || exists p r
let rec filter p = function
Empty -> Empty
| (Node{l; v; r}) as t ->
let l' = filter p l in
let pv = p v in
let r' = filter p r in
if pv then
if l==l' && r==r' then t else join l' v r'
else concat l' r'
let rec partition p = function
Empty -> (Empty, Empty)
| Node{l; v; r} ->
let (lt, lf) = partition p l in
let pv = p v in
let (rt, rf) = partition p r in
if pv
then (join lt v rt, concat lf rf)
else (concat lt rt, join lf v rf)
let rec cardinal = function
Empty -> 0
| Node{l; r} -> cardinal l + 1 + cardinal r
let rec elements_aux accu = function
Empty -> accu
| Node{l; v; r} -> elements_aux (v :: elements_aux accu r) l
let elements s =
elements_aux [] s
let choose = min_elt
let choose_opt = min_elt_opt
let rec find x = function
Empty -> raise Not_found
| Node{l; v; r} ->
let c = Ord.compare x v in
if c = 0 then v
else find x (if c < 0 then l else r)
let rec find_first_aux v0 f = function
Empty ->
v0
| Node{l; v; r} ->
if f v then
find_first_aux v f l
else
find_first_aux v0 f r
let rec find_first f = function
Empty ->
raise Not_found
| Node{l; v; r} ->
if f v then
find_first_aux v f l
else
find_first f r
let rec find_first_opt_aux v0 f = function
Empty ->
Some v0
| Node{l; v; r} ->
if f v then
find_first_opt_aux v f l
else
find_first_opt_aux v0 f r
let rec find_first_opt f = function
Empty ->
None
| Node{l; v; r} ->
if f v then
find_first_opt_aux v f l
else
find_first_opt f r
let rec find_last_aux v0 f = function
Empty ->
v0
| Node{l; v; r} ->
if f v then
find_last_aux v f r
else
find_last_aux v0 f l
let rec find_last f = function
Empty ->
raise Not_found
| Node{l; v; r} ->
if f v then
find_last_aux v f r
else
find_last f l
let rec find_last_opt_aux v0 f = function
Empty ->
Some v0
| Node{l; v; r} ->
if f v then
find_last_opt_aux v f r
else
find_last_opt_aux v0 f l
let rec find_last_opt f = function
Empty ->
None
| Node{l; v; r} ->
if f v then
find_last_opt_aux v f r
else
find_last_opt f l
let rec find_opt x = function
Empty -> None
| Node{l; v; r} ->
let c = Ord.compare x v in
if c = 0 then Some v
else find_opt x (if c < 0 then l else r)
let try_join l v r =
if (l = Empty || Ord.compare (max_elt l) v < 0)
&& (r = Empty || Ord.compare v (min_elt r) < 0)
then join l v r
else union l (add v r)
let rec map f = function
| Empty -> Empty
| Node{l; v; r} as t ->
let l' = map f l in
let v' = f v in
let r' = map f r in
if l == l' && v == v' && r == r' then t
else try_join l' v' r'
let of_sorted_list l =
let rec sub n l =
match n, l with
| 0, l -> Empty, l
| 1, x0 :: l -> Node {l=Empty; v=x0; r=Empty; h=1}, l
| 2, x0 :: x1 :: l ->
Node{l=Node{l=Empty; v=x0; r=Empty; h=1}; v=x1; r=Empty; h=2}, l
| 3, x0 :: x1 :: x2 :: l ->
Node{l=Node{l=Empty; v=x0; r=Empty; h=1}; v=x1;
r=Node{l=Empty; v=x2; r=Empty; h=1}; h=2}, l
| n, l ->
let nl = n / 2 in
let left, l = sub nl l in
match l with
| [] -> assert false
| mid :: l ->
let right, l = sub (n - nl - 1) l in
create left mid right, l
in
fst (sub (List.length l) l)
let of_list l =
match l with
| [] -> empty
| [x0] -> singleton x0
| [x0; x1] -> add x1 (singleton x0)
| [x0; x1; x2] -> add x2 (add x1 (singleton x0))
| [x0; x1; x2; x3] -> add x3 (add x2 (add x1 (singleton x0)))
| [x0; x1; x2; x3; x4] -> add x4 (add x3 (add x2 (add x1 (singleton x0))))
| _ -> of_sorted_list (List.sort_uniq Ord.compare l)
let rec cut k = function
Empty -> Empty,false,Empty
| Node {l=l1; v=k1; r=r1; h=h1; } ->
let c = Ord.compare k k1 in
if c < 0 then
let l2,d2,r2 = cut k l1 in (l2,d2,Node {l=r2; v=k1; r=r1; h=h1})
else if c > 0 then
let l2,d2,r2 = cut k r1 in (Node {l=l1; v=k1; r=l2; h=h1;},d2,r2)
else (l1,true,r1)
let rec iter2 f1 f2 f s1 s2 =
match s1 with
| Empty -> iter f2 s2
| Node { l=l1; r=r1; v=k; } ->
let l2,t,r2 = cut k s2 in
iter2 f1 f2 f l1 l2;
if t then f k else f1 k;
iter2 f1 f2 f r1 r2
let rec fold2 f1 f2 f s1 s2 acc =
match s1 with
| Empty -> fold f2 s2 acc
| Node { l=l1; r=r1; v=k; } ->
let l2,t,r2 = cut k s2 in
let acc = fold2 f1 f2 f l1 l2 acc in
let acc = if t then f k acc else f1 k acc in
fold2 f1 f2 f r1 r2 acc
let rec for_all2 f1 f2 f s1 s2 =
match s1 with
| Empty -> for_all f2 s2
| Node { l=l1; r=r1; v=k; } ->
let l2,t,r2 = cut k s2 in
(for_all2 f1 f2 f l1 l2) &&
(if t then f k else f1 k) &&
(for_all2 f1 f2 f r1 r2)
let rec exists2 f1 f2 f s1 s2 =
match s1 with
| Empty -> exists f2 s2
| Node { l=l1; r=r1; v=k; } ->
let l2,t,r2 = cut k s2 in
(exists2 f1 f2 f l1 l2) ||
(if t then f k else f1 k) ||
(exists2 f1 f2 f r1 r2)
let rec iter2_diff f1 f2 s1 s2 =
if s1 == s2 then ()
else
match s1 with
| Empty -> iter f2 s2
| Node { l=l1; r=r1; v=k; } ->
let l2,t,r2 = cut k s2 in
iter2_diff f1 f2 l1 l2;
if not t then f1 k;
iter2_diff f1 f2 r1 r2
let rec fold2_diff f1 f2 s1 s2 acc =
if s1 == s2 then acc
else
match s1 with
| Empty -> fold f2 s2 acc
| Node { l=l1; r=r1; v=k; } ->
let l2,t,r2 = cut k s2 in
let acc = fold2_diff f1 f2 l1 l2 acc in
let acc = if t then acc else f1 k acc in
fold2_diff f1 f2 r1 r2 acc
let rec for_all2_diff f1 f2 s1 s2 =
if s1 == s2 then true
else
match s1 with
| Empty -> for_all f2 s2
| Node { l=l1; r=r1; v=k; } ->
let l2,t,r2 = cut k s2 in
(for_all2_diff f1 f2 l1 l2) &&
(t || f1 k) &&
(for_all2_diff f1 f2 r1 r2)
let rec exists2_diff f1 f2 s1 s2 =
if s1 == s2 then true
else
match s1 with
| Empty -> exists f2 s2
| Node { l=l1; r=r1; v=k; } ->
let l2,t,r2 = cut k s2 in
(exists2_diff f1 f2 l1 l2) ||
(f1 k) ||
(exists2_diff f1 f2 r1 r2)
let diff_list s1 s2 =
fold2_diff (fun x l -> x::l) (fun _ l -> l) s1 s2 []
let sym_diff_list s1 s2 =
fold2_diff
(fun x (l1,l2) -> x::l1, l2)
(fun x (l1,l2) -> l1, x::l2)
s1 s2 ([],[])
let add_sym_diff s2 (a,r) =
List.fold_left
(fun s x -> add x s)
(List.fold_left (fun s x -> remove x s) s2 r)
a
let rec iter_slice f m lo hi =
match m with
| Empty -> ()
| Node {l;v;r} ->
let c1, c2 = Ord.compare v lo, Ord.compare v hi in
if c1 > 0 then iter_slice f l lo hi;
if c1 >= 0 && c2 <= 0 then f v;
if c2 < 0 then iter_slice f r lo hi
let rec fold_slice f m lo hi acc =
match m with
| Empty -> acc
| Node {l;v;r} ->
let c1, c2 = Ord.compare v lo, Ord.compare v hi in
let acc = if c1 > 0 then fold_slice f l lo hi acc else acc in
let acc = if c1 >= 0 && c2 <= 0 then f v acc else acc in
if c2 < 0 then fold_slice f r lo hi acc else acc
let rec for_all_slice f m lo hi =
match m with
| Empty -> true
| Node {l;v;r} ->
let c1, c2 = Ord.compare v lo, Ord.compare v hi in
(c1 <= 0 || for_all_slice f l lo hi) &&
(c1 < 0 || c2 > 0 || f v) &&
(c2 >= 0 || for_all_slice f r lo hi)
let rec exists_slice f m lo hi =
match m with
| Empty -> false
| Node {l;v;r} ->
let c1, c2 = Ord.compare v lo, Ord.compare v hi in
(c1 > 0 && exists_slice f l lo hi) ||
(c1 >= 0 && c2 <= 0 && f v) ||
(c2 < 0 && exists_slice f r lo hi)
let equal s1 s2 =
for_all2_diff (fun _ -> false) (fun _ -> false) s1 s2
let subset s1 s2 =
for_all2_diff (fun _ -> false) (fun _ -> true) s1 s2
let compare s1 s2 =
let r = ref 0 in
try
iter2_diff
(fun _ -> r := 1; raise Exit)
(fun _ -> r := -1; raise Exit)
s1 s2;
!r
with Exit -> !r
let print_gen o printer key ch s =
if s = Empty then o ch printer.print_empty else (
let first = ref true in
o ch printer.print_begin;
iter
(fun k ->
if !first then first := false else o ch printer.print_sep;
key ch k
) s;
o ch printer.print_end
)
let print printer key ch l =
print_gen output_string printer key ch l
let bprint printer key ch l =
print_gen Buffer.add_string printer key ch l
let fprint printer key ch l =
print_gen
(fun fmt s -> Format.fprintf fmt "%s@," s)
printer key ch l
let to_string printer key l =
let b = Buffer.create 10 in
print_gen (fun () s -> Buffer.add_string b s) printer
(fun () k -> Buffer.add_string b (key k)) () l;
Buffer.contents b
let to_poly_set s =
SetExtPoly.of_list Ord.compare (elements s)
end
let printer_default = {
print_empty="{}";
print_begin="{";
print_sep=",";
print_end="}";
}
(** [MOPSA] Print as set: {elem1,...,elemn} *)
module StringSet = Make(String)
module IntSet = Make(struct type t = int let compare : int -> int -> int = compare end)
module Int32Set = Make(Int32)
module Int64Set = Make(Int64)
module ZSet = Make(Z)