package mopsa

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file C_simplify.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
(****************************************************************************)
(*                                                                          *)
(* This file is part of MOPSA, a Modular Open Platform for Static Analysis. *)
(*                                                                          *)
(* Copyright (C) 2017-2019 The MOPSA Project.                               *)
(*                                                                          *)
(* This program is free software: you can redistribute it and/or modify     *)
(* it under the terms of the GNU Lesser General Public License as published *)
(* by the Free Software Foundation, either version 3 of the License, or     *)
(* (at your option) any later version.                                      *)
(*                                                                          *)
(* This program is distributed in the hope that it will be useful,          *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of           *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the            *)
(* GNU Lesser General Public License for more details.                      *)
(*                                                                          *)
(* You should have received a copy of the GNU Lesser General Public License *)
(* along with this program.  If not, see <http://www.gnu.org/licenses/>.    *)
(*                                                                          *)
(****************************************************************************)

(**
  C_simplify - C AST to C AST simplification
 *)

open C_AST
open C_utils

let tmp_name = "__SAST_tmp"

type context = {
    mutable uid: int;
    target: C.target_info;
  }

let create_context ?(min_uid=0) (target:C.target_info) = {
    uid = min_uid;
    target = target;
  }


let new_uid ctx =
  ctx.uid <- ctx.uid + 1;
  ctx.uid


let make_temp ctx range ?(com:comment list=[]) (f:func option) (t:type_qual) : variable =
  let u = new_uid ctx in
  let v = {
      var_uid = u;
      var_org_name = tmp_name;
      var_unique_name = Printf.sprintf "%s_%i" tmp_name u;
      var_kind = (
        match f with
        | Some f -> Variable_local f
        | None -> Variable_global
      );
      var_type = t;
      var_init = None;
      var_range = range;
      var_com = com;
      var_before_stmts = [];
      var_after_stmts = [];
    }
  in
  (match f with
   | Some f -> f.func_local_vars <- v::f.func_local_vars
   | None -> ());
  v


(* integer promotion *)
let int_promote target ((e,(t,q),r) as ee) =
  match t with 
  | T_integer i ->
     if sizeof_int target i < sizeof_int target SIGNED_INT
     then E_cast (ee, IMPLICIT), (T_integer SIGNED_INT,q), r
     else ee
  | T_bool ->
     E_cast (ee, IMPLICIT), (T_integer SIGNED_INT,q), r
  | _ ->
     ee

(* constant 1 compatible with the incrementation of type t *)
let rec expr_one target range (t:typ) =
  match t with
  | T_integer i ->
     (* integer promotion *)
     let ii =
       if sizeof_int target i < sizeof_int target SIGNED_INT then SIGNED_INT
       else i
     in
     expr_integer_cst range ii Z.one
  | T_bool ->
     expr_integer_cst range SIGNED_INT Z.one
  | T_float f ->
     expr_float_cst range f 1.
  | T_pointer _ ->
     expr_integer_cst range (ptrdiff_type target) Z.one
  | T_bitfield (t,_) ->
     expr_one target range t
  | T_enum u ->
     expr_one target range (T_integer (match u.enum_integer_type with | Some s -> s | None -> assert false))
  | T_typedef d ->
     expr_one target range (fst d.typedef_def)
  | _ ->
     error range "cannot increment type" (C_print.string_of_type t)

(* converts back a statement list to an expression *)
let as_expr_stmt l t r : expr =
  match l with
  | [S_expression e,_] -> e
  | [] -> expr_void r
  | _ -> E_statement (make_block l), t, r

(* encolse in a S_block if the block contains variable declaration to limit their scope *)
let scope_temp range (s:statement list) : statement list =
  let b = make_block s in
  if b.blk_local_vars = [] then s else [S_block b,range] 

(*****************************)
(** Simplification functions *)
(*****************************)

(* simplify an expression
   we return triples:
   - statements to execute before evaluating (tmp variable declaration, etc.)
   - simplified expression
   - statements to execute after evaluating
   - if call=true, assign the result of function calls to temporaries
     (necessary in some cases to ensure that the side-effect is only
      evaluated once)
*)
let rec simplify_expr ctx f (call:bool) ((e,t,r):expr)
  : (statement list) * (expr) * (statement list) =
  match e with

    (* e1 ? e2 : e3 -> if (e1) tmp = e2; else tmp = e3; <tmp> *)
    | E_conditional (e1,e2,e3) ->
       let before1, e1, after1 = simplify_expr ctx f call e1 in
       if is_void t then
         let cond = S_if (e1,
                          simplify_expr_stmt ctx f call e2 |> make_block,
                          simplify_expr_stmt ctx f call e3 |> make_block), r
         in
         before1@[cond], expr_void r, after1
       else
         let before2, e2, after2 = simplify_expr ctx f call e2 in
         let before3, e3, after3 = simplify_expr ctx f call e3 in
         let tmp = make_temp ctx r f t in
         let tmp_var = E_variable tmp, t, r in
         let create = S_local_declaration tmp, r in
         let cond =
           S_if (e1,
                 before2@[S_expression (E_assign (tmp_var, e2), t, r), r]@after2 |> make_block,
                 before3@[S_expression (E_assign (tmp_var, e3), t, r), r]@after3 |> make_block), r
         in
         before1@[create;cond], tmp_var, after1

    (* e1 ? : e2 -> if (e1) tmp = e1; else tmp = e2; <tmp> 
       the side-effects of e1 are executed only once
    *)
    | E_binary_conditional (e1,e2) ->
       let before1, e1, after1 = simplify_expr ctx f call e1 in
       if is_void t then
         let cond = S_if (e1,
                          [] |> make_block,
                          simplify_expr_stmt ctx f call e2 |> make_block), r
         in
         before1@[cond], expr_void r, after1
       else
         let before2, e2, after2 = simplify_expr ctx f call e2 in
         let tmp = make_temp ctx r f t in
         let tmp_var = E_variable tmp, t, r in
         let create = S_local_declaration tmp, r in
         let cond =
           S_if (e1,
                 [S_expression (E_assign (tmp_var, e1), t, r), r] |> make_block,
                 before2@[S_expression (E_assign (tmp_var, e2), t, r), r]@after2 |> make_block), r
         in
         before1@[create;cond], tmp_var, after1

    | E_array_subscript(e1,e2) ->
       let before1, e1, after1 = simplify_expr ctx f call e1 in
       let before2, e2, after2 = simplify_expr ctx f call e2 in
       before1@before2, (E_array_subscript(e1,e2), t, r), after2@after1

    | E_member_access (e1,i,field) ->
       let before1, e1, after1 = simplify_expr ctx f call e1 in
       before1, (E_member_access (e1,i,field), t, r), after1

    | E_arrow_access (e1,i,field) ->
       let before1, e1, after1 = simplify_expr ctx f call e1 in
       before1, (E_arrow_access (e1,i,field), t, r), after1

    (* e1 op= e2 -> e1 = e1 op e2; <e1> *)
    | E_compound_assign (e1,t1,op,e2,t2) ->
       (* force temporaries for function calls as e1 is used twice *)
       let before1, e1, after1 = simplify_expr ctx f true e1 in
       let before2, e2, after2 = simplify_expr ctx f call e2 in
       let before = before1@before2 and after = after2@after1 in
       let e1t1 = E_cast (e1, IMPLICIT), t1, r in
       let e12 = E_binary (O_arithmetic op, e1t1, e2), t2, r in
       let e12t = E_cast (e12, IMPLICIT), t, r in
       let assign = S_expression (E_assign (e1, e12t), t, r), r in
       before@[assign], e1, after

    | E_binary (O_logical LOGICAL_OR, e1, e2) ->
       let before1, e1, after1 = simplify_expr ctx f call e1 in
       let before2, e2, after2 = simplify_expr ctx f call e2 in
       if before2 = [] && after2 = [] && after1 = [] then
         before1, (E_binary (O_logical LOGICAL_OR, e1, e2), t, r), []
       else
         let tmp = make_temp ctx r f bool_type in
         let tmp_var = E_variable tmp, bool_type, r in
         let create = S_local_declaration tmp, r in
         (* Since e1,e2 will be assigned to [tmp], add an implicit cast to _Bool if necessary *)
         let e1' = match expr_type e1 |> resolve_typedef |> fst with
           | T_bool -> e1
           | _ -> (E_cast(e1,IMPLICIT),bool_type,r)
         and e2' = match expr_type e2 |> resolve_typedef |> fst with
           | T_bool -> e2
           | _ -> (E_cast(e2,IMPLICIT),bool_type,r)
         in
         let assign1 = S_expression (E_assign (tmp_var, e1'), t, r), r in
         let assign2 =
           S_if (tmp_var,
                 [] |> make_block,
                 before2@[S_expression (E_assign (tmp_var, e2'), t, r), r]@after2 |> make_block), r
         in
         before1@[create;assign1]@after1@[assign2], tmp_var, []

    | E_binary (O_logical LOGICAL_AND, e1, e2) ->
       let before1, e1, after1 = simplify_expr ctx f call e1 in
       let before2, e2, after2 = simplify_expr ctx f call e2 in
       if before2 = [] && after2 = [] && after1 = [] then
         before1, (E_binary (O_logical LOGICAL_AND, e1, e2), t, r), []
       else
         let tmp = make_temp ctx r f bool_type in
         let tmp_var = E_variable tmp, bool_type, r in
         let create = S_local_declaration tmp, r in
         (* Since e1,e2 will be assigned to [tmp], add an implicit cast to _Bool if necessary *)
         let e1' = match expr_type e1 |> resolve_typedef |> fst with
           | T_bool -> e1
           | _ -> (E_cast(e1,IMPLICIT),bool_type,r)
         and e2' = match expr_type e2 |> resolve_typedef |> fst with
           | T_bool -> e2
           | _ -> (E_cast(e2,IMPLICIT),bool_type,r)
         in
         let assign1 = S_expression (E_assign (tmp_var, e1'), t, r), r in
         let assign2 =
           S_if (tmp_var,
                 before2@[S_expression (E_assign (tmp_var, e2'), t, r), r]@after2 |> make_block,
                 [] |> make_block), r
         in
         before1@[create;assign1]@after1@[assign2], tmp_var, []

    | E_binary (op,e1,e2) ->
       let before1, e1, after1 = simplify_expr ctx f call e1 in
       let before2, e2, after2 = simplify_expr ctx f call e2 in
       let before = before1@before2 and after = after2@after1 in
       before, (E_binary (op,e1,e2), t, r), after

    (* e1 = e2 -> e1 = e2; <e1> *)
    | E_assign (e1,e2) ->
       let before1, e1, after1 = simplify_expr ctx f call e1 in
       let before2, e2, after2 = simplify_expr ctx f call e2 in
       let before = before1@before2 and after = after2@after1 in
       let assign = S_expression (E_assign (e1,e2), t, r), r in
       before@[assign], e1, after

    (* e1,e2 -> e1; <e2> *)
    | E_comma (e1,e2) ->
      let b1 = simplify_expr_stmt ctx f call e1 in
      let before2, e2, after2 = simplify_expr ctx f call e2 in
      b1@before2, e2, after2

   | E_unary (op,e1) ->
      let before1, e1, after2 = simplify_expr ctx f call e1 in
      before1, (E_unary (op,e1), t, r), after2

   (* ++e1 -> e1 = e1 + 1; <e1> *)
   | E_increment (dir,PRE,e1) ->
      (* force temporary for function call as e1 is used twice *)
      let before1, e1, after1 = simplify_expr ctx f true e1 in
      let ep = int_promote ctx.target e1 in
      let op = O_arithmetic (if dir = INC then ADD else SUB) in
      let e1p = E_binary (op, ep, expr_one ctx.target r (fst t)), t, r in
      let e1c = E_cast (e1p, IMPLICIT), t, r in
      let inc = S_expression (E_assign (e1,e1c), t, r), r in
      before1@[inc], e1, after1

   (* e1++ -> <e1>; e1 = e1 + 1 *)
   | E_increment (dir,POST,e1) ->
      (* force temporary for function call as e1 is used twice *)
      let before1, e1, after1 = simplify_expr ctx f true e1 in
      let ep = int_promote ctx.target e1 in
      let op = O_arithmetic (if dir = INC then ADD else SUB) in
      let e1p = E_binary (op, ep, expr_one ctx.target r (fst t)), t, r in
      let e1c = E_cast (e1p, IMPLICIT), t, r in
      let inc = S_expression (E_assign (e1,e1c), t, r), r in
      before1, e1, after1@[inc]
      
   | E_address_of e1 ->
      let before1, e1, after1 = simplify_expr ctx f call e1 in
      before1, (E_address_of e1, t, r), after1

   | E_deref e1 ->
      let before1, e1, after1 = simplify_expr ctx f call e1 in
      before1, (E_deref e1, t, r), after1

   | E_cast (e1,x) ->
      let before1, e1, after1 = simplify_expr ctx f call e1 in
      before1, (E_cast (e1,x), t, r), after1

   (* if call=true: f(...) -> tmp = f(...); <tmp> *)
   | E_call (e1,ea) ->
      let before1, e1, after1 = simplify_expr ctx f call e1 in
      let ea = Array.copy ea in
      let beforea, aftera = ref before1, ref after1 in
      for i=0 to Array.length ea-1 do
        let before, ee, after = simplify_expr ctx f call ea.(i) in
        beforea := before@(!beforea);
        aftera := after@(!aftera);
        ea.(i) <- ee
      done;
      let ecall = E_call (e1,ea), t, r in

      if is_void t || not call then
        (* don't add a temporary *)
        !beforea, ecall, !aftera
      else (
        (* add a temporary to ensure the side-effect is executed only once *)
        let tmp = make_temp ctx r f t in
        let tmp_var = E_variable tmp, t, r in
        let create = S_local_declaration tmp, r in
        let bind = S_expression (E_assign (tmp_var, ecall), t, r), r in
        !beforea@[create;bind], tmp_var, !aftera
      )

   | E_character_literal _
   | E_integer_literal _
   | E_float_literal _
   | E_string_literal _
   | E_variable _
   | E_function _
   | E_predefined _
     -> [], (e,t,r), []

   | E_var_args e1 ->
      let before1, e1, after1 = simplify_expr ctx f call e1 in
      before1, (E_var_args e1, t, r), after1

   | E_atomic (i,e1,e2) ->
      let before1, e1, after1 = simplify_expr ctx f call e1 in
      let before2, e2, after2 = simplify_expr ctx f call e2 in
      let before = before1@before2 and after = after2@after1 in
      before, (E_atomic (i,e1,e2), t, r), after

   | E_compound_literal i ->
      let before1, i, after1 = simplify_init ctx f call i in
      let tmp = make_temp ctx r f t in
      let tmp_var = E_variable tmp, t, r in
      let create = S_local_declaration tmp, r in
      tmp.var_init <- Some i;
      before1@[create], tmp_var, after1

   | E_statement b ->
      let rec doit acc = function
        | [S_expression e1, r] ->
           let before1, e1, after1 = simplify_expr ctx f call e1 in
           let before1, e1 = remove_after ctx f before1 e1 after1 in
           acc@before1, e1, []
        | s::rest ->
           doit (acc@(simplify_stmt ctx f call s)) rest
        | [] ->
           acc, expr_void r, []
      in
      doit [] b.blk_stmts

   | E_convert_vector e1 ->
      let before1, e1, after1 = simplify_expr ctx f call e1 in
      before1, (E_convert_vector e1, t, r), after1

   | E_vector_element (e1,a) ->
      let before1, e1, after1 = simplify_expr ctx f call e1 in
      before1, (E_vector_element (e1, a), t, r), after1

   | E_shuffle_vector ea ->
      let ea = Array.copy ea in
      let beforea, aftera = ref [], ref [] in
      for i=0 to Array.length ea-1 do
        let before, ee, after = simplify_expr ctx f call ea.(i) in
        beforea := before@(!beforea);
        aftera := after@(!aftera);
        ea.(i) <- ee
      done;
      !beforea, (E_shuffle_vector ea, t, r), !aftera

  (* case of toplevel (statement) expressions: the returned value is not used *)
  and simplify_expr_stmt ctx f (call:bool) ((e,t,r):expr) : statement list =
    match e with

    | E_conditional (e1,e2,e3) ->
       let before1, e1, after1 = simplify_expr ctx f call e1 in
       let cond = S_if (e1,
                        simplify_expr_stmt ctx f call e2 |> make_block,
                        simplify_expr_stmt ctx f call e3 |> make_block), r
       in
       before1@[cond]@after1

    | E_binary_conditional (e1,e2) ->
       let before1, e1, after1 = simplify_expr ctx f call e1 in
       let cond = S_if (e1,
                        [] |> make_block,
                        simplify_expr_stmt ctx f call e2 |> make_block), r
       in
       before1@[cond]@after1

    | E_assign _ ->
       let before, e, after = simplify_expr ctx f call (e,t,r) in
       before@after

    | E_compound_assign _
    | E_increment _ ->
       let before, e, after = simplify_expr ctx f call (e,t,r) in
       before@after

   | E_comma (e1,e2) ->
      let b1 = simplify_expr_stmt ctx f call e1 in
      let b2 = simplify_expr_stmt ctx f call e2 in
      b1@b2

   | E_call _
   | E_unary _
   | E_binary _
   | E_array_subscript _
   | E_member_access _
   | E_arrow_access _
   | E_address_of  _
   | E_deref _
   | E_cast _
   | E_character_literal _
   | E_integer_literal _
   | E_float_literal _
   | E_string_literal _
   | E_variable _
   | E_function _
   | E_predefined _
   | E_var_args _
   | E_atomic _
   | E_compound_literal _
   | E_convert_vector _
   | E_vector_element _
   | E_shuffle_vector _
     ->
       let before,e,after = simplify_expr ctx f call (e,t,r) in
       before@[S_expression e, r]@after

   | E_statement b ->
      List.concat (List.map (simplify_stmt ctx f call) b.blk_stmts)


  and simplify_init ctx f (call:bool) (i:init) : (statement list) * init * (statement list) =
    match i with
    | I_init_expr e1 ->
       let before1, e1, after1 = simplify_expr ctx f call e1 in
       before1, I_init_expr e1, after1

    | I_init_list (l1,opt) ->
       let before, l, after =
         List.fold_left (fun (before,l,after) i ->
             let before', i', after' = simplify_init ctx f call i in
             before'@before, i'::l, after'@after
           ) ([],[],[]) l1
       in
       before, I_init_list (List.rev l, opt), after

    | I_init_implicit _ -> [], i, []


  (* simplify the expressions inside a statement *)
  and simplify_stmt ctx f (call:bool) ((s,r):statement) : statement list =
    match s with
    | S_local_declaration v ->
       (match v.var_init with
        | None -> [s,r]
        | Some i ->
           let before, i, after = simplify_init ctx f call i in
           v.var_init <- Some i;
           before@[s,r]@after
       )

    | S_expression e ->
       scope_temp r (simplify_expr_stmt ctx f call e)

    | S_block b ->
       [S_block (simplify_block ctx f call b),r]

    | S_if (e1,b1,b2) ->
       let before1, e1, after1 = simplify_expr ctx f call e1 in
       let before1, e1 = remove_after ctx f before1 e1 after1 in
       scope_temp r (before1@[S_if (e1,
                                    simplify_block ctx f call b1,
                                    simplify_block ctx f call b2), r])

    | S_while (e1,b1) ->
       let before1, e1, after1 = simplify_expr ctx f call e1 in
       let e1 = as_expr ctx f before1 e1 after1 in
       [S_while (e1, simplify_block ctx f call b1), r]

    | S_do_while (b1,e1) ->
       let before1, e1, after1 = simplify_expr ctx f call e1 in
       let e1 = as_expr ctx f before1 e1 after1 in
       [S_do_while (simplify_block ctx f call b1, e1), r]

    | S_for (b1,e2,e3,b4) ->
       let e2 = match e2 with
         | None -> None
         | Some e2 ->
            let before2, e2, after2 = simplify_expr ctx f call e2 in
            Some (as_expr ctx f before2 e2 after2)
       and e3 = match e3 with
         | None -> None
         | Some ((_,t3,r3) as e3) ->
            Some (as_expr_stmt (simplify_expr_stmt ctx f call e3) t3 r3)
       in
       [S_for (simplify_block ctx f call b1, e2, e3, simplify_block ctx f call b4), r]

    | S_jump (S_return (Some e1, u)) ->
       let before1, e1, after1 = simplify_expr ctx f call e1 in
       let before1, e1 = remove_after ctx f before1 e1 after1 in
       scope_temp r (before1@[S_jump (S_return (Some e1, u)), r])

    | S_jump (S_switch (e1,b1)) ->
       let before1, e1, after1 = simplify_expr ctx f call e1 in
       let before1, e1 = remove_after ctx f before1 e1 after1 in
       scope_temp r (before1@[S_jump (S_switch (e1, simplify_block ctx f call b1)), r])

    | S_jump _ | S_target _ | S_asm _ ->
       [s,r]


  and simplify_block ctx f (call:bool) (b:block) : block =
    make_block (List.concat (List.map (simplify_stmt ctx f call) b.blk_stmts))

  (* use a temporary to remove the 'after' part of a triple *)
  (* before; e; after -> before; tmp = e; after; <e> *)
  and remove_after ctx f before ((_,t,r) as e) after : statement list * expr =
    if after = [] then before, e
    else
      let tmp = make_temp ctx r f t in
      let tmp_var = E_variable tmp, t, r in
      let create = S_local_declaration tmp, r in
      let assign = S_expression (E_assign (tmp_var,e), t, r), r in
      before@[create;assign]@after, tmp_var

  (* converts a triple to an expression, using statement expressions *)
  and as_expr ctx f before ((_,t,r) as e) after : expr =
    let before, e = remove_after ctx f before e after in
    if before = [] then e
    else E_statement (before@[S_expression e, r] |> make_block), t, r


(*****************)
(** Entry points *)
(*****************)

(*
  Removed:
  - E_conditional
  - E_binary_conditional
  - E_compound_assign
  - E_comma
  - E_increment
  - E_compound_literal
 *)

let simplify_func ctx (f:func) =
  match f.func_body with
  | Some body -> f.func_body <- Some (simplify_block ctx (Some f) false body |> resolve_scope);
  | None -> ()

let simplify_global_init ctx (i:init) : (statement list) * init * (statement list) =
  simplify_init ctx None false i
OCaml

Innovation. Community. Security.