package mopsa

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file intBitfields.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
(****************************************************************************)
(*                                                                          *)
(* This file is part of MOPSA, a Modular Open Platform for Static Analysis. *)
(*                                                                          *)
(* Copyright (C) 2018-2019 The MOPSA Project.                               *)
(*                                                                          *)
(* This program is free software: you can redistribute it and/or modify     *)
(* it under the terms of the GNU Lesser General Public License as published *)
(* by the Free Software Foundation, either version 3 of the License, or     *)
(* (at your option) any later version.                                      *)
(*                                                                          *)
(* This program is distributed in the hope that it will be useful,          *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of           *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the            *)
(* GNU Lesser General Public License for more details.                      *)
(*                                                                          *)
(* You should have received a copy of the GNU Lesser General Public License *)
(* along with this program.  If not, see <http://www.gnu.org/licenses/>.    *)
(*                                                                          *)
(****************************************************************************)

(**
  Bitfields - Sequences of bits that can be set, cleared, or unknown

  We rely on Zarith for arithmetic operations.
 *)

open Bot


(** {2 Types} *)

             
type t = Z.t (** set *) * Z.t (** cleared *)
(**
   Bitfields: bit sequences with bit values in a 3-valued logic: set, 
   cleared, or unknown.
   Alternatively, this can be seen representing a set of arbtirary      
   precision integers through a Cartesian (non-relational) abstraction: 
   each bit is abstracted independently.

   The first component has a 1 for each bit that can be set.
   The second component has a 1 for each bit that can be cleared.
   A bit can be both in the set and the clear state, indicating a bit that
   may be set of cleared (set & cleared gives the bits at top).
   At least one of set or cleared must be true for each bit
   (set | cleared = -1), i.e., an element of [t] is not empty.
   set and cleared can be negative, indicating bit sequences starting with
   infinitely many 1s in 2's complement representation.
 *)    

       
type t_with_bot = t with_bot
(** The type of possibly empty bitfields. *)

  
module I = ItvUtils.IntItv
module B = ItvUtils.IntBound
module C = CongUtils.IntCong


let is_valid ((set,clr):t) : bool =
  Z.logor set clr = Z.minus_one
(** Every bit in a bitfield must be set, cleared, or both. *)  

  
  
(** {2 Constructors} *)


let of_z (set:Z.t) (clr:Z.t) : t =
  if not (is_valid (set,clr)) then
    invalid_arg (Printf.sprintf "Bitfields.of_z (set:%s,clear:%s)" (Z.to_string set) (Z.to_string clr));
  (set,clr)

let of_z_bot (set:Z.t) (clr:Z.t) : t_with_bot =
  if Z.logor set clr <> Z.minus_one then BOT
  else Nb (set,clr)

let cst (c:Z.t) : t =
  (* all bits at 1 in c must be set, and all bits at 0 must be cleared *)
  c, Z.lognot c
(** Constant. *)

let cst_int (c:int) : t =
  cst (Z.of_int c)

let cst_int64 (c:int64) : t =
  cst (Z.of_int64 c)
  
let zero : t =
  cst Z.zero
(** 0 *)

let one : t =
  cst Z.one
(** 1 *)

let mone : t =
  cst Z.minus_one
(** -1 *)

let zero_one : t =
  (* bit 0 can be in set or cleared, other bits must be cleared *)
  Z.one, Z.minus_one
(** [0,1] *)

let minf_inf : t =
  (* all bits can be set and cleared *)
  Z.minus_one, Z.minus_one
(** All integers. Indistiguishable from [0,+∞]. *)
                                    
let unsigned (sz:int) : t =
  (* bits 0 to sz can be set or cleared, other bits must be cleared *)
  Z.pred (Z.shift_left Z.one sz), Z.minus_one
(** Bitfields of unsigned integers with the specified bitsize. *)
                            
let unsigned8 : t = unsigned 8
let unsigned16 : t = unsigned 16
let unsigned32 : t = unsigned 32
let unsigned64 : t = unsigned 64


let of_range_bot (lo:Z.t) (hi:Z.t) : t with_bot =
  if lo > hi then
    (* empty set *)
    BOT
  else if lo < Z.zero && hi >= Z.zero then
    (* contains -1 and 0 -> every bit can be 0 and can be 1 *)
    Nb minf_inf
  else
    (* mask is all 1 after the highest bit != in lo and hi *)
    let to_mask = Z.numbits (Z.logxor lo hi) in
    let mask = Z.pred (Z.shift_left Z.one to_mask) in
    (* the bits in the mask can be set or cleared, 
       other bits are fixed to lo (or equivalently to hi) *)
    Nb (Z.logor lo mask, Z.logor (Z.lognot lo) mask)
(** Bitfield enclosing the range [lo,hi]. *)
    
let of_bound_bot (lo:B.t) (hi:B.t) : t with_bot =
  match lo,hi with
  | B.Finite l, B.Finite h -> of_range_bot l h
  | _ -> Nb minf_inf
(** Bitfield enclosing the range [lo,hi]. *)

let of_range (lo:Z.t) (hi:Z.t) : t =
  match of_range_bot lo hi with
  | Nb x -> x
  | BOT -> invalid_arg (Printf.sprintf "IntBitfields.of_range [%s,%s]" (Z.to_string lo) (Z.to_string hi))
(** Bitfield enclosing the range [lo,hi]. 
    Fails with [invalid_arg] if the range is empty.
 *)

let of_bound (lo:B.t) (hi:B.t) : t =
  match of_bound_bot lo hi with
  | Nb x -> x
  | BOT -> invalid_arg (Printf.sprintf "IntBitfields.of_bound [%s,%s]" (B.to_string lo) (B.to_string hi))
(** Bitfield enclosing the range [lo,hi]. 
    Fails with [invalid_arg] if the range is empty.
 *)

    

(** {2 Predicates} *)

                  
let equal ((set1,clr1):t) ((set2,clr2):t) : bool =
  set1 = set2 && clr1 = clr2
(** Equality. = also works. *)

let equal_bot : t_with_bot -> t_with_bot -> bool =
  bot_equal equal
  
let included ((set1,clr1):t) ((set2,clr2):t) : bool =
  (* set1 (resp. clr1) has less bits at 1 than set2 (resp. clr2) *)
  Z.logor set1 set2 = set2 && Z.logor clr1 clr2 = clr2
(** Set ordering. *)

let included_bot : t_with_bot -> t_with_bot -> bool =
  bot_included included  

let intersect ((set1,clr1):t) ((set2,clr2):t) : bool =
  (* for each bit, it must be set in both arguments, or cleared in both *)
  Z.logor (Z.logand set1 set2) (Z.logand clr1 clr2) = Z.minus_one
(** Whether the intersection is non-empty. *)
     
let intersect_bot : t_with_bot -> t_with_bot -> bool =
  bot_dfl2 false intersect

let contains (x:Z.t) ((set,clr):t) : bool =
  (* each bit at 1 in x must be in set, and each bit at 0 must be in clr *)
  (x = Z.logand x set) && (x = Z.logor x (Z.lognot clr))
  
let compare ((set1,clr1):t) ((set2,clr2):t) : int =
  if set1 = set2 then Z.compare clr1 clr2 else Z.compare set1 set2
(**
  A total ordering on bitfields, returning -1, 0, or 1.
  Can be used as compare for sets, maps, etc. 
 *)

let compare_bot (x:t with_bot) (y:t with_bot) : int =
  Bot.bot_compare compare x y
(** Total ordering on possibly empty bitfields. *)

let contains_zero ((set,clr):t) : bool =
  (* all bits must be in clr *)
  clr = Z.minus_one
(** Whether the bifield contains zero. *)

let contains_one (x:t) : bool =
  contains Z.one x
(** Whether the bifield contains one. *)

let contains_nonzero ((set,clr):t) : bool =
  (* at least one bit must be in set *)
  set <> Z.zero
(** Whether the bifield contains a non-zero value. *)

let is_zero (x:t) : bool =
  x = zero

let is_positive ((set,clr):t) : bool =
  (* there are only finitely many bits that cn be 1 *)
  set >= Z.zero

let is_positive_strict (a:t) : bool =
  is_positive a && not (contains_zero a)

let is_negative_strict ((set,clr):t) : bool =
  (* there are only finitely many bits that can be 0 *)
  clr >= Z.zero

let is_negative (a:t) : bool =
  (* any bitfield allowing 0 and a negative number also allows a strictly 
     positive number; the only way to be negative or nul is to either 
     contain only strictly negative numbers, or to contain only 0
   *)
  is_negative_strict a || is_zero a

let is_nonzero ((set,clr):t) : bool =
  (* there is a position with a bit that cannot be 0 *)
  clr <> Z.minus_one
(** Contains only non-zero elements. *)

let is_minf_inf ((a,b):t) : bool =
  a = Z.minus_one && b = Z.minus_one
(** The bitfield represents [-∞,+∞]. *)
                                 
let is_singleton ((set,clr):t) : bool =
  (* every bit can be either set of cleared, but not both *)
  set = Z.lognot clr
(** Whether the bitfield contains a single element. *)

let is_bounded ((set,clr):t) : bool =
  (* the set of bits that can be both set and cleared is finite *)
  Z.logand set clr >= Z.zero
(** Whether the bitfield contains a finite number of elements. *)

let lower_bound ((set,clr):t) : B.t =
  if set < Z.zero && clr < Z.zero then
    B.MINF (* can be arbitrarily negative *)
  else
    B.Finite (Z.lognot clr) (* clear all the bits that can be cleared *)
(** Get the lower bound (possibly MINF). *)

let upper_bound ((set,clr):t) : B.t =
  if set < Z.zero && clr < Z.zero then
    B.PINF (* can be arbitrarily positive *)
  else
    B.Finite set (* set all the bits that can be set *)
(** Get the upper bound (possibly PINF). *)

  

(** {2 Printing} *)


let to_string ((set,clr):t) : string =
  let b = Buffer.create 10 in
  let both = Z.logand set clr in
  (match set < Z.zero, clr < Z.zero with
   | true, false -> Buffer.add_string b "…1"
   | true, true  -> Buffer.add_string b "…⊤"
   | _ -> ()
  );
  for i = Z.numbits both-1 downto 0 do
    match Z.testbit set i, Z.testbit clr i with
    | true, false -> Buffer.add_string b "1"
    | false, true -> Buffer.add_string b "0"
    | true,true   -> Buffer.add_string b "⊤"
    | _ -> invalid_arg (Printf.sprintf "IntBitfields.to_string (set:%s,clear:%s)" (Z.to_string set) (Z.to_string clr));
  done;
  Buffer.contents b

let print ch (x:t) = output_string ch (to_string x)
let fprint ch (x:t) = Format.pp_print_string ch (to_string x)
let bprint ch (x:t) = Buffer.add_string ch (to_string x)

let to_string_bot = bot_to_string to_string
let print_bot = bot_print print
let fprint_bot = bot_fprint fprint
let bprint_bot = bot_bprint bprint

  
  
(** {2 Enumeration} *)

               
let size ((set,clr):t) : int =
  let both = Z.logand set clr in
  if both < Z.zero then 
    invalid_arg (Printf.sprintf "Bitfields.size: unbounded set %s" (to_string (set,clr)));
  Z.popcount both
(** Number of elements. Raises an invalid argument if it is unbounded. *)

  
let to_list ((set,clr):t) : Z.t list =
  let both = Z.logand set clr in
  if both < Z.zero then 
    invalid_arg (Printf.sprintf "Bitfields.size: unbounded set %s" (to_string (set,clr)));
  let rec doit acc v i =
    if i < 0 then v::acc else
      (* bit i can be 0 *)
      let acc =
        if Z.testbit clr i then doit acc v (i-1)
        else acc
      in
      (* bit i can be 1 *)
      if Z.testbit set i then doit acc (Z.logor v (Z.shift_left Z.one i)) (i-1)
      else acc
  in
  let org = Z.lognot clr in
  doit [] org (Z.numbits both - 1)
(** List of elements, in increasing order. 
    Raises an invalid argument if it is unbounded. 
 *)

       
       
(** {2 Set operations} *)

               
let join ((set,clr):t) ((set',clr'):t) : t =
  Z.logor set set', Z.logor clr clr'
(** Abstract union. *)

let join_bot (a:t_with_bot) (b:t_with_bot) : t_with_bot =
  bot_neutral2 join a b

let join_list (l:t list) : t_with_bot =
  List.fold_left (fun a b -> join_bot a (Nb b)) BOT l

let meet ((set,clr):t) ((set',clr'):t) : t_with_bot =
  of_z_bot (Z.logand set set') (Z.logand clr clr')
(** Abstract intersection. *)
     
let meet_bot (a:t_with_bot) (b:t_with_bot) : t_with_bot =
  bot_absorb2 meet a b
          
let meet_list (l:t list) : t_with_bot =
  List.fold_left (fun a b -> meet_bot a (Nb b)) (Nb minf_inf) l

  
  
(** {2 Forward operations} *)


let to_bool (can_be_zero:bool) (can_be_one:bool) : t =
  match can_be_zero, can_be_one with
  | true, false -> zero
  | false, true -> one
  | true, true -> zero_one
  | _ -> failwith "unreachable case encountered in IntBitfields.to_bool"
(* helper function for operators returning a boolean that can be zero and/or one *)
            
let log_cast (a:t) : t =
  to_bool (contains_zero a) (contains_nonzero a)
(** Conversion from integer to boolean in [0,1]: maps 0 to 0 (false) and non-zero to 1 (true). *)
                  
let log_not (a:t) : t =
  to_bool (contains_nonzero a) (contains_zero a)
(** Logical negation.
    Logical operation use the C semantics: they accept 0 and non-0 respectively as false and true, but they always return 0 and 1 respectively for false and true.
*)

let log_and (a:t) (b:t) : t =
  to_bool (contains_zero a || contains_zero b) (contains_nonzero a && contains_nonzero b)
(** Logical and. *)
    
let log_or (a:t) (b:t) : t =
  to_bool (contains_zero a && contains_zero b) (contains_nonzero a || contains_nonzero b)
(** Logical or. *)

let log_xor (a:t) (b:t) : t =
  let f,f' = contains_zero a, contains_zero b
  and t,t' = contains_nonzero a, contains_nonzero b in
  to_bool ((f && f') || (t && t')) ((f && t') || (t && f'))
(** Logical exclusive or. *)

let log_eq (a:t) (b:t) : t =
  to_bool (not (equal a b && is_singleton a)) (intersect a b)

let log_neq (a:t) (b:t) : t =
  to_bool (intersect a b) (not (equal a b && is_singleton a))

let log_leq (a:t) (b:t) : t =
  to_bool (B.gt  (upper_bound a) (lower_bound b))
          (B.leq (lower_bound a) (upper_bound b))

let log_geq (a:t) (b:t) : t =
  to_bool (B.lt  (lower_bound a) (upper_bound b))
          (B.geq (upper_bound a) (lower_bound b))

let log_lt (a:t) (b:t) : t =
  to_bool (B.geq (upper_bound a) (lower_bound b))
          (B.lt  (lower_bound a) (upper_bound b))

let log_gt (a:t) (b:t) : t =
  to_bool (B.leq (lower_bound a) (upper_bound b))
          (B.gt  (upper_bound a) (lower_bound b))

(** C comparison tests. Returns an interval included in [0,1] (a boolean) *)

  
let is_log_eq (a:t) (b:t) : bool =
  intersect a b

let is_log_neq (a:t) (b:t) : bool =
  not (equal a b && is_singleton a)

let is_log_leq (a:t) (b:t) : bool =
  B.leq (lower_bound a) (upper_bound b)

let is_log_geq (a:t) (b:t) : bool =
  B.geq (upper_bound a) (lower_bound b)

let is_log_lt (a:t) (b:t) : bool =
  B.lt (lower_bound a) (upper_bound b)

let is_log_gt (a:t) (b:t) : bool =
  B.gt (upper_bound a) (lower_bound b)

(** C comparison tests. Returns a boolean if the test may succeed *)


  
let shift_left ((set,clr):t) ((set',clr'):t) : t =
  if is_singleton (set',clr') && set' >= Z.zero then
    (* exact when the right argument is a positive singleton, top else *)
    try
      let l = Z.to_int set' in
      Z.shift_left set l, Z.shift_left clr l
    with Z.Overflow -> minf_inf
  else
    minf_inf
(** Bitshift left: multiplication by a power of 2. *)

let shift_right ((set,clr):t) ((set',clr'):t) : t =
  if is_singleton (set',clr') && set' >= Z.zero then
    (* exact when the right argument is a positive singleton, top else *)
    try
      let l = Z.to_int set' in
      Z.shift_right set l, Z.shift_right clr l
    with Z.Overflow -> minf_inf
  else
    minf_inf
(** Bitshift right: division by a power of 2 rounding towards -∞. *)

let shift_right_trunc ((set,clr):t) ((set',clr'):t) : t =
  if is_singleton (set',clr') && set' >= Z.zero then
    (* exact when the right argument is a positive singleton, top else *)
    try
      let l = Z.to_int set' in
      Z.shift_right_trunc set l, Z.shift_right_trunc clr l
    with Z.Overflow -> minf_inf
  else
    minf_inf
(** Unsigned bitshift right: division by a power of 2 with truncation. *)

let bit_not ((set,clr):t) : t =
  clr, set
(** Bitwise negation. *)

let bit_or ((set,clr):t) ((set',clr'):t) : t =
  Z.logor set set', Z.logand clr clr'
(** Bitwise or. *)

let bit_and ((set,clr):t) ((set',clr'):t) : t =
  Z.logand set set', Z.logor clr clr'
(** Bitwise and. *)

let bit_xor ((set,clr):t) ((set',clr'):t) : t =
  Z.logor (Z.logand set clr') (Z.logand set' clr),
  Z.logor (Z.logand clr clr') (Z.logand set set')
(** Bitwise exclusive or. *)


                    
(** {2 Filters} *)


(** Given two interval aruments, return the arguments assuming that the predicate holds.
 *)
           
let filter_eq (a:t) (b:t) : (t*t) with_bot =
  match meet a b with BOT -> BOT | Nb x -> Nb (x,x)

let filter_sgl op ((set,clr) as a:t) ((set',clr') as a':t) : (t*t) with_bot =
  if is_singleton (set,clr) && is_singleton (set',clr') && not (op set set')
  then BOT else Nb (a,a')
(* utility function: we only handle the simple case of singletons *)

let filter_neq = filter_sgl (<>)
let filter_leq = filter_sgl (<=)
let filter_geq = filter_sgl (>=)
let filter_lt  = filter_sgl (<)
let filter_gt  = filter_sgl (>)
  

(** {2 Reduction} *)

  
let of_interval ((lo,hi):I.t) : t =
  of_bound lo hi

let to_interval ((set,clr):t) : I.t =
  lower_bound (set,clr), upper_bound (set,clr) 

let meet_inter (b:t) (i:I.t) : (t * I.t) with_bot =
  bot_merge2 (meet b (of_interval i)) (I.meet i (to_interval b))
(** Intersects a bitfield with an interval, and returns the set represented
    both as a bitfield and as an interval.
    Useful to implement reductions.
 *)

                                            
                              
OCaml

Innovation. Community. Security.