package mopsa

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file setExtPoly.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
(*
  This file is derived from the set.ml file from the OCaml distribution.
  Changes are marked with the [MOPSA] symbol.

  Modifications are Copyright (C) 2017-2019 The MOPSA Project.

  Original copyright follows.
*)

(**************************************************************************)
(*                                                                        *)
(*                                 OCaml                                  *)
(*                                                                        *)
(*             Xavier Leroy, projet Cristal, INRIA Rocquencourt           *)
(*                                                                        *)
(*   Copyright 1996 Institut National de Recherche en Informatique et     *)
(*     en Automatique.                                                    *)
(*                                                                        *)
(*   All rights reserved.  This file is distributed under the terms of    *)
(*   the GNU Lesser General Public License version 2.1, with the          *)
(*   special exception on linking described in the file LICENSE.          *)
(*                                                                        *)
(**************************************************************************)

(** Sets with polymorphic values *)

(* Sets are represented by balanced binary trees (the heights of the
   children differ by at most 2 *)
type 'a set = Empty | Node of {l:'a set; v:'a; r:'a set; h:int}

type 'a compare = 'a -> 'a -> int

type 'a t = {
  set:     'a set;
  compare: 'a compare;
}

type set_printer = {
  print_empty: string; (** Special text for empty sets *)
  print_begin: string; (** Text before the first element *)
  print_sep: string;   (** Text between two elements *)
  print_end: string;   (** Text after the last element *)
}
let height = function
    Empty -> 0
  | Node {h} -> h

(* Creates a new node with left son l, value v and right son r.
   We must have all elements of l < v < all elements of r.
   l and r must be balanced and | height l - height r | <= 2.
   Inline expansion of height for better speed. *)

let create l v r =
  let hl = match l with Empty -> 0 | Node {h} -> h in
  let hr = match r with Empty -> 0 | Node {h} -> h in
  Node{l; v; r; h=(if hl >= hr then hl + 1 else hr + 1)}

(* Same as create, but performs one step of rebalancing if necessary.
   Assumes l and r balanced and | height l - height r | <= 3.
   Inline expansion of create for better speed in the most frequent case
   where no rebalancing is required. *)

let bal l v r =
  let hl = match l with Empty -> 0 | Node {h} -> h in
  let hr = match r with Empty -> 0 | Node {h} -> h in
  if hl > hr + 2 then begin
    match l with
      Empty -> invalid_arg "Set.bal"
    | Node{l=ll; v=lv; r=lr} ->
      if height ll >= height lr then
        create ll lv (create lr v r)
      else begin
        match lr with
          Empty -> invalid_arg "Set.bal"
        | Node{l=lrl; v=lrv; r=lrr}->
          create (create ll lv lrl) lrv (create lrr v r)
      end
  end else if hr > hl + 2 then begin
    match r with
      Empty -> invalid_arg "Set.bal"
    | Node{l=rl; v=rv; r=rr} ->
      if height rr >= height rl then
        create (create l v rl) rv rr
      else begin
        match rl with
          Empty -> invalid_arg "Set.bal"
        | Node{l=rll; v=rlv; r=rlr} ->
          create (create l v rll) rlv (create rlr rv rr)
      end
  end else
    Node{l; v; r; h=(if hl >= hr then hl + 1 else hr + 1)}

(* Insertion of one element *)

let rec add compare x = function
    Empty -> Node{l=Empty; v=x; r=Empty; h=1}
  | Node{l; v; r} as t ->
    let c = compare x v in
    if c = 0 then t else
    if c < 0 then
      let ll = add compare x l in
      if l == ll then t else bal ll v r
    else
      let rr = add compare x r in
      if r == rr then t else bal l v rr

let singleton x = Node{l=Empty; v=x; r=Empty; h=1}

(* Beware: those two functions assume that the added v is *strictly*
   smaller (or bigger) than all the present elements in the tree; it
   does not test for equality with the current min (or max) element.
   Indeed, they are only used during the "join" operation which
   respects this precondition.
*)

let rec add_min_element x = function
  | Empty -> singleton x
  | Node {l; v; r} ->
    bal (add_min_element x l) v r

let rec add_max_element x = function
  | Empty -> singleton x
  | Node {l; v; r} ->
    bal l v (add_max_element x r)

(* Same as create and bal, but no assumptions are made on the
   relative heights of l and r. *)

let rec join l v r =
  match (l, r) with
    (Empty, _) -> add_min_element v r
  | (_, Empty) -> add_max_element v l
  | (Node{l=ll; v=lv; r=lr; h=lh}, Node{l=rl; v=rv; r=rr; h=rh}) ->
    if lh > rh + 2 then bal ll lv (join lr v r) else
    if rh > lh + 2 then bal (join l v rl) rv rr else
      create l v r

(* Smallest and greatest element of a set *)

let rec min_elt = function
    Empty -> raise Not_found
  | Node{l=Empty; v} -> v
  | Node{l} -> min_elt l

let rec min_elt_opt = function
    Empty -> None
  | Node{l=Empty; v} -> Some v
  | Node{l} -> min_elt_opt l

let rec max_elt = function
    Empty -> raise Not_found
  | Node{v; r=Empty} -> v
  | Node{r} -> max_elt r

let rec max_elt_opt = function
    Empty -> None
  | Node{v; r=Empty} -> Some v
  | Node{r} -> max_elt_opt r

(* Remove the smallest element of the given set *)

let rec remove_min_elt = function
    Empty -> invalid_arg "Set.remove_min_elt"
  | Node{l=Empty; r} -> r
  | Node{l; v; r} -> bal (remove_min_elt l) v r

(* Merge two trees l and r into one.
   All elements of l must precede the elements of r.
   Assume | height l - height r | <= 2. *)

let merge t1 t2 =
  match (t1, t2) with
    (Empty, t) -> t
  | (t, Empty) -> t
  | (_, _) -> bal t1 (min_elt t2) (remove_min_elt t2)

(* Merge two trees l and r into one.
   All elements of l must precede the elements of r.
   No assumption on the heights of l and r. *)

let concat t1 t2 =
  match (t1, t2) with
    (Empty, t) -> t
  | (t, Empty) -> t
  | (_, _) -> join t1 (min_elt t2) (remove_min_elt t2)

(* Splitting.  split x s returns a triple (l, present, r) where
   - l is the set of elements of s that are < x
   - r is the set of elements of s that are > x
   - present is false if s contains no element equal to x,
      or true if s contains an element equal to x. *)

let rec split compare x = function
    Empty ->
    (Empty, false, Empty)
  | Node{l; v; r} ->
    let c = compare x v in
    if c = 0 then (l, true, r)
    else if c < 0 then
      let (ll, pres, rl) = split compare x l in (ll, pres, join rl v r)
    else
      let (lr, pres, rr) = split compare x r in (join l v lr, pres, rr)

(* Implementation of the set operations *)

let empty = Empty

let is_empty = function Empty -> true | _ -> false

let rec mem compare x = function
    Empty -> false
  | Node{l; v; r} ->
    let c = compare x v in
    c = 0 || mem compare x (if c < 0 then l else r)

let rec remove compare x = function
    Empty -> Empty
  | (Node{l; v; r} as t) ->
    let c = compare x v in
    if c = 0 then merge l r
    else
    if c < 0 then
      let ll = remove compare x l in
      if l == ll then t
      else bal ll v r
    else
      let rr = remove compare x r in
      if r == rr then t
      else bal l v rr

let rec union compare s1 s2 =
  if s1 == s2 then s1 (* [MOPSA] *) else
    match (s1, s2) with
      (Empty, t2) -> t2
    | (t1, Empty) -> t1
    | (Node{l=l1; v=v1; r=r1; h=h1}, Node{l=l2; v=v2; r=r2; h=h2}) ->
      if h1 >= h2 then
        if h2 = 1 then add compare v2 s1 else begin
          let (l2, _, r2) = split compare v1 s2 in
          join (union compare l1 l2) v1 (union compare r1 r2)
        end
      else
      if h1 = 1 then add compare v1 s2 else begin
        let (l1, _, r1) = split compare v2 s1 in
        join (union compare l1 l2) v2 (union compare r1 r2)
      end

let rec inter compare s1 s2 =
  if s1 == s2 then s1 (* [MOPSA] *) else
    match (s1, s2) with
      (Empty, _) -> Empty
    | (_, Empty) -> Empty
    | (Node{l=l1; v=v1; r=r1}, t2) ->
      match split compare v1 t2 with
        (l2, false, r2) ->
        concat (inter compare l1 l2) (inter compare r1 r2)
      | (l2, true, r2) ->
        join (inter compare l1 l2) v1 (inter compare r1 r2)

let rec diff compare s1 s2 =
  if s1 == s2 then Empty (* [MOPSA] *) else
    match (s1, s2) with
      (Empty, _) -> Empty
    | (t1, Empty) -> t1
    | (Node{l=l1; v=v1; r=r1}, t2) ->
      match split compare v1 t2 with
        (l2, false, r2) ->
        join (diff compare l1 l2) v1 (diff compare r1 r2)
      | (l2, true, r2) ->
        concat (diff compare l1 l2) (diff compare r1 r2)

type 'a enumeration = End | More of 'a * 'a set * 'a enumeration

let rec cons_enum s e =
  match s with
    Empty -> e
  | Node{l; v; r} -> cons_enum l (More(v, r, e))

let rec iter f = function
    Empty -> ()
  | Node{l; v; r} -> iter f l; f v; iter f r

let rec fold f s accu =
  match s with
    Empty -> accu
  | Node{l; v; r} -> fold f r (f v (fold f l accu))

let rec for_all p = function
    Empty -> true
  | Node{l; v; r} -> p v && for_all p l && for_all p r

let rec exists p = function
    Empty -> false
  | Node{l; v; r} -> p v || exists p l || exists p r

let rec filter p = function
    Empty -> Empty
  | (Node{l; v; r}) as t ->
    (* call [p] in the expected left-to-right order *)
    let l' = filter p l in
    let pv = p v in
    let r' = filter p r in
    if pv then
      if l==l' && r==r' then t else join l' v r'
    else concat l' r'

let rec partition p = function
    Empty -> (Empty, Empty)
  | Node{l; v; r} ->
    (* call [p] in the expected left-to-right order *)
    let (lt, lf) = partition p l in
    let pv = p v in
    let (rt, rf) = partition p r in
    if pv
    then (join lt v rt, concat lf rf)
    else (concat lt rt, join lf v rf)

let rec cardinal = function
    Empty -> 0
  | Node{l; r} -> cardinal l + 1 + cardinal r

let rec elements_aux accu = function
    Empty -> accu
  | Node{l; v; r} -> elements_aux (v :: elements_aux accu r) l

let elements s =
  elements_aux [] s

let choose = min_elt

let choose_opt = min_elt_opt

let rec find compare x = function
    Empty -> raise Not_found
  | Node{l; v; r} ->
    let c = compare x v in
    if c = 0 then v
    else find compare x (if c < 0 then l else r)

let rec find_first_aux v0 f = function
    Empty ->
    v0
  | Node{l; v; r} ->
    if f v then
      find_first_aux v f l
    else
      find_first_aux v0 f r

let rec find_first f = function
    Empty ->
    raise Not_found
  | Node{l; v; r} ->
    if f v then
      find_first_aux v f l
    else
      find_first f r

let rec find_first_opt_aux v0 f = function
    Empty ->
    Some v0
  | Node{l; v; r} ->
    if f v then
      find_first_opt_aux v f l
    else
      find_first_opt_aux v0 f r

let rec find_first_opt f = function
    Empty ->
    None
  | Node{l; v; r} ->
    if f v then
      find_first_opt_aux v f l
    else
      find_first_opt f r

let rec find_last_aux v0 f = function
    Empty ->
    v0
  | Node{l; v; r} ->
    if f v then
      find_last_aux v f r
    else
      find_last_aux v0 f l

let rec find_last f = function
    Empty ->
    raise Not_found
  | Node{l; v; r} ->
    if f v then
      find_last_aux v f r
    else
      find_last f l

let rec find_last_opt_aux v0 f = function
    Empty ->
    Some v0
  | Node{l; v; r} ->
    if f v then
      find_last_opt_aux v f r
    else
      find_last_opt_aux v0 f l

let rec find_last_opt f = function
    Empty ->
    None
  | Node{l; v; r} ->
    if f v then
      find_last_opt_aux v f r
    else
      find_last_opt f l

let rec find_opt compare x = function
    Empty -> None
  | Node{l; v; r} ->
    let c = compare x v in
    if c = 0 then Some v
    else find_opt compare x (if c < 0 then l else r)

let try_join compare l v r =
  (* [join l v r] can only be called when (elements of l < v <
     elements of r); use [try_join l v r] when this property may
     not hold, but you hope it does hold in the common case *)
  if (l = Empty || compare (max_elt l) v < 0)
  && (r = Empty || compare v (min_elt r) < 0)
  then join l v r
  else union compare l (add compare v r)

let rec map compare f = function
  | Empty -> Empty
  | Node{l; v; r} as t ->
    (* enforce left-to-right evaluation order *)
    let l' = map compare f l in
    let v' = f v in
    let r' = map compare f r in
    if l == l' && v == v' && r == r' then t
    else try_join compare l' v' r'

let of_sorted_list l =
  let rec sub n l =
    match n, l with
    | 0, l -> Empty, l
    | 1, x0 :: l -> Node {l=Empty; v=x0; r=Empty; h=1}, l
    | 2, x0 :: x1 :: l ->
      Node{l=Node{l=Empty; v=x0; r=Empty; h=1}; v=x1; r=Empty; h=2}, l
    | 3, x0 :: x1 :: x2 :: l ->
      Node{l=Node{l=Empty; v=x0; r=Empty; h=1}; v=x1;
           r=Node{l=Empty; v=x2; r=Empty; h=1}; h=2}, l
    | n, l ->
      let nl = n / 2 in
      let left, l = sub nl l in
      match l with
      | [] -> assert false
      | mid :: l ->
        let right, l = sub (n - nl - 1) l in
        create left mid right, l
  in
  fst (sub (List.length l) l)

let of_list compare l =
  match l with
  | [] -> empty
  | [x0] -> singleton x0
  | [x0; x1] -> add compare x1 (singleton x0)
  | [x0; x1; x2] -> add compare x2 (add compare x1 (singleton x0))
  | [x0; x1; x2; x3] -> add compare x3 (add compare x2 (add compare x1 (singleton x0)))
  | [x0; x1; x2; x3; x4] -> add compare x4 (add compare x3 (add compare x2 (add compare x1 (singleton x0))))
  | _ -> of_sorted_list (List.sort_uniq compare l)



(* [MOPSA] additions *)
(* ***************** *)


(* internal function *)
(* similar to split, but returns unbalanced trees *)
let rec cut compare k = function
    Empty -> Empty,false,Empty
  | Node {l=l1; v=k1; r=r1; h=h1; } ->
    let c = compare k k1 in
    if c < 0 then
      let l2,d2,r2 = cut compare k l1 in (l2,d2,Node {l=r2; v=k1; r=r1; h=h1})
    else if c > 0 then
      let l2,d2,r2 = cut compare k r1 in (Node {l=l1; v=k1; r=l2; h=h1;},d2,r2)
    else (l1,true,r1)


(* binary operations *)

let rec iter2 compare f1 f2 f s1 s2 =
  match s1 with
  | Empty -> iter f2 s2
  | Node { l=l1; r=r1; v=k; } ->
    let l2,t,r2 = cut compare k s2 in
    iter2 compare f1 f2 f l1 l2;
    if t then f k else f1 k;
    iter2 compare f1 f2 f r1 r2

let rec fold2 compare f1 f2 f s1 s2 acc =
  match s1 with
  | Empty -> fold f2 s2 acc
  | Node { l=l1; r=r1; v=k; } ->
    let l2,t,r2 = cut compare k s2 in
    let acc = fold2 compare f1 f2 f l1 l2 acc in
    let acc = if t then f k acc else f1 k acc in
    fold2 compare f1 f2 f r1 r2 acc

let rec for_all2 compare f1 f2 f s1 s2 =
  match s1 with
  | Empty -> for_all f2 s2
  | Node { l=l1; r=r1; v=k; } ->
    let l2,t,r2 = cut compare k s2 in
    (for_all2 compare f1 f2 f l1 l2) &&
    (if t then f k else f1 k) &&
    (for_all2 compare f1 f2 f r1 r2)

let rec exists2 compare f1 f2 f s1 s2 =
  match s1 with
  | Empty -> exists f2 s2
  | Node { l=l1; r=r1; v=k; } ->
    let l2,t,r2 = cut compare k s2 in
    (exists2 compare f1 f2 f l1 l2) ||
    (if t then f k else f1 k) ||
    (exists2 compare f1 f2 f r1 r2)


(* the _diff functions ignore elements present in both
   sets; they can thus skip physically equal subtrees,
   which improves efficiency when the two sets are similar
*)

let rec iter2_diff compare f1 f2 s1 s2 =
  if s1 == s2 then ()
  else
    match s1 with
    | Empty -> iter f2 s2
    | Node { l=l1; r=r1; v=k; } ->
      let l2,t,r2 = cut compare k s2 in
      iter2_diff compare f1 f2 l1 l2;
      if not t then f1 k;
      iter2_diff compare f1 f2 r1 r2

let rec fold2_diff compare f1 f2 s1 s2 acc =
  if s1 == s2 then acc
  else
    match s1 with
    | Empty -> fold f2 s2 acc
    | Node { l=l1; r=r1; v=k; } ->
      let l2,t,r2 = cut compare k s2 in
      let acc = fold2_diff compare f1 f2 l1 l2 acc in
      let acc = if t then acc else f1 k acc in
      fold2_diff compare f1 f2 r1 r2 acc

let rec for_all2_diff compare f1 f2 s1 s2 =
  if s1 == s2 then true
  else
    match s1 with
    | Empty -> for_all f2 s2
    | Node { l=l1; r=r1; v=k; } ->
      let l2,t,r2 = cut compare k s2 in
      (for_all2_diff compare f1 f2 l1 l2) &&
      (t || f1 k) &&
      (for_all2_diff compare f1 f2 r1 r2)

let rec exists2_diff compare f1 f2 s1 s2 =
  if s1 == s2 then true
  else
    match s1 with
    | Empty -> exists f2 s2
    | Node { l=l1; r=r1; v=k; } ->
      let l2,t,r2 = cut compare k s2 in
      (exists2_diff compare f1 f2 l1 l2) ||
      (f1 k) ||
      (exists2_diff compare f1 f2 r1 r2)

let diff_list compare s1 s2 =
  fold2_diff compare (fun x l -> x::l) (fun _ l -> l) s1 s2 []

let sym_diff_list compare s1 s2 =
  fold2_diff compare
    (fun x (l1,l2) -> x::l1, l2)
    (fun x (l1,l2) -> l1, x::l2)
    s1 s2 ([],[])

let add_sym_diff compare s2 (a,r) =
  List.fold_left
    (fun s x -> add compare x s)
    (List.fold_left (fun s x -> remove compare x s) s2 r)
    a


(* these versions are limited to elements between two bounds *)

let rec iter_slice compare f m lo hi =
  match m with
  | Empty -> ()
  | Node {l;v;r} ->
    let c1, c2 = compare v lo, compare v hi in
    if c1 > 0 then iter_slice compare f l lo hi;
    if c1 >= 0 && c2 <= 0 then f v;
    if c2 < 0 then iter_slice compare f r lo hi

let rec fold_slice compare f m lo hi acc =
  match m with
  | Empty -> acc
  | Node {l;v;r} ->
    let c1, c2 = compare v lo, compare v hi in
    let acc = if c1 > 0 then fold_slice compare f l lo hi acc else acc in
    let acc = if c1 >= 0 && c2 <= 0 then f v acc else acc in
    if c2 < 0 then fold_slice compare f r lo hi acc else acc

let rec for_all_slice compare f m lo hi =
  match m with
  | Empty -> true
  | Node {l;v;r} ->
    let c1, c2 = compare v lo, compare v hi in
    (c1 <= 0 || for_all_slice compare f l lo hi) &&
    (c1 < 0 || c2 > 0 || f v) &&
    (c2 >= 0 || for_all_slice compare f r lo hi)

let rec exists_slice compare f m lo hi =
  match m with
  | Empty -> false
  | Node {l;v;r} ->
    let c1, c2 = compare v lo, compare v hi in
    (c1 > 0 && exists_slice compare f l lo hi) ||
    (c1 >= 0 && c2 <= 0 && f v) ||
    (c2 < 0 && exists_slice compare f r lo hi)


(* new versions, optimised with _diff functions *)

let equal compare s1 s2 =
  for_all2_diff compare (fun _ -> false) (fun _ -> false) s1 s2

let subset compare s1 s2 =
  for_all2_diff compare (fun _ -> false) (fun _ -> true) s1 s2

let compare cmp s1 s2 =
  let r = ref 0 in
  try
    iter2_diff cmp
      (fun _ -> r :=  1; raise Exit)
      (fun _ -> r := -1; raise Exit)
      s1 s2;
    !r
  with Exit -> !r


(* printing *)

let print_gen o printer key ch s =
  if s = Empty then o ch printer.print_empty else (
    let first = ref true in
    o ch printer.print_begin;
    iter
      (fun k ->
         if !first then first := false else o ch printer.print_sep;
         key ch k
      ) s;
    o ch printer.print_end
  )
(* internal printing helper *)

let print printer key ch l =
  print_gen output_string printer key ch l

let bprint printer key ch l =
  print_gen Buffer.add_string printer key ch l

let fprint printer key ch l =
  print_gen
    (fun fmt s -> Format.fprintf fmt "%s@," s)
    printer key ch l

let to_string printer key l =
  let b = Buffer.create 10 in
  print_gen (fun () s -> Buffer.add_string b s) printer
    (fun () k ->  Buffer.add_string b (key k)) () l;
  Buffer.contents b




let printer_default = {
  print_empty="{}";
  print_begin="{";
  print_sep=",";
  print_end="}";
}
(** [MOPSA] Print as set: {elem1,...,elemn} *)


let empty compare = {set = empty; compare}
let is_empty s = is_empty s.set
let mem x s = mem s.compare x s.set
let add x s =
  let set = add s.compare x s.set in
  if set == s.set then s else {s with set}
let singleton compare x = {set = singleton x; compare}
let remove x s =
  let set = remove s.compare x s.set in
  if set == s.set then s else {s with set}
let union s1 s2 = {s1 with set = union s1.compare s1.set s2.set}
let inter s1 s2 = {s1 with set = inter s1.compare s1.set s2.set}
let diff s1 s2 = {s1 with set = diff s1.compare s1.set s2.set}
let compare s1 s2 = compare s1.compare s1.set s2.set
let equal s1 s2 = equal s1.compare s1.set s2.set
let subset s1 s2 = subset s1.compare s1.set s2.set
let iter f s = iter f s.set
let map f s = {s with set = map s.compare f s.set}
let fold f s x = fold f s.set x
let for_all f s = for_all f s.set
let exists f s = exists f s.set
let filter f s = {s with set = filter f s.set}
let partition f s =
  let set1,set2 = partition f s.set in
  {s with set=set1}, {s with set=set1}
let cardinal s = cardinal s.set
let elements s = elements s.set
let min_elt s = min_elt s.set
let min_elt_opt s = min_elt_opt s.set
let max_elt s = max_elt s.set
let max_elt_opt s = max_elt_opt s.set
let choose s = choose s.set
let choose_opt s = choose_opt s.set
let split x s =
  let set1,b,set2 = split s.compare x s.set in
  {s with set=set1},b,{s with set=set2}
let find x s = find s.compare x s.set
let find_opt x s = find_opt s.compare x s.set
let find_first f s = find_first f s.set
let find_first_opt f s = find_first_opt f s.set
let find_last f s = find_last f s.set
let find_last_opt f s = find_last_opt f s.set
let of_list compare l = {set=of_list compare l; compare}
OCaml

Innovation. Community. Security.