Source file NPDtree.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
(** {1 Non-Perfect Discrimination Tree} *)
module T = Term
module S = Subst
module TC = T.Classic
let prof_npdtree_retrieve = Util.mk_profiler "NPDtree_retrieve"
let prof_npdtree_term_unify = Util.mk_profiler "NPDtree_term_unify"
let prof_npdtree_term_generalizations =
Util.mk_profiler "NPDtree_term_generalizations"
let prof_npdtree_term_specializations =
Util.mk_profiler "NPDtree_term_specializations"
(** {2 Term traversal} *)
(** Term traversal in prefix order. This is akin to lazy transformation
to a flatterm. *)
type iterator = {
cur_term : T.t;
stack : T.t list list;
}
let open_term ~stack t = match T.view t with
| T.Var _
| T.DB _
| T.AppBuiltin _
| T.Fun _
| T.Const _ ->
Some {cur_term=t; stack=[]::stack;}
| _ when not (Unif.Ty.type_is_unifiable (T.ty t)) || Type.is_fun (T.ty t) ->
Some {cur_term=t; stack=[]::stack;}
| T.App (f, _) when (T.is_var f) ->
Some {cur_term=t; stack=[]::stack;}
| T.App (_, l) ->
Some {cur_term=t; stack=l::stack;}
type view_head =
| As_star
| As_app of ID.t * T.t list
let view_head (t:T.t) : view_head =
if
not (T.is_app t) ||
not (Unif.Ty.type_is_unifiable (T.ty t)) ||
Type.is_fun (T.ty t) ||
T.is_ho_app t
then As_star
else (
let s,l = T.as_app t in
begin match T.view s with
| T.Const id -> As_app (id, l)
| _ -> As_star
end
)
let rec next_rec stack = match stack with
| [] -> None
| []::stack' -> next_rec stack'
| (t::next')::stack' ->
open_term ~stack:(next'::stack') t
let skip iter = match iter.stack with
| [] -> None
| _next::stack' -> next_rec stack'
let next iter = next_rec iter.stack
let iterate term = open_term ~stack:[] term
(** {2 Unix index} *)
module Make(E : Index.EQUATION) = struct
module E = E
type rhs = E.rhs
module Leaf = Index.MakeLeaf(E)
type t = {
star : t option;
map : t ID.Map.t;
leaf : Leaf.t;
}
let empty () = {map=ID.Map.empty; star=None; leaf=Leaf.empty;}
let is_empty n = n.star = None && ID.Map.is_empty n.map && Leaf.is_empty n.leaf
exception NoSuchTrie
let find_sub map key =
try ID.Map.find key map
with Not_found -> raise NoSuchTrie
(** get/add/remove the leaf for the given term. The
continuation k takes the leaf, and returns a leaf option
that replaces the old leaf.
This function returns the new trie. *)
let goto_leaf trie t k =
let root = trie in
let rec goto trie iter rebuild =
match iter with
| None ->
begin match k trie.leaf with
| leaf' when leaf' == trie.leaf -> root
| leaf' -> rebuild {trie with leaf=leaf'; }
end
| Some i ->
match view_head i.cur_term with
| As_star ->
let subtrie = match trie.star with
| None -> empty ()
| Some trie' -> trie'
in
let rebuild subtrie =
if is_empty subtrie
then rebuild {trie with star=None; }
else rebuild {trie with star=Some subtrie ;}
in
goto subtrie (next i) rebuild
| As_app (s, _) ->
let subtrie =
try find_sub trie.map s
with NoSuchTrie -> empty ()
in
let rebuild subtrie =
if is_empty subtrie
then rebuild {trie with map=ID.Map.remove s trie.map; }
else rebuild {trie with map=ID.Map.add s subtrie trie.map ;}
in
goto subtrie (next i) rebuild
in
goto trie (iterate t) (fun t -> t)
let add trie eqn =
let t, _, _ = E.extract eqn in
let k leaf = Leaf.add leaf t eqn in
goto_leaf trie t k
let remove trie eqn =
let t, _, _ = E.extract eqn in
let k leaf = Leaf.remove leaf t eqn in
goto_leaf trie t k
let add_seq dt seq = Iter.fold add dt seq
let add_list dt = List.fold_left add dt
let remove_seq dt seq = Iter.fold remove dt seq
let retrieve ?(subst=S.empty) ~sign dt t k =
Util.enter_prof prof_npdtree_retrieve;
let k' (t', eqn, subst) =
let _, r, sign' = E.extract eqn in
if sign = sign' then k (t', r, eqn, subst)
in
let rec traverse trie iter =
match iter with
| None ->
Util.exit_prof prof_npdtree_retrieve;
Leaf.fold_match ~subst (Scoped.set dt trie.leaf) t k';
Util.enter_prof prof_npdtree_retrieve;
| Some i ->
match view_head i.cur_term with
| As_star ->
begin match trie.star with
| None -> ()
| Some subtrie ->
traverse subtrie (next i)
end
| As_app (s, _) ->
begin try
let subtrie = find_sub trie.map s in
traverse subtrie (next i)
with NoSuchTrie -> ()
end;
begin match trie.star with
| None -> ()
| Some subtrie ->
traverse subtrie (skip i)
end
in
try
traverse (fst dt) (iterate (fst t));
Util.exit_prof prof_npdtree_retrieve;
with e ->
Util.exit_prof prof_npdtree_retrieve;
raise e
(** iterate on all (term -> value) in the tree *)
let rec iter dt k =
Leaf.iter dt.leaf k;
begin match dt.star with
| None -> ()
| Some trie' -> iter trie' k
end;
ID.Map.iter (fun _ trie' -> iter trie' k) dt.map
let size dt =
let n = ref 0 in
iter dt (fun _ _ -> incr n);
!n
let _as_graph =
CCGraph.make
(fun t ->
let prefix s = match t.star with
| None -> s
| Some t' -> Iter.cons ("*", t') s
and s2 = ID.Map.to_seq t.map
|> Iter.map (fun (sym, t') -> ID.to_string sym, t')
in
prefix s2)
let to_dot out t =
let pp = CCGraph.Dot.pp
~eq:(==)
~tbl:(CCGraph.mk_table ~eq:(==) ~hash:Hashtbl.hash 128)
~attrs_v:(fun t ->
let len = Leaf.size t.leaf in
let shape = if len>0 then "box" else "circle" in
[`Shape shape; `Label (string_of_int len)])
~attrs_e:(fun e -> [`Label e])
~name:"NPDtree" ~graph:_as_graph
in
Format.fprintf out "@[<2>%a@]@." pp t;
()
end
(** {2 General purpose index} *)
module SIMap = Iter.Map.Make(struct
type t = ID.t * int
let compare (s1,i1) (s2,i2) =
if i1 = i2 then ID.compare s1 s2 else i1-i2
end)
module MakeTerm(X : Set.OrderedType) = struct
module Leaf = Index.MakeLeaf(X)
type elt = X.t
type t = {
star : t option;
map : t SIMap.t;
leaf : Leaf.t;
} (** The discrimination tree *)
let empty () = {map=SIMap.empty; star=None; leaf=Leaf.empty;}
let is_empty n = n.star = None && SIMap.is_empty n.map && Leaf.is_empty n.leaf
exception NoSuchTrie
let find_sub map key =
try SIMap.find key map
with Not_found -> raise NoSuchTrie
(** get/add/remove the leaf for the given term. The
continuation k takes the leaf, and returns a leaf option
that replaces the old leaf.
This function returns the new trie. *)
let goto_leaf trie t k =
let root = trie in
let rec goto trie iter rebuild = match iter with
| None ->
begin match k trie.leaf with
| leaf' when leaf' == trie.leaf -> root
| leaf' -> rebuild {trie with leaf=leaf'; }
end
| Some i ->
match view_head i.cur_term with
| As_star ->
let subtrie = match trie.star with
| None -> empty ()
| Some trie' -> trie'
in
let rebuild subtrie =
if is_empty subtrie
then rebuild {trie with star=None; }
else rebuild {trie with star=Some subtrie ;}
in
goto subtrie (next i) rebuild
| As_app (s,l) ->
let arity = List.length l in
let subtrie =
try find_sub trie.map (s,arity)
with NoSuchTrie -> empty ()
in
let rebuild subtrie =
if is_empty subtrie
then rebuild {trie with map=SIMap.remove (s,arity) trie.map; }
else rebuild {trie with map=SIMap.add (s,arity) subtrie trie.map ;}
in
goto subtrie (next i) rebuild
in
goto trie (iterate t) (fun t -> t)
let add trie t data =
let k leaf = Leaf.add leaf t data in
goto_leaf trie t k
let add_ trie = CCFun.uncurry (add trie)
let add_seq = Iter.fold add_
let add_list = List.fold_left add_
let remove trie t data =
let k leaf = Leaf.remove leaf t data in
goto_leaf trie t k
let remove_ trie = CCFun.uncurry (remove trie)
let remove_seq dt seq = Iter.fold remove_ dt seq
let remove_list dt seq = List.fold_left remove_ dt seq
let skip_tree trie k =
let rec skip trie n k =
if n = 0
then k trie
else (
begin match trie.star with
| None -> ()
| Some trie' -> skip trie' (n-1) k
end;
SIMap.iter
(fun (_,arity) trie' -> skip trie' (n+arity-1) k)
trie.map
)
in
skip trie 1 k
let retrieve_unifiables_aux fold_unify dt t k =
Util.enter_prof prof_npdtree_term_unify;
let rec traverse trie iter = match iter with
| None ->
Util.exit_prof prof_npdtree_term_unify;
fold_unify (Scoped.set dt trie.leaf) t k;
Util.enter_prof prof_npdtree_term_unify;
| Some i ->
match view_head i.cur_term with
| As_star ->
skip_tree trie
(fun subtrie -> traverse subtrie (next i))
| As_app (s,l) ->
let arity = List.length l in
begin try
let subtrie = SIMap.find (s,arity) trie.map in
traverse subtrie (next i)
with Not_found -> ()
end;
begin match trie.star with
| None -> ()
| Some subtrie ->
traverse subtrie (skip i)
end
in
try
traverse (fst dt) (iterate (fst t));
Util.exit_prof prof_npdtree_term_unify;
with e ->
Util.exit_prof prof_npdtree_term_unify;
raise e
let retrieve_unifiables = retrieve_unifiables_aux Leaf.fold_unify
let retrieve_unifiables_complete ?(unif_alg=JP_unif.unify_scoped) = retrieve_unifiables_aux (Leaf.fold_unify_complete ~unif_alg)
let retrieve_generalizations ?(subst=S.empty) dt t k =
Util.enter_prof prof_npdtree_term_generalizations;
let rec traverse trie iter = match iter with
| None ->
Util.exit_prof prof_npdtree_term_generalizations;
Leaf.fold_match ~subst (Scoped.set dt trie.leaf) t k;
Util.enter_prof prof_npdtree_term_generalizations;
| Some i ->
match view_head i.cur_term with
| As_star ->
begin match trie.star with
| None -> ()
| Some subtrie ->
traverse subtrie (next i)
end
| As_app (s,l) ->
let arity = List.length l in
begin try
let subtrie = SIMap.find (s,arity) trie.map in
traverse subtrie (next i)
with Not_found -> ()
end;
begin match trie.star with
| None -> ()
| Some subtrie ->
traverse subtrie (skip i)
end
in
try
traverse (fst dt) (iterate (fst t));
Util.exit_prof prof_npdtree_term_generalizations;
with e ->
Util.exit_prof prof_npdtree_term_generalizations;
raise e
let retrieve_specializations ?(subst=S.empty) dt t k =
Util.enter_prof prof_npdtree_term_specializations;
let rec traverse trie iter = match iter with
| None ->
Util.exit_prof prof_npdtree_term_specializations;
Leaf.fold_matched ~subst (Scoped.set dt trie.leaf) t k;
Util.enter_prof prof_npdtree_term_specializations;
| Some i ->
match view_head i.cur_term with
| As_star ->
skip_tree trie
(fun subtrie -> traverse subtrie (next i))
| As_app (s,l) ->
let arity = List.length l in
begin try
let subtrie = SIMap.find (s,arity) trie.map in
traverse subtrie (next i)
with Not_found -> ()
end
in
try
traverse (fst dt) (iterate (fst t));
Util.exit_prof prof_npdtree_term_specializations;
with e ->
Util.exit_prof prof_npdtree_term_specializations;
raise e
(** iterate on all (term -> value) in the tree *)
let rec iter dt k =
Leaf.iter dt.leaf k;
begin match dt.star with
| None -> ()
| Some trie' -> iter trie' k
end;
SIMap.iter (fun _ trie' -> iter trie' k) dt.map
let rec fold dt k acc =
let acc = Leaf.fold dt.leaf acc k in
let acc = match dt.star with
| None -> acc
| Some trie' -> fold trie' k acc
in
SIMap.fold (fun _ trie' acc -> fold trie' k acc) dt.map acc
let size dt =
let n = ref 0 in
iter dt (fun _ _ -> incr n);
!n
let name = "npdtree"
let _as_graph =
CCGraph.make
(fun t ->
let prefix s = match t.star with
| None -> s
| Some t' -> Iter.cons ("*", t') s
and s2 = SIMap.to_seq t.map
|> Iter.map
(fun ((sym,i), t') ->
let label = CCFormat.sprintf "%a/%d" ID.pp sym i in
label, t')
in
prefix s2)
let to_dot _ out t =
Util.debugf 2
"@[<2>print graph of size %d@]" (fun k->k (size t));
let pp = CCGraph.Dot.pp
~eq:(==)
~tbl:(CCGraph.mk_table ~eq:(==) ~hash:Hashtbl.hash 128)
~attrs_v:(fun t ->
let len = Leaf.size t.leaf in
let shape = if len>0 then "box" else "circle" in
[`Shape shape; `Label (string_of_int len)])
~attrs_e:(fun e -> [`Label e])
~name:"NPDtree" ~graph:_as_graph
in
Format.fprintf out "@[<2>%a@]@." pp t;
()
end