Source file lpo.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
(** {1 Constraint Solving for LPO} *)
open Logtk
module SI = Msat.Solver_intf
let section = Util.Section.(make ~parent:(make "solving") "lpo")
(** {6 Constraints} *)
module Constraint = struct
type expr = ID.t
type t =
| EQ of expr * expr
| LE of expr * expr
| LT of expr * expr
| And of t list
| Or of t list
| Not of t
| True
| False
let eq a b = EQ (a,b)
let neq a b = Not (EQ (a, b))
let le a b = LE (a,b)
let lt a b = LT (a,b)
let ge a b = LE (b,a)
let gt a b = LT (b,a)
let and_ l = And l
let or_ l = Or l
let not_ t = Not t
let imply a b = Or [Not a; b]
let true_ = True
let false_ = False
module Seq = struct
let exprs c k =
let rec iter c = match c with
| EQ (a,b) | LE(a,b) | LT(a,b) -> k a; k b
| And l | Or l -> List.iter iter l
| Not t -> iter t
| True | False -> ()
in
iter c
end
let pp_expr = ID.pp
let rec pp out t = match t with
| EQ (a,b) -> Format.fprintf out "(= %a %a)" pp_expr a pp_expr b
| LE (a,b) -> Format.fprintf out "(<= %a %a)" pp_expr a pp_expr b
| LT (a,b) -> Format.fprintf out "(< %a %a)" pp_expr a pp_expr b
| And l -> Format.fprintf out "(and %a)" (Util.pp_list ~sep:" " pp) l
| Or l -> Format.fprintf out "(or %a)" (Util.pp_list ~sep:" " pp) l
| Not t -> Format.fprintf out "(not %a)" pp t
| True -> CCFormat.string out "true"
| False -> CCFormat.string out "false"
let to_string = CCFormat.to_string pp
let rec simplify t =
match t with
| EQ (a, b) when ID.equal a b -> true_
| LE (a, b) when ID.equal a b -> true_
| LT (a, b) when ID.equal a b -> false_
| Not (Not t) -> simplify t
| Not True -> true_
| Not False -> true_
| Not (And l) -> simplify (or_ (List.map not_ l))
| Not (Or l) -> simplify (and_ (List.map not_ l))
| And [] -> true_
| Or [] -> true_
| And [x] -> simplify x
| Or [x] -> simplify x
| And l ->
let l' = List.fold_left flatten_and [] l in
begin match l' with
| [] -> true_
| _ when List.mem false_ l' -> false_
| [x] -> x
| _ -> and_ l'
end
| Or l ->
let l' = List.fold_left flatten_or [] l in
begin match l' with
| [] -> false_
| _ when List.mem true_ l' -> true_
| [x] -> x
| _ -> or_ l'
end
| _ -> t
and flatten_or acc t = match simplify t with
| False -> acc
| Or l -> List.fold_left flatten_or acc l
| t' -> t' :: acc
and flatten_and acc t = match simplify t with
| True -> acc
| And l -> List.fold_left flatten_and acc l
| t' -> t' :: acc
end
module Solution = struct
type t = (ID.t * ID.t) list
let neg_to_constraint sol =
let module C = Constraint in
let l = List.map (fun (a,b) -> C.le a b) sol in
C.or_ l
let pp out s =
Util.pp_list (Util.pp_pair ~sep:" > " ID.pp ID.pp) out s
let to_string = CCFormat.to_string pp
end
module C = Constraint
(** Functor to use Sat, and encode/decode the solution.
Use "Solving Partial Order Constraints for LPO Termination", Codish & al *)
module MakeSolver(X : sig end) = struct
module Lit = struct
type t = int
let fresh = let n = ref 0 in fun () -> incr n; !n
let sign x = x>0
let abs = abs
let pp = Format.pp_print_int
let dummy = 0
let neg i = -i
let hash i = i land max_int
let equal i j = i=j
let norm i = if i>0 then i, SI.Same_sign else -i, SI.Negated
end
module Solver = Msat.Make_pure_sat(struct
module Formula = Lit
type proof = unit
end)
let solver = Solver.create ~size:`Big ()
module Atom : sig
type t
val make : ID.t -> int -> t
val equal : t -> t -> bool
val hash : t -> int
val print : Format.formatter -> t -> unit
end = struct
type t = ID.t * int
let make s i = s, i
let equal (s1,i1)(s2,i2) = ID.equal s1 s2 && i1 = i2
let hash (s,i) = Hash.combine3 42 (ID.hash s) (Hash.int i)
let print fmt (s,i) = Format.fprintf fmt "%a/%d" ID.pp s i
end
module AtomTbl = CCHashtbl.Make(Atom)
let atom_to_int_ = AtomTbl.create 16
let int_to_atom_ = Hashtbl.create 16
let atom_to_lit a =
try
AtomTbl.find atom_to_int_ a
with Not_found ->
let i = Lit.fresh () in
AtomTbl.add atom_to_int_ a i;
Hashtbl.add int_to_atom_ i a;
i
let digit s n = atom_to_lit (Atom.make s n)
module F = Msat_tseitin.Make(Lit)
let rec encode_lt ~n a b =
if n = 0 then F.f_false
else
let d_a = F.make_atom (digit a n)
and d_b = F.make_atom (digit b n) in
F.make_or
[ F.make_and [ F.make_not d_a; d_b ]
; F.make_and [ F.make_equiv d_a d_b; encode_lt ~n:(n-1) a b]
]
let encode_leq ~n a b =
F.make_not (encode_lt ~n b a)
let rec encode_eq ~n a b =
if n = 0 then F.f_true
else
let d_a = F.make_atom (digit a n)
and d_b = F.make_atom (digit b n) in
F.make_and [ F.make_equiv d_a d_b; encode_eq ~n:(n-1) a b ]
let rec encode_constr ~n c = match c with
| C.EQ(a,b) -> encode_eq ~n a b
| C.LE(a,b) -> encode_leq ~n a b
| C.LT(a,b) -> encode_lt ~n a b
| C.And l -> F.make_and (List.rev_map (encode_constr ~n) l)
| C.Or l -> F.make_or (List.rev_map (encode_constr ~n) l)
| C.Not c' -> F.make_not (encode_constr ~n c')
| C.True -> F.f_true
| C.False -> F.f_false
let int_of_symbol sat ~n s : int =
let r = ref 0 in
for i = n downto 1 do
let lit = digit s i in
let is_true = sat.SI.eval lit in
if is_true
then r := 2 * !r + 1
else r := 2 * !r
done;
Util.debugf ~section 3 "index of symbol %a in precedence is %d" (fun k->k ID.pp s !r);
!r
let get_solution sat ~n (symbols:ID.t list) : (ID.t * ID.t) list =
let syms = List.rev_map (fun s -> int_of_symbol sat ~n s, s) symbols in
let syms = List.sort (fun (n1,_)(n2,_) -> n1-n2) syms in
let _, _, sol = List.fold_left
(fun (cur_n,other_s,acc) (n,s) ->
if n = cur_n
then n, s::other_s, acc
else begin
assert (cur_n < n);
let acc = List.fold_left
(fun acc s' -> (s, s') :: acc)
acc other_s
in n, [s], acc
end
) (~-1,[],[]) syms
in
sol
let print_lit fmt i =
if not (Lit.sign i) then Format.fprintf fmt "¬";
try
let a = Hashtbl.find int_to_atom_ (Lit.abs i) in
Atom.print fmt a
with Not_found ->
Format.fprintf fmt "L%d" (abs (i : Lit.t :> int))
let print_clause fmt c =
Format.fprintf fmt "@[<hv2>%a@]"
(Util.pp_list ~sep:" or " print_lit) c
let print_clauses fmt c =
Format.fprintf fmt "@[<v>%a@]" (Util.pp_list ~sep:"" print_clause) c
let solve_list l =
let symbols =
Iter.of_list l
|> Iter.flat_map C.Seq.exprs
|> ID.Set.of_seq
|> ID.Set.elements
in
let num = List.length symbols in
let n = int_of_float (ceil (log (float_of_int num) /. log 2.)) in
Util.debugf ~section 2 "constraints on %d symbols -> %d digits (%d bool vars)"
(fun k->k num n (n * num));
let encode_constr c =
Util.debugf ~section 5 "encode constr %a..." (fun k->k C.pp c);
let f = encode_constr ~n c in
Util.debugf ~section 5 " ... @[<2>%a@]" (fun k->k F.pp f);
let clauses = F.make_cnf f in
Util.debugf ~section 5 " ... @[<0>%a@]" (fun k->k print_clauses clauses);
Solver.assume solver clauses ();
Util.debug ~section 5 "form assumed"
in
List.iter encode_constr l;
let rec next () =
Util.debug ~section 5 "check satisfiability";
match Solver.solve solver with
| Solver.Sat sat ->
Util.debug ~section 5 "next solution exists, try to extract it...";
let solution = get_solution sat ~n symbols in
Util.debugf ~section 5 "... solution is %a" (fun k->k Solution.pp solution);
let tl = lazy (negate ~n solution) in
LazyList.Cons (solution, tl)
| Solver.Unsat _ ->
Util.debug ~section 5 "no solution";
LazyList.Nil
and negate ~n:_ solution =
let c = Solution.neg_to_constraint solution in
encode_constr c;
match Solver.solve solver with
| Solver.Sat _ -> next()
| Solver.Unsat _ -> LazyList.Nil
in
lazy (next())
end
let solve_multiple l =
let l = List.rev_map C.simplify l in
Util.debugf ~section 2 "lpo: solve constraints %a" (fun k->k (CCFormat.list C.pp) l);
let module S = MakeSolver(struct end) in
S.solve_list l
(** {6 LPO} *)
let any_bigger ~orient_lpo l b = match l with
| [] -> C.false_
| [x] -> orient_lpo x b
| _ ->
C.or_ (List.rev_map (fun x -> orient_lpo x b) l)
and all_bigger ~orient_lpo a l = match l with
| [] -> C.true_
| [x] -> orient_lpo a x
| _ ->
C.and_ (List.rev_map (fun y -> orient_lpo a y) l)
and lexico_order ~eq ~orient_lpo l1 l2 =
assert (List.length l1 = List.length l2);
let c = List.fold_left2
(fun constr a b ->
match constr with
| Some _ -> constr
| None when eq a b -> None
| None -> Some (orient_lpo a b))
None l1 l2
in match c with
| None -> C.false_
| Some c -> c
module FO = struct
module T = Term
type term = T.t
module TC = T.Classic
let rec orient_lpo a b =
match TC.view a, TC.view b with
| (TC.Var _ | TC.DB _), _ ->
C.false_
| _, _ when T.subterm ~sub:b a ->
C.true_
| TC.App (f, ((_::_) as l)), TC.App (g, l')
when List.length l = List.length l' ->
C.or_
[ C.and_
[ C.eq f g
; lexico_order ~eq:T.equal ~orient_lpo l l' ]
; C.and_
[ C.gt f g
; all_bigger ~orient_lpo a l'
]
; any_bigger ~orient_lpo l b
]
| TC.App (f, l), TC.App (g, l') ->
C.or_
[ C.and_
[ C.gt f g
; all_bigger ~orient_lpo a l'
]
; any_bigger ~orient_lpo l b
]
| TC.App (_, l), _ ->
any_bigger ~orient_lpo l b
| TC.AppBuiltin _, _
| _, TC.AppBuiltin _
| TC.NonFO, _ ->
C.false_
let orient_lpo_list l =
List.map
(fun (l,r) ->
let c = orient_lpo l r in
let c' = C.simplify c in
Util.debugf ~section 2 "constr %a simplified into %a" (fun k->k C.pp c C.pp c');
c')
l
end
module TypedSTerm = struct
module T = TypedSTerm
type term = T.t
let rec orient_lpo a b =
match T.view a, T.view b with
| T.Var _ , _ ->
C.false_
| _ when T.equal a b -> C.false_
| _ when T.is_subterm ~strict:true b ~of_:a ->
C.true_
| T.App (f, l), T.App (g, l') ->
begin match T.view f, T.view g with
| T.Const f, T.Const g when List.length l = List.length l' ->
C.or_
[ C.and_
[ C.eq f g
; lexico_order ~eq:T.equal ~orient_lpo l l' ]
; C.and_
[ C.gt f g
; all_bigger ~orient_lpo a l'
]
; any_bigger ~orient_lpo l b
]
| T.Const f, T.Const g ->
C.or_
[ C.and_
[ C.gt f g
; all_bigger ~orient_lpo a l'
]
; any_bigger ~orient_lpo l b
]
| _ -> C.false_
end
| T.App (f, l), _ when T.is_const f ->
any_bigger ~orient_lpo l b
| _ ->
C.false_
let orient_lpo_list l =
List.map
(fun (l,r) ->
let c = orient_lpo l r in
let c' = C.simplify c in
Util.debugf ~section 2 "constr %a simplified into %a" (fun k->k C.pp c C.pp c');
c')
l
end