package containers

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file CCGraph.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

(* This file is free software, part of containers. See file "license" for more details. *)

(** {1 Simple Graph Interface} *)

(** {2 Iter Helpers} *)

type 'a iter = ('a -> unit) -> unit
(** A sequence of items of type ['a], possibly infinite
    @since 2.8 *)

type 'a iter_once = 'a iter
(** Iter that should be used only once
    @since 2.8 *)

type 'a sequence = ('a -> unit) -> unit
(** A sequence of items of type ['a], possibly infinite
    @deprecate see {!iter} instead *)
[@@ocaml.deprecated "see iter"]

type 'a sequence_once = 'a iter
(** Iter that should be used only once
    @deprecate see {!iter_once} instead *)
[@@ocaml.deprecated "see iter_once"]

exception Iter_once

let (|>) x f = f x

module Iter = struct
  type 'a t = 'a iter
  let return x k = k x
  let (>>=) a f k = a (fun x -> f x k)
  let map f a k = a (fun x -> k (f x))
  let filter_map f a k = a (fun x -> match f x with None -> () | Some y -> k y)
  let iter f a = a f
  let fold f acc a =
    let acc = ref acc in
    a (fun x -> acc := f !acc x);
    !acc
  let to_list seq = fold (fun acc x->x::acc) [] seq |> List.rev
  exception Exit_
  let exists_ f seq =
    try seq (fun x -> if f x then raise Exit_); false
    with Exit_ -> true
end

module Seq = Iter

(** {2 Interfaces for graphs} *)

(** Directed graph with vertices of type ['v] and edges labeled with [e'] *)
type ('v, 'e) t = ('v -> ('e * 'v) iter)

type ('v, 'e) graph = ('v, 'e) t

let make (f:'v->('e*'v) iter): ('v, 'e) t = f

(** Mutable bitset for values of type ['v] *)
type 'v tag_set = {
  get_tag: 'v -> bool;
  set_tag: 'v -> unit; (** Set tag for the given element *)
}

(** Mutable table with keys ['k] and values ['a] *)
type ('k, 'a) table = {
  mem: 'k -> bool;
  find: 'k -> 'a;  (** @raise Not_found *)
  add: 'k -> 'a -> unit; (** Erases previous binding *)
}

(** Mutable set *)
type 'a set = ('a, unit) table

let mk_table (type k) ~eq ?(hash=Hashtbl.hash) size =
  let module H = Hashtbl.Make(struct
      type t = k
      let equal = eq
      let hash = hash
    end) in
  let tbl = H.create size in
  { mem=(fun k -> H.mem tbl k)
  ; find=(fun k -> H.find tbl k)
  ; add=(fun k v -> H.replace tbl k v)
  }

let mk_map (type k) ~cmp () =
  let module M = Map.Make(struct
      type t = k
      let compare = cmp
    end) in
  let tbl = ref M.empty in
  { mem=(fun k -> M.mem k !tbl)
  ; find=(fun k -> M.find k !tbl)
  ; add=(fun k v -> tbl := M.add k v !tbl)
  }

(** {2 Bags} *)

type 'a bag = {
  push: 'a -> unit;
  is_empty: unit -> bool;
  pop: unit -> 'a;  (** raises some exception is empty *)
}

let mk_queue () =
  let q = Queue.create() in
  { push=(fun x -> Queue.push x q)
  ; is_empty=(fun () -> Queue.is_empty q)
  ; pop=(fun () -> Queue.pop q);
  }

let mk_stack() =
  let s = Stack.create() in
  { push=(fun x -> Stack.push x s)
  ; is_empty=(fun () -> Stack.is_empty s)
  ; pop=(fun () -> Stack.pop s);
  }

(** Implementation from http://en.wikipedia.org/wiki/Skew_heap *)
module Heap = struct
  type 'a t =
    | E
    | N of 'a * 'a t * 'a t

  let is_empty = function
    | E -> true
    | N _ -> false

  let rec union ~leq t1 t2 = match t1, t2 with
    | E, _ -> t2
    | _, E -> t1
    | N (x1, l1, r1), N (x2, l2, r2) ->
      if leq x1 x2
      then N (x1, union ~leq t2 r1, l1)
      else N (x2, union ~leq t1 r2, l2)

  let insert ~leq h x = union ~leq (N (x, E, E)) h

  let pop ~leq h = match h with
    | E -> raise Not_found
    | N (x, l, r) ->
      x, union ~leq l r
end

let mk_heap ~leq =
  let t = ref Heap.E in
  { push=(fun x -> t := Heap.insert ~leq !t x)
  ; is_empty=(fun () -> Heap.is_empty !t)
  ; pop=(fun () ->
      let x, h = Heap.pop ~leq !t in
      t := h;
      x
    )
  }

(** {2 Traversals} *)

module Traverse = struct
  type ('v, 'e) path = ('v * 'e * 'v) list

  let generic_tag ~tags ~bag ~graph iter =
    let first = ref true in
    fun k ->
      (* ensure linearity *)
      if !first then first := false else raise Iter_once;
      Iter.iter bag.push iter;
      while not (bag.is_empty ()) do
        let x = bag.pop () in
        if not (tags.get_tag x) then (
          k x;
          tags.set_tag x;
          Iter.iter
            (fun (_,dest) -> bag.push dest)
            (graph x)
        )
      done

  let generic ~tbl ~bag ~graph iter =
    let tags = {
      get_tag=tbl.mem;
      set_tag=(fun v -> tbl.add v ());
    } in
    generic_tag ~tags ~bag ~graph iter

  let bfs ~tbl ~graph iter =
    generic ~tbl ~bag:(mk_queue ()) ~graph iter

  let bfs_tag ~tags ~graph iter =
    generic_tag ~tags ~bag:(mk_queue()) ~graph iter

  let dijkstra_tag ?(dist=fun _ -> 1) ~tags ~graph iter =
    let tags' = {
      get_tag=(fun (v,_,_) -> tags.get_tag v);
      set_tag=(fun (v,_,_) -> tags.set_tag v);
    }
    and iter' = Iter.map (fun v -> v, 0, []) iter
    and graph' (v,d,p) =
      graph v
      |> Iter.map (fun (e,v') -> e, (v',d+dist e, (v,e,v')::p))
    in
    let bag = mk_heap ~leq:(fun (_,d1,_) (_,d2,_) -> d1 <= d2) in
    generic_tag ~tags:tags' ~bag ~graph:graph' iter'

  let dijkstra ~tbl ?dist ~graph iter =
    let tags = {
      get_tag=tbl.mem;
      set_tag=(fun v -> tbl.add v ());
    } in
    dijkstra_tag ~tags ?dist ~graph iter

  let dfs ~tbl ~graph iter =
    generic ~tbl ~bag:(mk_stack ()) ~graph iter

  let dfs_tag ~tags ~graph iter =
    generic_tag ~tags ~bag:(mk_stack()) ~graph iter

  module Event = struct
    type edge_kind = [`Forward | `Back | `Cross ]

    (** A traversal is a iteruence of such events *)
    type ('v,'e) t =
      [ `Enter of 'v * int * ('v,'e) path  (* unique index in traversal, path from start *)
      | `Exit of 'v
      | `Edge of 'v * 'e * 'v * edge_kind
      ]

    let get_vertex = function
      | `Enter (v, _, _) -> Some (v, `Enter)
      | `Exit v -> Some (v, `Exit)
      | `Edge _ -> None

    let get_enter = function
      | `Enter (v, _, _) -> Some v
      | `Exit _
      | `Edge _ -> None

    let get_exit = function
      | `Exit v -> Some v
      | `Enter _
      | `Edge _ -> None

    let get_edge = function
      | `Edge (v1,e,v2,_) -> Some (v1,e,v2)
      | `Enter _
      | `Exit _ -> None

    let get_edge_kind = function
      | `Edge (v,e,v',k) -> Some (v,e,v',k)
      | `Enter _
      | `Exit _ -> None

    (* is [v] the origin of some edge in [path]? *)
    let rec list_mem_ ~eq ~graph v path = match path with
      | [] -> false
      | (v1,_,_) :: path' ->
        eq v v1 || list_mem_ ~eq ~graph v path'

    let dfs_tag ~eq ~tags ~graph iter =
      let first = ref true in
      fun k ->
        if !first then first := false else raise Iter_once;
        let bag = mk_stack() in
        let n = ref 0 in
        Iter.iter
          (fun v ->
             (* start DFS from this vertex *)
             bag.push (`Enter (v, []));
             while not (bag.is_empty ()) do
               match bag.pop () with
                 | `Enter (v, path) ->
                   if not (tags.get_tag v) then (
                     let num = !n in
                     incr n;
                     tags.set_tag v;
                     k (`Enter (v, num, path));
                     bag.push (`Exit v);
                     Iter.iter
                       (fun (e,v') -> bag.push (`Edge (v,e,v',(v,e,v') :: path)))
                       (graph v);
                   )
                 | `Exit x -> k (`Exit x)
                 | `Edge (v,e,v', path) ->
                   let edge_kind =
                     if tags.get_tag v'
                     then if list_mem_ ~eq ~graph v' path
                       then `Back
                       else `Cross
                     else (
                       bag.push (`Enter (v', path));
                       `Forward
                     )
                   in
                   k (`Edge (v,e,v', edge_kind))
             done
          ) iter

    let dfs ~tbl ~eq ~graph iter =
      let tags = {
        set_tag=(fun v -> tbl.add v ());
        get_tag=tbl.mem;
      } in
      dfs_tag ~eq ~tags ~graph iter
  end

  (*$R
    let l =
      let tbl = mk_table ~eq:CCInt.equal 128 in
      Traverse.Event.dfs ~tbl ~eq:CCInt.equal ~graph:divisors_graph (Iter.return 345614)
      |> Iter.to_list in
    let expected =
    [`Enter (345614, 0, []); `Edge (345614, (), 172807, `Forward);
     `Enter (172807, 1, [(345614, (), 172807)]); `Edge (172807, (), 1, `Forward);
     `Enter (1, 2, [(172807, (), 1); (345614, (), 172807)]); `Exit 1; `Exit 172807;
     `Edge (345614, (), 2, `Forward); `Enter (2, 3, [(345614, (), 2)]);
     `Edge (2, (), 1, `Cross); `Exit 2; `Edge (345614, (), 1, `Cross);
     `Exit 345614]
    in
    assert_equal expected l
  *)
end

(** {2 Cycles} *)

let is_dag ~tbl ~eq ~graph vs =
  Traverse.Event.dfs ~tbl ~eq ~graph vs
  |> Iter.exists_
    (function
      | `Edge (_, _, _, `Back) -> true
      | _ -> false)

(** {2 Topological Sort} *)

exception Has_cycle

let topo_sort_tag ~eq ?(rev=false) ~tags ~graph iter =
  (* use DFS *)
  let l =
    Traverse.Event.dfs_tag ~eq ~tags ~graph iter
    |> Iter.filter_map
      (function
        | `Exit v -> Some v
        | `Edge (_, _, _, `Back) -> raise Has_cycle
        | `Enter _
        | `Edge _ -> None
      )
    |> Iter.fold (fun acc x -> x::acc) []
  in
  if rev then List.rev l else l

let topo_sort ~eq ?rev ~tbl ~graph iter =
  let tags = {
    get_tag=tbl.mem;
    set_tag=(fun v -> tbl.add v ());
  } in
  topo_sort_tag ~eq ?rev ~tags ~graph iter

(*$T
  let tbl = mk_table ~eq:CCInt.equal 128 in \
  let l = topo_sort ~eq:CCInt.equal ~tbl ~graph:divisors_graph (Iter.return 42) in \
  List.for_all (fun (i,j) -> \
    let idx_i = CCList.find_idx ((=)i) l |> CCOpt.get_exn |> fst in \
    let idx_j = CCList.find_idx ((=)j) l |> CCOpt.get_exn |> fst in \
    idx_i < idx_j) \
    [ 42, 21; 14, 2; 3, 1; 21, 7; 42, 3]
  let tbl = mk_table ~eq:CCInt.equal 128 in \
  let l = topo_sort ~eq:CCInt.equal ~rev:true ~tbl ~graph:divisors_graph (Iter.return 42) in \
  List.for_all (fun (i,j) -> \
    let idx_i = CCList.find_idx ((=)i) l |> CCOpt.get_exn |> fst in \
    let idx_j = CCList.find_idx ((=)j) l |> CCOpt.get_exn |> fst in \
    idx_i > idx_j) \
    [ 42, 21; 14, 2; 3, 1; 21, 7; 42, 3]
*)

(** {2 Lazy Spanning Tree} *)

module Lazy_tree = struct
  type ('v, 'e) t = {
    vertex: 'v;
    children: ('e * ('v, 'e) t) list Lazy.t;
  }

  let make_ vertex children = {vertex; children}

  let rec map_v f {vertex=v; children=l} =
    let l' = lazy (List.map (fun (e, child) -> e, map_v f child) (Lazy.force l)) in
    make_ (f v) l'

  let rec fold_v f acc {vertex=v; children=l} =
    let acc = f acc v in
    List.fold_left
      (fun acc (_, t') -> fold_v f acc t')
      acc
      (Lazy.force l)
end

let spanning_tree_tag ~tags ~graph v =
  let rec mk_node v =
    let children = lazy (
      Iter.fold
        (fun acc (e,v') ->
           if tags.get_tag v'
           then acc
           else (
             tags.set_tag v';
             (e, mk_node v') :: acc
           )
        ) [] (graph v)
    )
    in
    Lazy_tree.make_ v children
  in
  mk_node v

let spanning_tree ~tbl ~graph v =
  let tags = {
    get_tag=tbl.mem;
    set_tag=(fun v -> tbl.add v ());
  } in
  spanning_tree_tag ~tags ~graph v

(** {2 Strongly Connected Components} *)

module SCC = struct
  type 'v state = {
    mutable min_id: int; (* min ID of the vertex' scc *)
    id: int;  (* ID of the vertex *)
    mutable on_stack: bool;
    mutable vertex: 'v;
  }

  let mk_cell v n = {
    min_id=n;
    id=n;
    on_stack=false;
    vertex=v;
  }

  (* pop elements of [stack] until we reach node with given [id] *)
  let rec pop_down_to ~id acc stack =
    assert (not(Stack.is_empty stack));
    let cell = Stack.pop stack in
    cell.on_stack <- false;
    if cell.id = id then (
      assert (cell.id = cell.min_id);
      cell.vertex :: acc (* return SCC *)
    ) else pop_down_to ~id (cell.vertex::acc) stack

  let explore ~tbl ~graph iter =
    let first = ref true in
    fun k ->
      if !first then first := false else raise Iter_once;
      (* stack of nodes being explored, for the DFS *)
      let to_explore = Stack.create() in
      (* stack for Tarjan's algorithm itself *)
      let stack = Stack.create () in
      (* unique ID *)
      let n = ref 0 in
      (* exploration *)
      Iter.iter
        (fun v ->
           Stack.push (`Enter v) to_explore;
           while not (Stack.is_empty to_explore) do
             match Stack.pop to_explore with
               | `Enter v ->
                 if not (tbl.mem v) then (
                   (* remember unique ID for [v] *)
                   let id = !n in
                   incr n;
                   let cell = mk_cell v id in
                   cell.on_stack <- true;
                   tbl.add v cell;
                   Stack.push cell stack;
                   Stack.push (`Exit (v, cell)) to_explore;
                   (* explore children *)
                   Iter.iter
                     (fun (_,v') -> Stack.push (`Enter v') to_explore)
                     (graph v)
                 )
               | `Exit (v, cell) ->
                 (* update [min_id] *)
                 assert cell.on_stack;
                 Iter.iter
                   (fun (_,dest) ->
                      (* must not fail, [dest] already explored *)
                      let dest_cell = tbl.find dest in
                      (* same SCC? yes if [dest] points to [cell.v] *)
                      if dest_cell.on_stack
                      then cell.min_id <- min cell.min_id dest_cell.min_id
                   ) (graph v);
                 (* pop from stack if SCC found *)
                 if cell.id = cell.min_id then (
                   let scc = pop_down_to ~id:cell.id [] stack in
                   k scc
                 )
           done
        ) iter;
      assert (Stack.is_empty stack);
      ()
end

type 'v scc_state = 'v SCC.state

let scc ~tbl ~graph iter = SCC.explore ~tbl ~graph iter

(* example from https://en.wikipedia.org/wiki/Strongly_connected_component *)
(*$R
  let set_eq ?(eq=(=)) l1 l2 = CCList.subset ~eq l1 l2 && CCList.subset ~eq l2 l1 in
  let graph = of_list ~eq:CCString.equal
    [ "a", "b"
    ; "b", "e"
    ; "e", "a"
    ; "b", "f"
    ; "e", "f"
    ; "f", "g"
    ; "g", "f"
    ; "b", "c"
    ; "c", "g"
    ; "c", "d"
    ; "d", "c"
    ; "d", "h"
    ; "h", "d"
    ; "h", "g"
  ] in
  let tbl = mk_table ~eq:CCString.equal 128 in
  let res = scc ~tbl ~graph (Iter.return "a") |> Iter.to_list in
  assert_bool "scc"
    (set_eq ~eq:(set_eq ?eq:None) res
      [ [ "a"; "b"; "e" ]
      ; [ "f"; "g" ]
      ; [ "c"; "d"; "h" ]
      ]
    )
*)

(** {2 Pretty printing in the DOT (graphviz) format} *)

module Dot = struct
  type attribute = [
    | `Color of string
    | `Shape of string
    | `Weight of int
    | `Style of string
    | `Label of string
    | `Other of string * string
  ] (** Dot attribute *)

  let pp_list pp_x out l =
    Format.pp_print_string out "[";
    List.iteri
      (fun i x ->
         if i > 0 then Format.fprintf out ",@;";
         pp_x out x)
      l;
    Format.pp_print_string out "]"

  type vertex_state = {
    mutable explored : bool;
    id : int;
  }

  (** Print an enum of Full.traverse_event *)
  let pp_all
      ~tbl
      ~eq
      ?(attrs_v=fun _ -> [])
      ?(attrs_e=fun _ -> [])
      ?(name="graph")
      ~graph out iter =
    (* print an attribute *)
    let pp_attr out attr = match attr with
      | `Color c -> Format.fprintf out "color=%s" c
      | `Shape s -> Format.fprintf out "shape=%s" s
      | `Weight w -> Format.fprintf out "weight=%d" w
      | `Style s -> Format.fprintf out "style=%s" s
      | `Label l -> Format.fprintf out "label=\"%s\"" l
      | `Other (name, value) -> Format.fprintf out "%s=\"%s\"" name value
    (* map from vertices to integers *)
    and get_node =
      let count = ref 0 in
      fun v ->
        try tbl.find v
        with Not_found ->
          let node = {id= !count; explored=false} in
          incr count;
          tbl.add v node;
          node
    and vertex_explored v =
      try (tbl.find v).explored
      with Not_found -> false
    in
    let set_explored v = (get_node v).explored <- true
    and get_id v = (get_node v).id in
    (* the unique name of a vertex *)
    let pp_vertex out v = Format.fprintf out "vertex_%d" (get_id v) in
    (* print preamble *)
    Format.fprintf out "@[<v2>digraph \"%s\" {@;" name;
    (* traverse *)
    let tags = {
      get_tag=vertex_explored;
      set_tag=set_explored; (* allocate new ID *)
    } in
    let events = Traverse.Event.dfs_tag ~eq ~tags ~graph iter in
    Iter.iter
      (function
        | `Enter (v, _n, _path) ->
          let attrs = attrs_v v in
          Format.fprintf out "@[<h>%a %a;@]@," pp_vertex v (pp_list pp_attr) attrs
        | `Exit _ -> ()
        | `Edge (v1,e,v2,_) ->
          let attrs = attrs_e e in
          Format.fprintf out "@[<h>%a -> %a %a;@]@,"
            pp_vertex v1 pp_vertex v2
            (pp_list pp_attr)
            attrs
      ) events;
    (* close *)
    Format.fprintf out "}@]@;@?";
    ()

  let pp_seq = pp_all

  let pp ~tbl ~eq ?attrs_v ?attrs_e ?name ~graph fmt v =
    pp_all ~tbl ~eq ?attrs_v ?attrs_e ?name ~graph fmt (Iter.return v)

  let with_out filename f =
    let oc = open_out filename in
    try
      let fmt = Format.formatter_of_out_channel oc in
      let x = f fmt in
      Format.pp_print_flush fmt ();
      close_out oc;
      x
    with e ->
      close_out oc;
      raise e
end

(** {2 Mutable Graph} *)

type ('v, 'e) mut_graph = {
  graph: ('v, 'e) t;
  add_edge: 'v -> 'e -> 'v -> unit;
  remove : 'v -> unit;
}

let mk_mut_tbl (type k) ~eq ?(hash=Hashtbl.hash) size =
  let module Tbl = Hashtbl.Make(struct
      type t = k
      let hash = hash
      let equal = eq
    end) in
  let tbl = Tbl.create size in
  {
    graph=(fun v yield ->
      try List.iter yield (Tbl.find tbl v)
      with Not_found -> ()
    );
    add_edge=(fun v1 e v2 ->
      let l = try Tbl.find tbl v1 with Not_found -> [] in
      Tbl.replace tbl v1 ((e,v2)::l)
    );
    remove = (fun v -> Tbl.remove tbl v);
  }

(** {2 Immutable Graph} *)

module type MAP = sig
  type vertex
  type 'a t

  val as_graph : 'a t -> (vertex, 'a) graph
  (** Graph view of the map. *)

  val empty : 'a t

  val add_edge : vertex -> 'a -> vertex -> 'a t -> 'a t

  val remove_edge : vertex -> vertex -> 'a t -> 'a t

  val add : vertex -> 'a t -> 'a t
  (** Add a vertex, possibly with no outgoing edge. *)

  val remove : vertex -> 'a t -> 'a t
  (** Remove the vertex and all its outgoing edges.
      Edges that point to the vertex are {b NOT} removed, they must be
      manually removed with {!remove_edge}. *)

  val union : 'a t -> 'a t -> 'a t

  val vertices : _ t -> vertex iter

  val vertices_l : _ t -> vertex list

  val of_list : (vertex * 'a * vertex) list -> 'a t

  val add_list : (vertex * 'a * vertex) list -> 'a t -> 'a t

  val to_list : 'a t -> (vertex * 'a * vertex) list

  val of_iter : (vertex * 'a * vertex) iter -> 'a t
  (** @since 2.8 *)

  val add_iter : (vertex * 'a * vertex) iter -> 'a t -> 'a t
  (** @since 2.8 *)

  val to_iter : 'a t -> (vertex * 'a * vertex) iter
  (** @since 2.8 *)

  val of_seq : (vertex * 'a * vertex) iter -> 'a t
  (** @deprecated use {!of_iter} instead *)

  val add_seq : (vertex * 'a * vertex) iter -> 'a t -> 'a t
  (** @deprecated use {!add_iter} instead *)

  val to_seq : 'a t -> (vertex * 'a * vertex) iter
  (** @deprecated use {!to_iter} instead *)
end

module Map(O : Map.OrderedType) : MAP with type vertex = O.t = struct
  module M = Map.Make(O)

  type vertex = O.t
  type 'a t = 'a M.t M.t
  (* vertex -> set of (vertex * label) *)

  let as_graph m =
    (fun v yield ->
       try
         let sub = M.find v m in
         M.iter (fun v' e -> yield (e, v')) sub
       with Not_found -> ()
    )

  let empty = M.empty

  let add_edge v1 e v2 m =
    let sub = try M.find v1 m with Not_found -> M.empty in
    M.add v1 (M.add v2 e sub) m

  let remove_edge v1 v2 m =
    try
      let map = M.remove v2 (M.find v1 m) in
      if M.is_empty map
      then M.remove v1 m
      else M.add v1 map m
    with Not_found -> m

  let add v m =
    if M.mem v m then m
    else M.add v M.empty m

  let remove v m = M.remove v m

  let union m1 m2 =
    M.merge
      (fun _ s1 s2 -> match s1, s2 with
         | Some s, None
         | None, Some s -> Some s
         | None, None -> assert false
         | Some s1, Some s2 ->
           let s =
             M.merge
               (fun _ e1 e2 -> match e1, e2 with
                  | Some _, _ -> e1
                  | None, _ -> e2)
               s1 s2
           in
           Some s)
      m1 m2

  let vertices m yield = M.iter (fun v _ -> yield v) m

  let vertices_l m = M.fold (fun v _ acc -> v::acc) m []

  let add_list l m = List.fold_left (fun m (v1,e,v2) -> add_edge v1 e v2 m) m l

  let of_list l = add_list l empty

  let to_list m =
    M.fold
      (fun v map acc -> M.fold (fun v' e acc -> (v,e,v')::acc) map acc)
      m []

  let add_iter iter m = Iter.fold (fun m (v1,e,v2) -> add_edge v1 e v2 m) m iter

  let of_iter iter = add_iter iter empty

  let to_iter m k = M.iter (fun v map -> M.iter (fun v' e -> k(v,e,v')) map) m

  let add_seq = add_iter
  let of_seq = of_iter
  let to_seq = to_iter
end

(** {2 Misc} *)

let of_list ~eq l =
  (fun v yield -> List.iter (fun (a,b) -> if eq a v then yield ((),b)) l)

let of_fun f =
  (fun v yield ->
     let l = f v in
     List.iter (fun v' -> yield ((),v')) l
  )

let of_hashtbl tbl =
  (fun v yield ->
     try List.iter (fun b -> yield ((), b)) (Hashtbl.find tbl v)
     with Not_found -> ()
  )

let divisors_graph =
  (fun i ->
     (* divisors of [i] that are [>= j] *)
     let rec divisors j i yield =
       if j < i
       then (
         if (i mod j = 0) then yield ((),j);
         divisors (j+1) i yield
       )
     in
     divisors 1 i
  )
OCaml

Innovation. Community. Security.