Source file CCDeque.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
(** {1 Imperative deque} *)
type 'a cell =
| One of 'a
| Two of 'a * 'a
| Three of 'a * 'a * 'a
(** A cell holding a small number of elements *)
type 'a inner_node = {
mutable cell : 'a cell;
mutable next : 'a inner_node;
mutable prev : 'a inner_node;
}
type 'a node = Empty | Node of 'a inner_node
(** Linked list of cells.
invariant: only the first and last cells are allowed to
be anything but [Three] (all the intermediate ones are [Three])
*)
type 'a t = {
mutable cur : 'a node;
mutable size : int;
}
(** The deque, a double linked list of cells *)
exception Empty
let create () =
{ cur = Empty; size=0 }
let clear q =
q.cur <- Empty;
q.size <- 0;
()
let incr_size_ d = d.size <- d.size + 1
let decr_size_ d = d.size <- d.size - 1
let bool_eq (a : bool) b = Stdlib.(=) a b
let is_empty d =
let res = d.size = 0 in
assert (bool_eq res (d.cur = Empty));
res
let push_front d x =
incr_size_ d;
match d.cur with
| Empty ->
let rec node = { cell=One x; prev = node; next = node } in
d.cur <- Node node
| Node n ->
begin match n.cell with
| One y -> n.cell <- Two (x, y)
| Two (y, z) -> n.cell <- Three (x,y,z)
| Three _ ->
let node = { cell = One x; prev = n.prev; next = n; } in
n.prev.next <- node;
n.prev <- node;
d.cur <- Node node
end
let push_back d x =
incr_size_ d;
match d.cur with
| Empty ->
let rec node = { cell=One x; prev = node; next = node } in
d.cur <- Node node
| Node cur ->
let n = cur.prev in
begin match n.cell with
| One y -> n.cell <- Two (y, x)
| Two (y,z) -> n.cell <- Three (y, z, x)
| Three _ ->
let elt = { cell = One x; next=cur; prev=n; } in
n.next <- elt;
cur.prev <- elt
end
let peek_front_opt d =
match d.cur with
| Empty -> None
| Node cur ->
match cur.cell with
| One x -> Some x
| Two (x,_) -> Some x
| Three (x,_,_) -> Some x
let peek_front d = match peek_front_opt d with
| None -> raise Empty
| Some x -> x
let peek_back_opt d =
match d.cur with
| Empty -> None
| Node cur ->
match cur.prev.cell with
| One x -> Some x
| Two (_,x) -> Some x
| Three (_,_,x) -> Some x
let peek_back d = match peek_back_opt d with
| None -> raise Empty
| Some x -> x
let take_back_node_ n = match n.cell with
| One x -> (true, x)
| Two (x,y) -> n.cell <- One x; (false, y)
| Three (x,y,z) -> n.cell <- Two (x,y); (false, z)
let remove_node_ n =
let next = n.next in
n.prev.next <- next;
next.prev <- n.prev
let take_back_opt d =
match d.cur with
| Empty -> None
| Node cur ->
if Stdlib.(==) cur cur.prev
then (
decr_size_ d;
let is_zero, x = take_back_node_ cur in
if is_zero then d.cur <- Empty;
Some x
) else (
let n = cur.prev in
let is_zero, x = take_back_node_ n in
decr_size_ d;
if is_zero then remove_node_ n;
Some x
)
let take_back d = match take_back_opt d with
| None -> raise Empty
| Some x -> x
let take_front_node_ n = match n.cell with
| One x -> (true, x)
| Two (x,y) -> n.cell <- One y; (false, x)
| Three (x,y,z) -> n.cell <- Two (y,z); (false, x)
let take_front_opt d =
match d.cur with
| Empty -> None
| Node cur ->
if Stdlib.(==) cur.prev cur
then (
decr_size_ d;
let is_zero, x = take_front_node_ cur in
if is_zero then d.cur <- Empty;
Some x
) else (
decr_size_ d;
let is_zero, x = take_front_node_ cur in
if is_zero then (
cur.prev.next <- cur.next;
cur.next.prev <- cur.prev;
d.cur <- Node cur.next;
);
Some x
)
let take_front d = match take_front_opt d with
| None -> raise Empty
| Some x -> x
let remove_back d = ignore (take_back_opt d)
let remove_front d = ignore (take_front_opt d)
let update_front d f =
match d.cur with
| Empty -> ()
| Node cur ->
match cur.cell with
| One x ->
begin match f x with
| None ->
if Stdlib.(!=) cur.prev cur then (
cur.prev.next <- cur.next;
cur.next.prev <- cur.prev;
d.cur <- Node cur.next;
) else (
d.cur <- Empty
)
| Some x -> cur.cell <- One x
end
| Two (x, y) ->
begin match f x with
| None -> cur.cell <- One (y)
| Some x -> cur.cell <- Two (x,y)
end
| Three (x,y,z) ->
begin match f x with
| None -> cur.cell <- Two (y,z)
| Some x -> cur.cell <- Three (x,y,z)
end
let update_back d f =
match d.cur with
| Empty -> ()
| Node cur ->
let n = cur.prev in
match n.cell with
| One x ->
begin match f x with
| None ->
if Stdlib.(!=) cur.prev cur then remove_node_ n
else d.cur <- Empty
| Some x -> n.cell <- One x
end
| Two (x, y) ->
begin match f y with
| None -> n.cell <- One (x)
| Some y -> n.cell <- Two (x,y)
end
| Three (x,y,z) ->
begin match f z with
| None -> n.cell <- Two (x,y)
| Some z -> n.cell <- Three (x,y,z)
end
let iter f d =
let rec iter f ~first n =
begin match n.cell with
| One x -> f x
| Two (x,y) -> f x; f y
| Three (x,y,z) -> f x; f y; f z
end;
if n.next != first then iter f ~first n.next
in
match d.cur with
| Empty -> ()
| Node cur ->
iter f ~first:cur cur
let append_front ~into q = iter (push_front into) q
let append_back ~into q = iter (push_back into) q
let fold f acc d =
let rec aux ~first f acc n =
let acc = match n.cell with
| One x -> f acc x
| Two (x,y) -> f (f acc x) y
| Three (x,y,z) -> f (f (f acc x) y) z
in
if Stdlib.(==) n.next first then acc else aux ~first f acc n.next
in
match d.cur with
| Empty -> acc
| Node cur ->
aux ~first:cur f acc cur
let length d = d.size
type 'a sequence = ('a -> unit) -> unit
type 'a gen = unit -> 'a option
let add_seq_back q seq = seq (fun x -> push_back q x)
let add_seq_front q seq = seq (fun x -> push_front q x)
let of_seq seq =
let deque = create () in
seq (fun x -> push_back deque x);
deque
let to_seq d k = iter k d
let of_list l =
let q = create() in
List.iter (push_back q) l;
q
let to_rev_list q = fold (fun l x -> x::l) [] q
let to_list q = List.rev (to_rev_list q)
let size_cell_ = function
| One _ -> 1
| Two _ -> 2
| Three _ -> 3
let filter_cell_ f = function
| One x as c -> if f x then Some c else None
| Two (x,y) as c ->
let fx = f x in
let fy = f y in
begin match fx, fy with
| true, true -> Some c
| true, false -> Some (One x)
| false, true -> Some (One y)
| _ -> None
end
| Three (x,y,z) as c ->
let fx = f x in
let fy = f y in
let fz = f z in
begin match fx, fy, fz with
| true, true, true -> Some c
| true, true, false -> Some (Two (x,y))
| true, false, true -> Some (Two (x,z))
| true, false, false -> Some (One x)
| false, true, true -> Some (Two (y,z))
| false, true, false -> Some (One y)
| false, false, true -> Some (One z)
| false, false, false -> None
end
let filter_in_place (d:_ t) f : unit =
let update_local_ n =
d.size <- d.size - size_cell_ n.cell;
match filter_cell_ f n.cell with
| None -> None
| Some n as new_cell->
d.size <- d.size + size_cell_ n;
new_cell
in
let rec loop ~stop_at n : unit =
if n != stop_at then (
let n_prev = n.prev in
let n_next = n.next in
let new_cell = update_local_ n in
begin match n_prev.cell, new_cell with
| _, None -> remove_node_ n
| Three _, Some new_cell -> n.cell <- new_cell
| One x, Some (One y) -> remove_node_ n; n_prev.cell <- Two (x,y)
| One (x), Some (Two (y,z))
| Two (x,y), Some (One z) -> remove_node_ n; n_prev.cell <- Three (x,y,z)
| One x, Some (Three (y,z,w))
| Two (x,y), Some (Two (z,w)) -> n_prev.cell <- Three (x,y,z); n.cell <- One w
| Two (x,y), Some (Three (z,w1,w2)) -> n_prev.cell <- Three (x,y,z); n.cell <- Two (w1,w2)
end;
loop ~stop_at n_next;
);
in
let rec new_first_cell ~stop_at n =
if n != stop_at then (
match update_local_ n with
| None ->
new_first_cell ~stop_at n.next
| Some c ->
n.cell <- c; Some n
) else None
in
match d.cur with
| Empty -> ()
| Node cur ->
match update_local_ cur with
| None ->
begin match new_first_cell ~stop_at:cur cur.next with
| None -> d.cur <- Empty
| Some n ->
cur.prev.next <- n;
n.prev <- cur.prev;
d.cur <- Node n;
loop ~stop_at:n n.next
end
| Some c ->
cur.cell <- c;
loop ~stop_at:cur cur.next
let filter f q =
let q' = create() in
iter (fun x -> if f x then push_back q' x) q;
q'
let filter_map f q =
let q' = create() in
iter (fun x -> match f x with None -> () | Some y -> push_back q' y) q;
q'
let rec gen_iter_ f g = match g() with
| None -> ()
| Some x -> f x; gen_iter_ f g
let of_gen g =
let q = create () in
gen_iter_ (fun x -> push_back q x) g;
q
let to_gen q =
match q.cur with
| Empty -> (fun () -> None)
| Node cur ->
let first = cur in
let cell = ref (Some cur.cell) in
let cur = ref cur in
let rec next () =
match !cell with
| None when Stdlib.(==) (!cur).next first -> None
| None ->
let n = !cur in
cur := n.next;
cell := Some (n.next.cell);
next ()
| Some (One x) -> cell := None; Some x
| Some (Two (x,y)) -> cell := Some (One y); Some x
| Some (Three (x,y,z)) -> cell := Some (Two (y,z)); Some x
in
next
let copy d =
let d' = create () in
iter (fun x -> push_back d' x) d;
d'
let equal ~eq a b =
let rec aux eq a b = match a() , b() with
| None, None -> true
| None, Some _
| Some _, None -> false
| Some x, Some y -> eq x y && aux eq a b
in aux eq (to_gen a) (to_gen b)
let compare ~cmp a b =
let rec aux cmp a b = match a() , b() with
| None, None -> 0
| None, Some _ -> -1
| Some _, None -> 1
| Some x, Some y ->
let c = cmp x y in
if c=0 then aux cmp a b else c
in aux cmp (to_gen a) (to_gen b)
type 'a printer = Format.formatter -> 'a -> unit
let pp pp_x out d =
let first = ref true in
Format.fprintf out "@[<hov2>deque {";
iter
(fun x ->
if !first then first:= false else Format.fprintf out ";@ ";
pp_x out x
) d;
Format.fprintf out "}@]"