Source file CCKList.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
(** {1 Continuation List} *)
type 'a sequence = ('a -> unit) -> unit
type 'a gen = unit -> 'a option
type 'a equal = 'a -> 'a -> bool
type 'a ord = 'a -> 'a -> int
type 'a printer = Format.formatter -> 'a -> unit
type + 'a t = unit ->
[ `Nil
| `Cons of 'a * 'a t
]
let nil () = `Nil
let cons a b () = `Cons (a,b)
let empty = nil
let singleton x () = `Cons (x, nil)
let rec _forever x () = `Cons (x, _forever x)
let rec _repeat n x () =
if n<=0 then `Nil else `Cons (x, _repeat (n-1) x)
let repeat ?n x = match n with
| None -> _forever x
| Some n -> _repeat n x
let is_empty l = match l () with
| `Nil -> true
| `Cons _ -> false
let head_exn l = match l() with | `Nil -> raise Not_found | `Cons (x, _) -> x
let head l = match l() with `Nil -> None | `Cons (x, _) -> Some x
let tail_exn l = match l() with | `Nil -> raise Not_found | `Cons (_, l) -> l
let tail l = match l() with | `Nil -> None | `Cons (_, l) -> Some l
let rec equal eq l1 l2 = match l1(), l2() with
| `Nil, `Nil -> true
| `Nil, _
| _, `Nil -> false
| `Cons (x1,l1'), `Cons (x2,l2') ->
eq x1 x2 && equal eq l1' l2'
let rec compare cmp l1 l2 = match l1(), l2() with
| `Nil, `Nil -> 0
| `Nil, _ -> -1
| _, `Nil -> 1
| `Cons (x1,l1'), `Cons (x2,l2') ->
let c = cmp x1 x2 in
if c = 0 then compare cmp l1' l2' else c
let rec fold f acc res = match res () with
| `Nil -> acc
| `Cons (s, cont) -> fold f (f acc s) cont
let rec iter f l = match l () with
| `Nil -> ()
| `Cons (x, l') -> f x; iter f l'
let iteri f l =
let rec aux f l i = match l() with
| `Nil -> ()
| `Cons (x, l') ->
f i x;
aux f l' (i+1)
in
aux f l 0
let length l = fold (fun acc _ -> acc+1) 0 l
let rec take n (l:'a t) () =
if n=0 then `Nil
else match l () with
| `Nil -> `Nil
| `Cons (x,l') -> `Cons (x, take (n-1) l')
let rec take_while p l () = match l () with
| `Nil -> `Nil
| `Cons (x,l') ->
if p x then `Cons (x, take_while p l') else `Nil
let rec drop n (l:'a t) () = match l () with
| l' when n=0 -> l'
| `Nil -> `Nil
| `Cons (_,l') -> drop (n-1) l' ()
let rec drop_while p l () = match l() with
| `Nil -> `Nil
| `Cons (x,l') when p x -> drop_while p l' ()
| `Cons _ as res -> res
let rec map f l () = match l () with
| `Nil -> `Nil
| `Cons (x, l') -> `Cons (f x, map f l')
let mapi f l =
let rec aux f l i () = match l() with
| `Nil -> `Nil
| `Cons (x, tl) ->
`Cons (f i x, aux f tl (i+1))
in
aux f l 0
let rec fmap f (l:'a t) () = match l() with
| `Nil -> `Nil
| `Cons (x, l') ->
begin match f x with
| None -> fmap f l' ()
| Some y -> `Cons (y, fmap f l')
end
let rec filter p l () = match l () with
| `Nil -> `Nil
| `Cons (x, l') ->
if p x
then `Cons (x, filter p l')
else filter p l' ()
let rec append l1 l2 () = match l1 () with
| `Nil -> l2 ()
| `Cons (x, l1') -> `Cons (x, append l1' l2)
let rec cycle l () = append l (cycle l) ()
let rec unfold f acc () = match f acc with
| None -> `Nil
| Some (x, acc') -> `Cons (x, unfold f acc')
let rec flat_map f l () = match l () with
| `Nil -> `Nil
| `Cons (x, l') ->
_flat_map_app f (f x) l' ()
and _flat_map_app f l l' () = match l () with
| `Nil -> flat_map f l' ()
| `Cons (x, tl) ->
`Cons (x, _flat_map_app f tl l')
let product_with f l1 l2 =
let rec _next_left h1 tl1 h2 tl2 () =
match tl1() with
| `Nil -> _next_right ~die:true h1 tl1 h2 tl2 ()
| `Cons (x, tl1') ->
_map_list_left x h2
(_next_right ~die:false (x::h1) tl1' h2 tl2)
()
and _next_right ~die h1 tl1 h2 tl2 () =
match tl2() with
| `Nil when die -> `Nil
| `Nil -> _next_left h1 tl1 h2 tl2 ()
| `Cons (y, tl2') ->
_map_list_right h1 y
(_next_left h1 tl1 (y::h2) tl2')
()
and _map_list_left x l kont () = match l with
| [] -> kont()
| y::l' -> `Cons (f x y, _map_list_left x l' kont)
and _map_list_right l y kont () = match l with
| [] -> kont()
| x::l' -> `Cons (f x y, _map_list_right l' y kont)
in
_next_left [] l1 [] l2
let product l1 l2 =
product_with (fun x y -> x,y) l1 l2
let rec group eq l () = match l() with
| `Nil -> `Nil
| `Cons (x, l') ->
`Cons (cons x (take_while (eq x) l'), group eq (drop_while (eq x) l'))
let rec _uniq eq prev l () = match prev, l() with
| _, `Nil -> `Nil
| None, `Cons (x, l') ->
`Cons (x, _uniq eq (Some x) l')
| Some y, `Cons (x, l') ->
if eq x y
then _uniq eq prev l' ()
else `Cons (x, _uniq eq (Some x) l')
let uniq eq l = _uniq eq None l
let rec filter_map f l () = match l() with
| `Nil -> `Nil
| `Cons (x, l') ->
begin match f x with
| None -> filter_map f l' ()
| Some y -> `Cons (y, filter_map f l')
end
let flatten l = flat_map (fun x->x) l
let range i j =
let rec aux i j () =
if i=j then `Cons(i, nil)
else if i<j then `Cons (i, aux (i+1) j)
else `Cons (i, aux (i-1) j)
in aux i j
let (--) = range
let (--^) i j =
if i=j then empty
else if i<j then range i (j-1)
else range i (j+1)
let rec fold2 f acc l1 l2 = match l1(), l2() with
| `Nil, _
| _, `Nil -> acc
| `Cons(x1,l1'), `Cons(x2,l2') ->
fold2 f (f acc x1 x2) l1' l2'
let rec map2 f l1 l2 () = match l1(), l2() with
| `Nil, _
| _, `Nil -> `Nil
| `Cons(x1,l1'), `Cons(x2,l2') ->
`Cons (f x1 x2, map2 f l1' l2')
let rec iter2 f l1 l2 = match l1(), l2() with
| `Nil, _
| _, `Nil -> ()
| `Cons(x1,l1'), `Cons(x2,l2') ->
f x1 x2; iter2 f l1' l2'
let rec for_all2 f l1 l2 = match l1(), l2() with
| `Nil, _
| _, `Nil -> true
| `Cons(x1,l1'), `Cons(x2,l2') ->
f x1 x2 && for_all2 f l1' l2'
let rec exists2 f l1 l2 = match l1(), l2() with
| `Nil, _
| _, `Nil -> false
| `Cons(x1,l1'), `Cons(x2,l2') ->
f x1 x2 || exists2 f l1' l2'
let rec merge cmp l1 l2 () = match l1(), l2() with
| `Nil, tl2 -> tl2
| tl1, `Nil -> tl1
| `Cons(x1,l1'), `Cons(x2,l2') ->
if cmp x1 x2 < 0
then `Cons (x1, merge cmp l1' l2)
else `Cons (x2, merge cmp l1 l2')
let rec zip a b () = match a(), b() with
| `Nil, _
| _, `Nil -> `Nil
| `Cons (x, a'), `Cons (y, b') -> `Cons ((x,y), zip a' b')
let unzip l =
let rec first l () = match l() with
| `Nil -> `Nil
| `Cons ((x,_), tl) -> `Cons (x, first tl)
and second l () = match l() with
| `Nil -> `Nil
| `Cons ((_, y), tl) -> `Cons (y, second tl)
in
first l, second l
(** {2 Implementations} *)
let return x () = `Cons (x, nil)
let pure = return
let (>>=) xs f = flat_map f xs
let (>|=) xs f = map f xs
let (<*>) fs xs = product_with (fun f x -> f x) fs xs
(** {2 Conversions} *)
let rec _to_rev_list acc l = match l() with
| `Nil -> acc
| `Cons (x,l') -> _to_rev_list (x::acc) l'
let to_rev_list l = _to_rev_list [] l
let to_list l =
let rec direct i (l:'a t) = match l () with
| `Nil -> []
| _ when i=0 -> List.rev (_to_rev_list [] l)
| `Cons (x, f) -> x :: direct (i-1) f
in
direct 200 l
let of_list l =
let rec aux l () = match l with
| [] -> `Nil
| x::l' -> `Cons (x, aux l')
in aux l
let of_array a =
let rec aux a i () =
if i=Array.length a then `Nil
else `Cons (a.(i), aux a (i+1))
in
aux a 0
let to_array l =
match l() with
| `Nil -> [| |]
| `Cons (x, _) ->
let n = length l in
let a = Array.make n x in
iteri
(fun i x -> a.(i) <- x)
l;
a
let rec to_seq res k = match res () with
| `Nil -> ()
| `Cons (s, f) -> k s; to_seq f k
let to_gen l =
let l = ref l in
fun () ->
match !l () with
| `Nil -> None
| `Cons (x,l') ->
l := l';
Some x
type 'a of_gen_state =
| Of_gen_thunk of 'a gen
| Of_gen_saved of [`Nil | `Cons of 'a * 'a t]
let of_gen g =
let rec consume r () = match !r with
| Of_gen_saved cons -> cons
| Of_gen_thunk g ->
begin match g() with
| None ->
r := Of_gen_saved `Nil;
`Nil
| Some x ->
let tl = consume (ref (Of_gen_thunk g)) in
let l = `Cons (x, tl) in
r := Of_gen_saved l;
l
end
in
consume (ref (Of_gen_thunk g))
let sort ~cmp l =
let l = to_list l in
of_list (List.sort cmp l)
let sort_uniq ~cmp l =
let l = to_list l in
uniq (fun x y -> cmp x y = 0) (of_list (List.sort cmp l))
type 'a memoize =
| MemoThunk
| MemoSave of [`Nil | `Cons of 'a * 'a t]
let rec memoize f =
let r = ref MemoThunk in
fun () -> match !r with
| MemoSave l -> l
| MemoThunk ->
let l = match f() with
| `Nil -> `Nil
| `Cons (x, tail) -> `Cons (x, memoize tail)
in
r := MemoSave l;
l
(** {2 Fair Combinations} *)
let rec interleave a b () = match a() with
| `Nil -> b ()
| `Cons (x, tail) -> `Cons (x, interleave b tail)
let rec fair_flat_map f a () = match a() with
| `Nil -> `Nil
| `Cons (x, tail) ->
let y = f x in
interleave y (fair_flat_map f tail) ()
let rec fair_app f a () = match f() with
| `Nil -> `Nil
| `Cons (f1, fs) ->
interleave (map f1 a) (fair_app fs a) ()
let (>>-) a f = fair_flat_map f a
let (<.>) f a = fair_app f a
(** {2 Infix} *)
module Infix = struct
let (>>=) = (>>=)
let (>|=) = (>|=)
let (<*>) = (<*>)
let (>>-) = (>>-)
let (<.>) = (<.>)
let (--) = (--)
let (--^) = (--^)
end
(** {2 Monadic Operations} *)
module type MONAD = sig
type 'a t
val return : 'a -> 'a t
val (>>=) : 'a t -> ('a -> 'b t) -> 'b t
end
module Traverse(M : MONAD) = struct
open M
let map_m f l =
let rec aux acc l = match l () with
| `Nil -> return (of_list (List.rev acc))
| `Cons (x,l') ->
f x >>= fun x' ->
aux (x' :: acc) l'
in
aux [] l
let sequence_m l = map_m (fun x->x) l
let rec fold_m f acc l = match l() with
| `Nil -> return acc
| `Cons (x,l') ->
f acc x >>= fun acc' -> fold_m f acc' l'
end
(** {2 IO} *)
let pp ?(sep=",") pp_item fmt l =
let rec pp fmt l = match l() with
| `Nil -> ()
| `Cons (x,l') ->
Format.pp_print_string fmt sep;
Format.pp_print_cut fmt ();
pp_item fmt x;
pp fmt l'
in
match l() with
| `Nil -> ()
| `Cons (x,l') -> pp_item fmt x; pp fmt l'