package linksem

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file memory_image.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
(*Generated by Lem from memory_image.lem.*)
open Lem_basic_classes
open Lem_function
open Lem_string
open Lem_tuple
open Lem_bool
open Lem_list
open Lem_sorting
open Lem_map
(*import Map_extra*)
open Lem_set
open Lem_set_extra
open Multimap
open Lem_num
open Lem_maybe
open Lem_assert_extra
open Show

open Byte_pattern
open Byte_sequence
open Elf_file
open Elf_header
open Elf_interpreted_segment
open Elf_interpreted_section
open Elf_program_header_table
open Elf_section_header_table
open Elf_symbol_table
open Elf_types_native_uint
open Elf_relocation
open Endianness

open Missing_pervasives

(* Now we can define memory images *)

(* An element might have an address/offset, and it has some contents. *)
type element = { startpos :  Nat_big_num.num option
                ; length1   :  Nat_big_num.num option
                ; contents : byte_pattern
                }

(* HMM -- ideally I want to fold these into the memory image notion
 * and the startpos thingy. *)
type allocated_symbols_map = (string, (Nat_big_num.num * Nat_big_num.num)) Pmap.map (* start, length *)

(* Instead of modelling address calculations (in linker scripts) like so:

type address_expr = natural -> allocated_symbols_map -> natural
                  ( pos     -> environment           -> result address )

   ... we model it as expressions in terms of CursorPosition. HMM.
*)

type expr_operand = Var of string
                   | CursorPosition          (* only valid in certain expressions... HMM *)
                   | Constant of Nat_big_num.num
                   | UnOp of (expr_unary_operation * expr_operand)
                   | BinOp of (expr_binary_operation * expr_operand * expr_operand)
and
expr_unary_operation = Neg of expr_operand
                           | BitwiseInverse of expr_operand
and
expr_binary_operation = Add of (expr_operand * expr_operand)
                           | Sub of (expr_operand * expr_operand)
                           | BitwiseAnd of (expr_operand * expr_operand)
                           | BitwiseOr of (expr_operand * expr_operand)

type expr_binary_relation =
    Lt
    | Lte
    | Gt
    | Gte
    | Eq
    | Neq

type expr =
    False
    | True
    | Not of expr
    | And of (expr * expr)
    | Or of (expr * expr)
    | BinRel of (expr_binary_relation * expr_operand)  (* LH operand is the expr's value *)

(*
val cond_expr : expr -> expr -> expr -> expr
let cond_expr expr1 expr2 expr3 = (Or((And(expr1, expr2)), (And((Not(expr1)), expr3))))
*)

(* Memory image elements all have identities. For convenience
 * we make the identities strings. The string contents are arbitrary,
 * and only their equality is relevant, but choosing friendly names
 * like "ELF header" is good practice.*)
type memory_image = (string, element) Pmap.map

type range = Nat_big_num.num * Nat_big_num.num (* start, length *)

type element_range = string * range

(* An "element" of an ELF image, in the linking phase, is either a section,
 * the ELF header, the section header table or the program header table.
 *
 * PROBLEM: We'd like to use section names as the identifiers
 * for those elements that are sections.
 * but we can't, because they are not guaranteed to be unique.
 *
 * SOLUTION: Names that are unique in the file are used as keys.
 * If not unique, the sections are treated as anonymous and given
 * gensym'd string ids (FIXME: implement this).
 *)

(* Currently, our elements have unique names, which are strings.
 * We *don't* want to encode any meaning onto these strings.
 * All meaning should be encoded into labelled ranges.
 * We want to be able to look up
 *
 * - elements
 * - ranges within elements
 *
 * ... by their *labels* -- or sometimes just *part* of their labels.
 *)

(* ELF file features with which we can label ranges of the memory image. *)
type elf_file_feature =
    ElfHeader of elf64_header
    | ElfSectionHeaderTable of elf64_section_header_table (* do we want to expand these? *)
    | ElfProgramHeaderTable of elf64_program_header_table
    | ElfSection of (Nat_big_num.num * elf64_interpreted_section) (* SHT idx *)
    | ElfSegment of (Nat_big_num.num * elf64_interpreted_segment) (* PHT idx *)

type symbol_definition
 = { def_symname : string
    ; def_syment : elf64_symbol_table_entry (* definition's symtab entry *)
    ; def_sym_scn : Nat_big_num.num                 (* symtab section index, to disamiguate dynsym *)
    ; def_sym_idx : Nat_big_num.num                 (* index of symbol into the symtab *)
    ; def_linkable_idx : Nat_big_num.num            (* used to propagate origin linkable information to linked image *)
    }

let symDefCompare x1 x2:int=
         (quintupleCompare compare elf64_symbol_table_entry_compare Nat_big_num.compare Nat_big_num.compare Nat_big_num.compare (x1.def_symname, x1.def_syment, x1.def_sym_scn, x1.def_sym_idx, x1.def_linkable_idx)
                (x2.def_symname, x2.def_syment, x2.def_sym_scn, x2.def_sym_idx, x2.def_linkable_idx))

let instance_Basic_classes_Ord_Memory_image_symbol_definition_dict:(symbol_definition)ord_class= ({

  compare_method = symDefCompare;

  isLess_method = (fun f1 -> (fun f2 -> ( Lem.orderingEqual(symDefCompare f1 f2) (-1))));

  isLessEqual_method = (fun f1 -> (fun f2 -> Pset.mem (symDefCompare f1 f2)(Pset.from_list compare [(-1); 0])));

  isGreater_method = (fun f1 -> (fun f2 -> ( Lem.orderingEqual(symDefCompare f1 f2) 1)));

  isGreaterEqual_method = (fun f1 -> (fun f2 -> Pset.mem (symDefCompare f1 f2)(Pset.from_list compare [1; 0])))})

type symbol_reference
 = { ref_symname : string                  (* symbol name *)
    ; ref_syment : elf64_symbol_table_entry (* likely-undefined (referencing) symbol *)
    ; ref_sym_scn : Nat_big_num.num                 (* symtab section idx *)
    ; ref_sym_idx : Nat_big_num.num                 (* index into symbol table *)
    }

let symRefCompare x1 x2:int=
         (quadrupleCompare compare elf64_symbol_table_entry_compare Nat_big_num.compare Nat_big_num.compare (x1.ref_symname, x1.ref_syment, x1.ref_sym_scn, x1.ref_sym_idx)
                (x2.ref_symname, x2.ref_syment, x2.ref_sym_scn, x2.ref_sym_idx))

let instance_Basic_classes_Ord_Memory_image_symbol_reference_dict:(symbol_reference)ord_class= ({

  compare_method = symRefCompare;

  isLess_method = (fun f1 -> (fun f2 -> ( Lem.orderingEqual(symRefCompare f1 f2) (-1))));

  isLessEqual_method = (fun f1 -> (fun f2 -> Pset.mem (symRefCompare f1 f2)(Pset.from_list compare [(-1); 0])));

  isGreater_method = (fun f1 -> (fun f2 -> ( Lem.orderingEqual(symRefCompare f1 f2) 1)));

  isGreaterEqual_method = (fun f1 -> (fun f2 -> Pset.mem (symRefCompare f1 f2)(Pset.from_list compare [1; 0])))})

type reloc_site = {
      ref_relent  : elf64_relocation_a
    ; ref_rel_scn : Nat_big_num.num  (* the relocation section idx *)
    ; ref_rel_idx : Nat_big_num.num  (* the index of the relocation rec *)
    ; ref_src_scn : Nat_big_num.num  (* the section *from which* the reference logically comes *)
}

let relocSiteCompare x1 x2:int=
         (quadrupleCompare elf64_relocation_a_compare Nat_big_num.compare Nat_big_num.compare Nat_big_num.compare (x1.ref_relent, x1.ref_rel_scn, x1.ref_rel_idx, x1.ref_src_scn)
                (x2.ref_relent, x2.ref_rel_scn, x2.ref_rel_idx, x2.ref_src_scn))

let instance_Basic_classes_Ord_Memory_image_reloc_site_dict:(reloc_site)ord_class= ({

  compare_method = relocSiteCompare;

  isLess_method = (fun f1 -> (fun f2 -> ( Lem.orderingEqual(relocSiteCompare f1 f2) (-1))));

  isLessEqual_method = (fun f1 -> (fun f2 -> Pset.mem (relocSiteCompare f1 f2)(Pset.from_list compare [(-1); 0])));

  isGreater_method = (fun f1 -> (fun f2 -> ( Lem.orderingEqual(relocSiteCompare f1 f2) 1)));

  isGreaterEqual_method = (fun f1 -> (fun f2 -> Pset.mem (relocSiteCompare f1 f2)(Pset.from_list compare [1; 0])))})

type reloc_decision = LeaveReloc
                    | ApplyReloc
                    | ChangeRelocTo of (Nat_big_num.num * symbol_reference * reloc_site)
                    (* | MakePIC    -- is now a kind of ChangeRelocTo *)

let relocDecisionCompare x1 x2:int=
   ((match (x1, x2) with
    | (LeaveReloc, LeaveReloc) -> 0
    | (LeaveReloc, _)          -> (-1)
    | (ApplyReloc, ApplyReloc) -> 0
    | (ApplyReloc, ChangeRelocTo _) -> (-1)
    | (ApplyReloc, LeaveReloc)      -> 1
    | (ChangeRelocTo t1, ChangeRelocTo t2) -> (tripleCompare Nat_big_num.compare symRefCompare relocSiteCompare t1 t2)
    | (ChangeRelocTo _, _) -> 1
  ))

let instance_Basic_classes_Ord_Memory_image_reloc_decision_dict:(reloc_decision)ord_class= ({

  compare_method = relocDecisionCompare;

  isLess_method = (fun f1 -> (fun f2 -> ( Lem.orderingEqual(relocDecisionCompare f1 f2) (-1))));

  isLessEqual_method = (fun f1 -> (fun f2 -> Pset.mem (relocDecisionCompare f1 f2)(Pset.from_list compare [(-1); 0])));

  isGreater_method = (fun f1 -> (fun f2 -> ( Lem.orderingEqual(relocDecisionCompare f1 f2) 1)));

  isGreaterEqual_method = (fun f1 -> (fun f2 -> Pset.mem (relocDecisionCompare f1 f2)(Pset.from_list compare [1; 0])))})

type symbol_reference_and_reloc_site = {
      ref         : symbol_reference
    ; maybe_reloc :  reloc_site option
    ; maybe_def_bound_to :  (reloc_decision *  symbol_definition option)option
    }

let symRefAndRelocSiteCompare x1 x2:int=
         (tripleCompare symRefCompare (maybeCompare relocSiteCompare) (maybeCompare (pairCompare relocDecisionCompare (maybeCompare symDefCompare))) (x1.ref, x1.maybe_reloc, x1.maybe_def_bound_to)
                (x2.ref, x2.maybe_reloc, x2.maybe_def_bound_to))

let instance_Basic_classes_Ord_Memory_image_symbol_reference_and_reloc_site_dict:(symbol_reference_and_reloc_site)ord_class= ({

  compare_method = symRefAndRelocSiteCompare;

  isLess_method = (fun f1 -> (fun f2 -> ( Lem.orderingEqual(symRefAndRelocSiteCompare f1 f2) (-1))));

  isLessEqual_method = (fun f1 -> (fun f2 -> Pset.mem (symRefAndRelocSiteCompare f1 f2)(Pset.from_list compare [(-1); 0])));

  isGreater_method = (fun f1 -> (fun f2 -> ( Lem.orderingEqual(symRefAndRelocSiteCompare f1 f2) 1)));

  isGreaterEqual_method = (fun f1 -> (fun f2 -> Pset.mem (symRefAndRelocSiteCompare f1 f2)(Pset.from_list compare [1; 0])))})

(* We can also annotate arbitrary ranges of bytes within an element
 * with arbitrary metadata.
 *
 * Ideally we want to data-abstract this a bit. But it's hard to do
 * so without baking in ELF-specific and/or (moreover) per-ABI concepts,
 * like PLTs and GOTs. Ideally we would use something like polymorphic
 * variants here. For now, this has to be the union of all the concepts
 * that we find in the various ABIs we care about. To avoid ELFy things
 * creeping in, we parameterise by 'a, and instantiate the 'a with the
 * relevant ELFy thing when we use it. OH, but then 'a is different for
 * every distinct ELF thing, which is no good. Can we define a mapping
 * from an umbrella "ELF" type to the relevant types in each case? *)
type 'abifeature range_tag = (*  forall 'abifeature . *)
                 ImageBase
               | EntryPoint
               | SymbolDef of symbol_definition
               | SymbolRef of symbol_reference_and_reloc_site
               | FileFeature of elf_file_feature (* file feature other than symdef and reloc *)
               | AbiFeature of 'abifeature

type 'abifeature annotated_memory_image = {
      elements         : memory_image
    ; by_range         : (( element_range option) * ( 'abifeature range_tag)) Pset.set
    ; by_tag           : (( 'abifeature range_tag), ( element_range option)) multimap
}

(*val get_empty_memory_image : forall 'abifeature. unit -> annotated_memory_image 'abifeature*)
let get_empty_memory_image:unit ->'abifeature annotated_memory_image=  (fun _ -> {
      elements = (Pmap.empty compare)
    ; by_range = (Pset.empty (pairCompare (maybeCompare (pairCompare compare (pairCompare Nat_big_num.compare Nat_big_num.compare))) compare))
    ; by_tag   = (Pset.empty (pairCompare compare (maybeCompare (pairCompare compare (pairCompare Nat_big_num.compare Nat_big_num.compare)))))
})

(* Basic ELFy and ABI-y things. *)
(* "Special" sections are those that necessarily require special treatment by the
 * linker. Examples include symbol tables and relocation tables. There are some
 * grey areas, such as .eh_frame, debug info, and string tables. For us, the rule
 * is that if we have special code to create them, i.e. that we don't rely on
 * ordinary section concatenation during the linker script interpretation, they
 * should be special -- it means strip_metadata_sections will remove them from
 * the image, they won't be seen by the linker script, and that it's *our* job
 * to reinstate them afterwards (as we do with symtab and strtab, for example). *)
(* FIXME: this shouldn't really be here, but needs to be in some low-lying module;
 * keeping it out of elf_* for now to avoid duplication into elf64_, elf32_. *)
let elf_section_is_special s f:bool=  (not (Nat_big_num.equal s.elf64_section_type sht_progbits)
                     && (not (Nat_big_num.equal s.elf64_section_type sht_nobits)
                     && (not (Nat_big_num.equal s.elf64_section_type sht_fini_array)
                     && not (Nat_big_num.equal s.elf64_section_type sht_init_array))))

(* This record collects things that ABIs may or must define.
 *
 * Since we want to put all ABIs in a list and select one at run time,
 * we can't maintain a type-level distinction between ABIs; we have to
 * use elf_memory_image any_abi_feature. To avoid a reference cycle,
 * stay polymorphic in the ABI feature type until we define specific ABIs.
 * In practice we'll use only any_abi_feature, because we need to pull
 * the ABI out of a list at run time.
 *)
type null_abi_feature = unit

(* The reloc calculation is complicated, so we split up the big function
 * type into smaller ones. *)

(* Q. Do we want "existing", or is it a kind of addend?
 * A. We do want it -- modelling both separately is necessary,
 * because we model relocations bytewise, but some arches
 * do bitfield relocations (think ARM). *)
type reloc_calculate_fn    = Nat_big_num.num -> Nat_big_num.num -> Nat_big_num.num -> Nat_big_num.num (* symaddr -> addend -> existing -> relocated *)

type 'abifeature reloc_apply_fn = 'abifeature
                                (* elf memory image: the context in which the relocation is being applied *)
                                annotated_memory_image ->
                               (* the site address *)
                                Nat_big_num.num ->
                                (* Typically there are two symbol table entries involved in a relocation.
                                 * One is the reference, and is usually undefined.
                                 * The other is the definition, and is defined (else absent, when we use 0).
                                 * However, sometimes the reference is itself a defined symbol.
                                 * Almost always, if so, *that* symbol *is* "the definition".
                                 * However, copy relocs are an exception.
                                 *
                                 * In the case of copy relocations being fixed up by the dynamic
                                 * linker, the dynamic linker must figure out which definition to
                                 * copy from. This can't be as simple as "the first definition in
                                 * link order", because *our* copy of that symbol is a definition
                                 * (typically in bss). It could be as simple as "the first *after us*
                                 * in link order". FIXME: find the glibc code that does this.
                                 *
                                 * Can we dig this stuff out of the memory image? If we pass the address
                                 * being relocated, we can find the tags. But I don't want to pass
                                 * the symbol address until the very end. It seems better to pass the symbol
                                 * name, since that's the key that the dynamic linker uses to look for
                                 * other definitions.
                                 *
                                 * Do we want to pass a whole symbol_reference? This has not only the
                                 * symbol name but also syment, scn and idx. The syment is usually UND,
                                 * but *could* be defined (and is for copy relocs). The scn and idx are
                                 * not relevant, but it seems cleaner to pass the whole thing anyway.
                                 *)
                                symbol_reference_and_reloc_site ->
                                (* Should we pass a symbol_definition too? Implicitly, we pass part of it
                                 * by passing the symaddr argument (below). I'd prefer not to depend on
                                 * others -- relocation calculations should look like "mostly address
                                 * arithmetic", i.e. only the weird ones do something else. *)
                                 (* How wide, in bytes, is the relocated field? this may depend on img
                                 * and on the wider image (copy relocs), so it's returned *by* the reloc function. *)
                                (Nat_big_num.num (* width *) * reloc_calculate_fn)

(* Some kinds of relocation necessarily give us back a R_*_RELATIVE reloc.
 * We don't record this explicitly. Instead, the "bool" is a flag recording whether
 * the field represents an absolute address.
 * Similarly, some relocations can "fail" according to their ABI manuals.
 * This just means that the result can't be represented in the field width.
 * We detect this when actually applying the reloc in the memory image content
 * (done elsewhere). *)
type 'abifeature reloc_fn = Nat_big_num.num -> (bool * 'abifeature reloc_apply_fn)

(*val noop_reloc_calculate : natural -> integer -> natural -> natural*)
let noop_reloc_calculate symaddr addend existing:Nat_big_num.num=  existing

(*val noop_reloc_apply : forall 'abifeature. reloc_apply_fn 'abifeature*)
let noop_reloc_apply img2 site_addr ref1:Nat_big_num.num*(Nat_big_num.num ->Nat_big_num.num ->Nat_big_num.num ->Nat_big_num.num)=  ( (Nat_big_num.of_int 0), noop_reloc_calculate)

(*val noop_reloc : forall 'abifeature. natural -> (bool (* result is absolute addr *) * reloc_apply_fn 'abifeature)*)
let noop_reloc k:bool*('abifeature annotated_memory_image ->Nat_big_num.num ->symbol_reference_and_reloc_site ->Nat_big_num.num*reloc_calculate_fn)=  (false, noop_reloc_apply)

type 'abifeature abi = (* forall 'abifeature. *)
   { is_valid_elf_header : elf64_header -> bool (* doesn't this generalise outrageously? is_valid_elf_file? *)
    ; make_elf_header    : Nat_big_num.num -> Nat_big_num.num -> Nat_big_num.num -> Nat_big_num.num -> Nat_big_num.num -> Nat_big_num.num -> Nat_big_num.num -> elf64_header
                           (* t entry shoff phoff phnum shnum shstrndx *)
    ; reloc              : 'abifeature reloc_fn
    ; section_is_special : elf64_interpreted_section -> 'abifeature annotated_memory_image -> bool
    ; section_is_large   : elf64_interpreted_section -> 'abifeature annotated_memory_image -> bool
    ; maxpagesize        : Nat_big_num.num
    ; minpagesize        : Nat_big_num.num
    ; commonpagesize     : Nat_big_num.num
    ; symbol_is_generated_by_linker : string -> bool
    (*; link_inputs_tap    :
    ; link_output_sections_tap   :
    ; link_output_image_tap      : *)
    ; make_phdrs         : Nat_big_num.num -> Nat_big_num.num -> Nat_big_num.num (* file type *) -> 'abifeature annotated_memory_image -> elf64_interpreted_section list -> elf64_program_header_table_entry list
    ; max_phnum          : Nat_big_num.num
    ; guess_entry_point  : 'abifeature annotated_memory_image ->  Nat_big_num.num option
    ; pad_data           : Nat_big_num.num -> char list
    ; pad_code           : Nat_big_num.num -> char list
    ; generate_support   : (string * 'abifeature annotated_memory_image) (* list (list reloc_site_resolution) ->  *)list -> 'abifeature annotated_memory_image
    ; concretise_support : 'abifeature annotated_memory_image -> 'abifeature annotated_memory_image
    ; get_reloc_symaddr  : symbol_definition -> 'abifeature annotated_memory_image -> ( element_range option * symbol_definition) list ->  reloc_site option -> Nat_big_num.num
    ; parse_reloc_info   : Uint64_wrapper.uint64 -> (Nat_big_num.num (* type *) * Nat_big_num.num (* symbol *))
    }

(*val align_up_to : natural -> natural -> natural*)
let align_up_to align addr:Nat_big_num.num=
     (let quot = (Nat_big_num.div addr align)
    in
    if Nat_big_num.equal (Nat_big_num.mul quot align) addr then addr else Nat_big_num.mul ( Nat_big_num.add quot( (Nat_big_num.of_int 1))) align)

(*val round_down_to : natural -> natural -> natural*)
let round_down_to align addr:Nat_big_num.num=
     (let quot = (Nat_big_num.div addr align)
    in Nat_big_num.mul
    quot align)

(*val uint32_max : natural*)
let uint32_max:Nat_big_num.num=  (Nat_big_num.sub_nat ( Nat_big_num.pow_int( (Nat_big_num.of_int 2)) 32)( (Nat_big_num.of_int 1)))

(*val uint64_max : natural*)
let uint64_max:Nat_big_num.num=  (Nat_big_num.add (Nat_big_num.sub_nat (Nat_big_num.mul
    (* HACK around Lem's inability to parse 18446744073709551615:
     * the square of uint32_max is
     *       (2**32 - 1) (2**32 - 1)
     * i.e.   2**64 - 2**32 - 2**32 + 1
     * So
     * 2**64 - 1 =  uint32_max * uint32_max  + 2**32 + 2**32 - 2
     *)
    uint32_max uint32_max)( (Nat_big_num.of_int 2))) (Nat_big_num.pow_int( (Nat_big_num.of_int 2))33))
    (* 18446744073709551615 *) (* i.e. 0x ffff ffff ffff ffff *)
    (* HMM. This still overflows int64 *)

(* The 2's complement of a value, at 64-bit width *)
(*val compl64 : natural -> natural*)
let compl64 v:Nat_big_num.num=  (Nat_big_num.add( (Nat_big_num.of_int 1)) (Nat_big_num.bitwise_xor v uint64_max))

(*val gcd : natural -> natural -> natural*)
let rec gcd a b:Nat_big_num.num=
     (if Nat_big_num.equal b( (Nat_big_num.of_int 0)) then a else gcd b ( Nat_big_num.modulus a b))

(*val lcm : natural -> natural -> natural*)
let lcm a b:Nat_big_num.num=  (Nat_big_num.div
    (* let _ = errln ("lcm of " ^ (show a) ^ " and " ^ (show b) ^ "?")
    in *)
    ( Nat_big_num.mul a b) (gcd a b))

(*val address_of_range : forall 'abifeature. element_range -> annotated_memory_image 'abifeature -> natural*)
let address_of_range el_range img2:Nat_big_num.num=
     (let (el_name, (start, len)) = el_range
    in
    (match Pmap.lookup el_name img2.elements with
        Some el ->
            (match el.startpos with
                Some addr -> Nat_big_num.add addr start
                | None -> failwith "address_of_range called for element with no address"
            )
        | None -> failwith "address_of_range called on nonexistent element"
    ))

(*val range_contains : (natural * natural) -> (natural * natural) -> bool*)
let range_contains (r1begin, r1len) (r2begin, r2len):bool=  (Nat_big_num.greater_equal
    (* r1 is at least as big as r2 *)
    r2begin r1begin && Nat_big_num.less_equal ( Nat_big_num.add r2begin r2len) ( Nat_big_num.add r1begin r1len))

(*val range_overlaps : (natural * natural) -> (natural * natural) -> bool*)
let range_overlaps (r1begin, r1len) (r2begin, r2len):bool=
     (( Nat_big_num.less r1begin ( Nat_big_num.add r2begin r2len) && Nat_big_num.greater ( Nat_big_num.add r1begin r1len) r2begin)
     || ( Nat_big_num.less r2begin ( Nat_big_num.add r1begin r1len) && Nat_big_num.greater ( Nat_big_num.add r2begin r2len) r1begin))

(*val is_partition : list (natural * natural) -> list (natural * natural) -> bool*)
let is_partition rs ranges:bool=
     (
    (* 1. each element of the first list falls entirely within some element
     * from the second list. *)let r_is_contained_by_some_range
     = (fun r -> List.fold_left (||) false (Lem_list.map (fun range1 -> range_contains range1 r) ranges))
    in
    List.for_all (fun r -> r_is_contained_by_some_range r) rs
    &&
    (* 2. elements of the first list do not overlap *)
    List.for_all (fun r -> List.for_all (fun r2 -> ( (Lem.pair_equal Nat_big_num.equal Nat_big_num.equal r (* should be "=="? *) r2)) || (not (range_overlaps r r2))) rs) rs)

(*val     nat_range : natural -> natural -> list natural*)
let rec nat_range base len:(Nat_big_num.num)list= 
  (
  if(Nat_big_num.equal len ( (Nat_big_num.of_int 0))) then ([]) else
    (base ::
       (nat_range ( Nat_big_num.add base ( (Nat_big_num.of_int 1)))
          ( Nat_big_num.sub_nat len ( (Nat_big_num.of_int 1))))))

(* Expand a sorted list of ranges into a list of bool, where the list contains
 * true if its index is included in one or more ranges, else false. *)
(*val expand_sorted_ranges : list (natural * natural) -> natural -> list bool -> list bool*)
let rec expand_sorted_ranges sorted_ranges min_length accum:(bool)list=
     ((match sorted_ranges with
        [] ->  List.rev_append (List.rev accum) (
            let pad_length = (Nat_big_num.max( (Nat_big_num.of_int 0)) ( Nat_big_num.sub_nat min_length (Missing_pervasives.length accum)))
            in
            (* let _ = Missing_pervasives.errln (
                "padding ranges cares list with " ^ (show pad_length) ^
                " cares (accumulated " ^ (show (Missing_pervasives.length accum)) ^
                ", min length " ^ (show min_length) ^ ")")
            in *)
            Missing_pervasives.replicate0 pad_length true)
     |  (base, len) :: more ->
            (* pad the accum so that it reaches up to base *)
            let up_to_base = (Missing_pervasives.replicate0 ( Nat_big_num.sub_nat base (Missing_pervasives.length accum)) true)
            in
            let up_to_end_of_range =  (List.rev_append (List.rev up_to_base) (Missing_pervasives.replicate0 len false))
            in
            expand_sorted_ranges more min_length ( List.rev_append (List.rev accum) up_to_end_of_range)
    ))

(*val expand_unsorted_ranges : list (natural * natural) -> natural -> list bool -> list bool*)
let rec expand_unsorted_ranges unsorted_ranges min_length accum:(bool)list=
     (expand_sorted_ranges (insertSortBy (fun (base1, len1) -> (fun (base2, len2) -> Nat_big_num.less base1 base2)) unsorted_ranges) min_length accum)

let swap_pairs dict_Basic_classes_SetType_a dict_Basic_classes_SetType_b s:('a*'b)Pset.set=  (let x2 =(Pset.from_list (pairCompare  
  dict_Basic_classes_SetType_a.setElemCompare_method  dict_Basic_classes_SetType_b.setElemCompare_method) []) in  Pset.fold (fun(k, v) x2 -> if true then Pset.add (v, k) x2 else x2) s x2)

let by_range_from_by_tag dict_Basic_classes_SetType_a dict_Basic_classes_SetType_b:('a*'b)Pset.set ->('b*'a)Pset.set= 
  (swap_pairs dict_Basic_classes_SetType_b dict_Basic_classes_SetType_a)

let by_tag_from_by_range dict_Basic_classes_SetType_a dict_Basic_classes_SetType_b:('a*'b)Pset.set ->('b*'a)Pset.set= 
  (swap_pairs dict_Basic_classes_SetType_b dict_Basic_classes_SetType_a)

(*val filter_elements : forall 'abifeature. ((string * element) -> bool) ->
    annotated_memory_image 'abifeature -> annotated_memory_image 'abifeature*)
let filter_elements pred img2:'abifeature annotated_memory_image=
     (let new_elements = (Lem_map.fromList 
  (instance_Map_MapKeyType_var_dict instance_Basic_classes_SetType_var_dict) (let x2 = ([]) in  List.fold_right
   (fun(n, r) x2 ->
    if
    let result = (pred (n, r)) in
    if not result then
      (*let _ = Missing_pervasives.outln ("Discarding element named " ^ n) in*) result
    else result then (n, r) :: x2 else x2)
   (Pset.elements
      ((Pmap.bindings (pairCompare compare compare) img2.elements))) 
 x2))
    in
    let new_by_range =  (Pset.filter (fun (maybe_range, tag) -> (match maybe_range with
            None -> true
            | Some (el_name, el_range) ->  Pset.mem el_name (Pmap.domain new_elements)
        )) img2.by_range)
    in
    let new_by_tag = (let x2 =(Pset.from_list (pairCompare compare (maybeCompare (pairCompare compare (pairCompare Nat_big_num.compare Nat_big_num.compare)))) 
  []) in  Pset.fold (fun(k, v) x2 -> if true then Pset.add (v, k) x2 else x2)
   new_by_range x2)
    in
    { elements = new_elements
     ; by_range = new_by_range
     ; by_tag   = new_by_tag
     })

(*val tag_image : forall 'abifeature. range_tag 'abifeature -> string -> natural -> natural -> annotated_memory_image 'abifeature
    ->  annotated_memory_image 'abifeature*)
let tag_image t el_name el_offset tag_len img2:'abifeature annotated_memory_image=
     (let (k, v) = (Some (el_name, (el_offset, tag_len)), t)
    in
    let new_by_range = (Pset.add (k, v) img2.by_range)
    in
    let new_by_tag = (Pset.add (v, k) img2.by_tag)
    in
    { elements = (img2.elements)
     ; by_range = new_by_range
     ; by_tag   = new_by_tag
     })

(*val address_to_element_and_offset : forall 'abifeature. natural -> annotated_memory_image 'abifeature -> maybe (string * natural)*)
let address_to_element_and_offset query_addr img2:(string*Nat_big_num.num)option=
     (
    (* Find the element with the highest address <= addr.
     * What about zero-length elements?
     * Break ties on the bigger size. *)let (maybe_highest_le :  (Nat_big_num.num * string * element)option)
     = (List.fold_left (fun maybe_current_max_le -> (fun (el_name, el_rec) ->
        (*let _ = errln ("Saw element named `" ^ el_name ^ " with startpos " ^ (
            (match el_rec.startpos with Just addr -> ("0x" ^ (hex_string_of_natural addr)) | Nothing -> "(none)" end)
            ^ " and length " ^
            (match el_rec.length with Just len -> ("0x" ^ (hex_string_of_natural len)) | Nothing -> "(none)" end)
            ))
        in*)
        (match (maybe_current_max_le, el_rec.startpos) with
              (None,                                    None) -> None
            | (None,                                    Some this_element_pos) -> if Nat_big_num.less_equal this_element_pos query_addr
                                                                                     then Some (this_element_pos, el_name, el_rec)
                                                                                     else None
            | (Some (cur_max_le, cur_el_name, cur_el_rec), None) ->               maybe_current_max_le
            | (Some (cur_max_le, cur_el_name, cur_el_rec), Some this_element_pos) -> if Nat_big_num.less_equal this_element_pos query_addr
                                                                                        && ( Nat_big_num.greater this_element_pos cur_max_le
                                                                                         || ( Nat_big_num.equal this_element_pos cur_max_le
                                                                                             && ( (Lem.option_equal Nat_big_num.equal cur_el_rec.length1 (Some( (Nat_big_num.of_int 0)))))))
                                                                                        then Some (this_element_pos, el_name, el_rec)
                                                                                        else maybe_current_max_le
        )
    )) None (Pmap.bindings_list img2.elements))
    in
    (match maybe_highest_le with
        Some (el_def_startpos, el_name, el_rec) ->
            (* final sanity check: is the length definite, and if so, does the
             * element span far enough? *)
            (match el_rec.length1 with
                Some l -> if Nat_big_num.greater_equal (Nat_big_num.add el_def_startpos l) query_addr
                    then Some (el_name, Nat_big_num.sub_nat query_addr el_def_startpos)
                    else
                        (*let _ = errln ("Discounting " ^ el_name ^ " because length is too short") in*) None
                | None -> (*let _ = errln ("Gave up because element has unknown length") in*) None
            )
        | None ->
            (* no elements with a low enough assigned address, so nothing *)
            (*let _ = errln ("Found no elements with low enough address") in*) None
    ))

(*val element_and_offset_to_address : forall 'abifeature. (string * natural) -> annotated_memory_image 'abifeature -> maybe natural*)
let element_and_offset_to_address (el_name, el_off) img2:(Nat_big_num.num)option=
     ((match Pmap.lookup el_name img2.elements with
        Some el -> (match el.startpos with
                        Some addr -> Some ( Nat_big_num.add addr el_off)
                        | None -> None
                   )
        | None -> failwith ("error: nonexistent element: " ^ el_name)
    ))

let null_symbol_reference:symbol_reference=  ({
    ref_symname = ""
    ; ref_syment = elf64_null_symbol_table_entry
    ; ref_sym_scn =( (Nat_big_num.of_int 0))
    ; ref_sym_idx =( (Nat_big_num.of_int 0))
})

let null_elf_relocation_a:elf64_relocation_a=
   ({ elf64_ra_offset = (Uint64_wrapper.of_bigint( (Nat_big_num.of_int 0)))
   ; elf64_ra_info   = (Uint64_wrapper.of_bigint( (Nat_big_num.of_int 0)))
   ; elf64_ra_addend = (Nat_big_num.to_int64( (Nat_big_num.of_int 0)))
   })


let null_symbol_reference_and_reloc_site:symbol_reference_and_reloc_site=  ({
      ref = null_symbol_reference
    ; maybe_reloc =
        (Some   { ref_relent = null_elf_relocation_a
                ; ref_rel_scn =( (Nat_big_num.of_int 0))
                ; ref_rel_idx =( (Nat_big_num.of_int 0))
                ; ref_src_scn =( (Nat_big_num.of_int 0))
                })
    ; maybe_def_bound_to = None
    })

let null_symbol_definition:symbol_definition=  ({
    def_symname = ""
    ; def_syment = elf64_null_symbol_table_entry
    ; def_sym_scn =( (Nat_big_num.of_int 0))
    ; def_sym_idx =( (Nat_big_num.of_int 0))
    ; def_linkable_idx =( (Nat_big_num.of_int 0))
})

(*val pattern_possible_starts_in_one_byte_sequence : byte_pattern -> list byte -> natural -> list natural*)
let pattern_possible_starts_in_one_byte_sequence pattern seq offset:(Nat_big_num.num)list=
     (
    (* let _ = Missing_pervasives.errs ("Looking for matches of " ^
        (show (List.length pattern)) ^ "-byte pattern in " ^ (show (List.length seq)) ^ "-byte region\n")
    in *)accum_pattern_possible_starts_in_one_byte_sequence pattern (Nat_big_num.to_int (byte_pattern_length pattern)) seq (List.length seq) offset [])

(*val compute_virtual_address_adjustment : natural -> natural -> natural -> natural*)
let compute_virtual_address_adjustment max_page_size offset vaddr:Nat_big_num.num=  (Nat_big_num.modulus
  ( Nat_big_num.sub_nat vaddr offset) max_page_size)

(*val natural_of_be_byte_list : list byte -> natural*)
let natural_of_be_byte_list bytes:Nat_big_num.num=
   (List.fold_left (fun acc b -> Nat_big_num.add (Nat_big_num.mul
      acc( (Nat_big_num.of_int 256))) (Nat_big_num.of_int (Char.code b))
  )( (Nat_big_num.of_int 0)) bytes)

(*val natural_of_le_byte_list : list byte -> natural*)
let natural_of_le_byte_list bytes:Nat_big_num.num=
   (natural_of_be_byte_list (List.rev bytes))

(*val natural_of_byte_list : endianness -> list byte -> natural*)
let natural_of_byte_list endian bytes:Nat_big_num.num=
   ((match endian with
    | Big -> natural_of_be_byte_list bytes
    | Little -> natural_of_le_byte_list bytes
  ))

(*val extract_natural_field : natural -> element -> natural -> natural*)
let extract_natural_field width element1 offset:Nat_big_num.num=
     (
    (* Read n bytes from the contents *)let maybe_bytes = (take0 width (drop0 offset element1.contents))
    in
    let bytes = (Lem_list.map (fun mb -> (match mb with None -> Char.chr (Nat_big_num.to_int ( (Nat_big_num.of_int 0))) | Some mb -> mb )) maybe_bytes)
    in
    (* FIXME: do we want little- or big-endian? *)
    natural_of_le_byte_list bytes)

(*val natural_to_le_byte_list : natural -> list byte*)
let rec natural_to_le_byte_list n:(char)list=
     ((Char.chr (Nat_big_num.to_int ( Nat_big_num.modulus n( (Nat_big_num.of_int 256))))) :: (let d =(Nat_big_num.div n( (Nat_big_num.of_int 256))) in if Nat_big_num.equal d( (Nat_big_num.of_int 0)) then [] else natural_to_le_byte_list ( Nat_big_num.div n( (Nat_big_num.of_int 256)))))

(*val natural_to_be_byte_list : natural -> list byte*)
let natural_to_be_byte_list n:(char)list=
     (List.rev (natural_to_le_byte_list n))

(*val natural_to_byte_list : endianness -> natural -> list byte*)
let natural_to_byte_list endian n:(char)list=
     ((match endian with
      | Big -> natural_to_be_byte_list n
      | Little -> natural_to_le_byte_list n
    ))

(*val natural_to_le_byte_list_padded_to : natural -> natural -> list byte*)
let rec natural_to_le_byte_list_padded_to width n:(char)list=
     (let bytes = (natural_to_le_byte_list n)
    in 
    List.rev_append (List.rev bytes) (replicate0 ( Nat_big_num.sub_nat width (length bytes)) (Char.chr (Nat_big_num.to_int ( (Nat_big_num.of_int 0))))))

(*val natural_to_be_byte_list_padded_to : natural -> natural -> list byte*)
let natural_to_be_byte_list_padded_to width n:(char)list=
     (List.rev (natural_to_le_byte_list_padded_to width n))

(*val natural_to_byte_list_padded_to : endianness -> natural -> natural -> list byte*)
let natural_to_byte_list_padded_to endian width n:(char)list=
     ((match endian with
      | Big -> natural_to_be_byte_list_padded_to width n
      | Little -> natural_to_le_byte_list_padded_to width n
    ))

(*val n2i : natural -> integer*)
let n2i:Nat_big_num.num ->Nat_big_num.num=  (fun n-> n)

(*val i2n: integer -> natural*)
let i2n:Nat_big_num.num ->Nat_big_num.num=  Nat_big_num.abs

(*val i2n_signed : nat -> integer -> natural*)
let i2n_signed width i:Nat_big_num.num=
     (if Nat_big_num.greater_equal i( (Nat_big_num.of_int 0)) then
        if Nat_big_num.greater_equal i (Nat_big_num.pow_int( (Nat_big_num.of_int 2)) (Nat_num.nat_monus width 1)) then failwith "overflow"
        else Nat_big_num.abs i
    else
        (* We manually encode the 2's complement of the negated value *)
        let negated = (Nat_big_num.abs ( Nat_big_num.sub( (Nat_big_num.of_int 0)) i)) in
        let (xormask : Nat_big_num.num) = ( Nat_big_num.sub_nat (Nat_big_num.pow_int( (Nat_big_num.of_int 2)) width)( (Nat_big_num.of_int 1))) in
        let compl = (Nat_big_num.add( (Nat_big_num.of_int 1)) (Nat_big_num.bitwise_xor negated xormask))
        in
        (*let _ = errln ("Signed value " ^ (show i) ^ " is 2's-compl'd to 0x" ^ (hex_string_of_natural compl))
        in*) compl)

(*val to_le_signed_bytes : natural -> integer -> list byte*)
let to_le_signed_bytes bytewidth i:(char)list=
     (natural_to_le_byte_list_padded_to bytewidth (i2n_signed (Nat_big_num.to_int (Nat_big_num.mul( (Nat_big_num.of_int 8))bytewidth)) i))

(*val to_le_unsigned_bytes : natural -> integer -> list byte*)
let to_le_unsigned_bytes bytewidth i:(char)list=
     (natural_to_le_byte_list_padded_to bytewidth (Nat_big_num.abs i))

(*val write_natural_field : natural -> natural -> element -> natural -> element*)
let write_natural_field new_field_value width element1 offset:element=
     (let pre_bytes = (take0 offset element1.contents)
    in
    let post_bytes = (drop0 ( Nat_big_num.add offset width) element1.contents)
    in
    (* FIXME: avoid hard-coding little-endian *)
    let field_bytes = (natural_to_le_byte_list new_field_value)
    in
    if Nat_big_num.greater (length field_bytes) width then failwith "internal error: relocation output unrepresentable"
    else
    {
        contents =  (List.rev_append (List.rev (List.rev_append (List.rev (List.rev_append (List.rev pre_bytes) (let x2 = 
  ([]) in  List.fold_right (fun b x2 -> if true then Some b :: x2 else x2) field_bytes
   x2))) (replicate0 ( Nat_big_num.sub_nat width (length field_bytes)) (Some (Char.chr (Nat_big_num.to_int ( (Nat_big_num.of_int 0)))))))) post_bytes)
        ; startpos = (element1.startpos)
        ; length1 = (element1.length1)
     })

(*val read_memory_image : forall 'abifeature. annotated_memory_image 'abifeature -> natural -> natural -> maybe (list byte)*)
let read_memory_image img2 start len:((char)list)option=
   (let stop = (Nat_big_num.add start len) in
  let elements1 = (Pmap.bindings_list img2.elements) in
  List.fold_left (fun maybe_field (_, el) ->
    let el_start = (assert_unwrap_maybe el.startpos) in
    (* let el_len = assert_unwrap_maybe el.length in *)
    let el_len = (Nat_big_num.of_int (List.length el.contents)) in (* TODO? *)
    let el_stop = (Nat_big_num.add el_start el_len) in
    (* Do not allow reading fields across elements *)
    if Nat_big_num.greater_equal start el_start && Nat_big_num.less_equal stop el_stop then
      (* TODO: check consistency if maybe_field is not Nothing *)
      let offset = (Nat_big_num.sub_nat start el_start) in
      let bp = (read_byte_pattern el.contents offset len) in
      let l = (byte_pattern_to_byte_list bp) in
      Some l
    else
      maybe_field
  ) None elements1)

(*val read_memory_image_byte_sequence : forall 'abifeature. annotated_memory_image 'abifeature -> natural -> natural -> maybe byte_sequence*)
let read_memory_image_byte_sequence img2 start len:(Byte_sequence_wrapper.byte_sequence)option=
   (let maybe_bl = (read_memory_image img2 start len) in
  Lem.option_map byte_sequence_of_byte_list maybe_bl)

(*val write_memory_image : forall 'abifeature. annotated_memory_image 'abifeature -> natural -> byte_pattern -> annotated_memory_image 'abifeature*)
let write_memory_image img2 start bp:'abifeature annotated_memory_image=
   (if (listEqualBy (Lem.option_equal (=)) bp []) then img2 else
  let len = (Nat_big_num.of_int (List.length bp)) in
  let stop = (Nat_big_num.add start len) in
  let elements1 = (Pmap.map (fun el ->
    let el_start = (assert_unwrap_maybe el.startpos) in
    (* let el_len = assert_unwrap_maybe el.length in *)
    let el_len = (Nat_big_num.of_int (List.length el.contents)) in (* TODO? *)
    let el_stop = (Nat_big_num.add el_start el_len) in
    let contents1 =
      (if Nat_big_num.greater_equal start el_start && Nat_big_num.less start el_stop then
        let write_start = (Nat_big_num.sub_nat start el_start) in
        let write_max_len = (Nat_big_num.sub_nat el_stop start) in
        let write_bp = (Lem_list.take (Nat_big_num.to_int write_max_len) bp) in
        (* let _ = Missing_pervasives.errln ("  Masking at 0x" ^ (hex_string_of_natural el_start) ^ "+0x" ^ (hex_string_of_natural write_start) ^ " max_len=0x" ^ (hex_string_of_natural write_max_len) ^ " len=0x" ^ (hex_string_of_natural (naturalFromNat (List.length write_bp)))) in *)
        write_byte_pattern el.contents write_start write_bp
      else if Nat_big_num.greater_equal stop el_start && Nat_big_num.less stop el_stop then
        (* Case el_start < start is handled above *)
        let _ = (Lem_assert_extra.ensure ( Nat_big_num.greater_equal el_start start) "write_memory_image: internal failure") in
        let write_bp = (Lem_list.drop (Nat_big_num.to_int ( Nat_big_num.sub_nat el_start start)) bp) in
        (* let _ = Missing_pervasives.errln ("  Masking at 0x" ^ (hex_string_of_natural el_start) ^ "+0 len=0x" ^ (hex_string_of_natural (naturalFromNat (List.length write_bp)))) in *)
        write_byte_pattern el.contents( (Nat_big_num.of_int 0)) write_bp
      else
        el.contents)
    in
    {
      startpos = (Some el_start);
      length1 = (Some el_len);
      contents = contents1
    }
  ) img2.elements) in
  {
    elements = elements1;
    by_range = (img2.by_range);
    by_tag = (img2.by_tag)
  })

let mask_memory_image img2 start len:'a annotated_memory_image=
   (if Nat_big_num.equal len( (Nat_big_num.of_int 0)) then img2 else
  let bp = (Lem_list.replicate (Nat_big_num.to_int len) None) in
  write_memory_image img2 start bp)

let memory_image_element_at img2 addr:(element)option=
   (let elements1 = (Pmap.bindings_list img2.elements) in
  let maybe_tuple = (Lem_list.list_find_opt (fun (_, e) ->
    let start = (assert_unwrap_maybe e.startpos) in
    let len = (assert_unwrap_maybe e.length1) in Nat_big_num.greater_equal
    addr start && Nat_big_num.less addr (Nat_big_num.add start len)
  ) elements1) in
  Lem.option_map (fun (_, e) -> e) maybe_tuple)
OCaml

Innovation. Community. Security.