package linksem

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file link.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
(*Generated by Lem from link.lem.*)
open Lem_basic_classes
open Lem_function
open Lem_string
open Lem_tuple
open Lem_bool
open Lem_list
open Lem_sorting
open Lem_map
open Lem_set
(*import Set_extra*)
open Lem_num
open Lem_maybe
open Lem_assert_extra
(*import Command_line*)
(*import Input_list*)

open Byte_sequence
open Default_printing
open Error
open Missing_pervasives
open Show
open Endianness

open Elf_header
open Elf_interpreted_section
open Elf_interpreted_segment
open Elf_section_header_table
open Elf_program_header_table
open Elf_symbol_table
open Elf_types_native_uint
open Elf_relocation

open Abis
open Abi_amd64_relocation (* HACK -- remove me *)

open Input_list
open Linkable_list
(*import Command_line*)

open Memory_image
open Memory_image_orderings
open Elf_memory_image
open Elf_memory_image_of_elf64_file
open Linker_script

let all_common_symbols img2:(symbol_definition)list=  (List.filter (fun def -> Nat_big_num.equal
    (Uint32_wrapper.to_bigint def.def_syment.elf64_st_shndx) shn_common
) (elf_memory_image_defined_symbols img2))

(* Q. On what does the decision about a reloc depend? definitely on
 *
 *      -- command-line options applying to the referenc*ed* object;
 *           (CHECK: I'm inferring that -Bsymbolic, like -Bstatic, applies to the
 *                   *referenced* object, not the referring -- need experimental conf.)
 *            ACTUALLY, it seems to be global: if a definition goes in the library,
 *                   bind to it; doesn't matter where it comes from. So
 *
 *      -- command-line options applying to the output object / whole link (-Bsymbolic);
 *
 *      -- command-line options applying to the referencing object?
 *
 *      What decision can we make?
 *      Given a reloc, it might be
 *      - not bound (weak symbols) -- THIS MEANS it *is* bound but to the value 0!
 *      - bound to a definition
 *
 *      ... perhaps our distinction is between "firm binding or provisional binding"?
 *                                            "final binding or overridable binding"?
 *
 *      Can we also hit cases where the binding is final but can't be relocated til load time?
 *      YES, e.g. any final R_*_64_64 reference in a shared library's data segment.
 *      WHAT do we do in these cases? Apply what we can and generate a R_*_RELATIVE?
 *      Yes, that's where R_*_RELATIVE come from, since they don't appear in .o inputs.
 *)

(*val def_is_in_reloc : linkable_item -> bool*)
let def_is_in_reloc def_item:bool=  ((match def_item with
    (RelocELF(_), _, _) -> true
    | (ScriptAST(_), _, _) -> true
    | _ -> false
))

let retrieve_binding_for_ref dict_Basic_classes_Eq_b r r_linkable_idx item bindings_by_name:('b*symbol_reference*'d)*'c=
     (let maybe_found_bs = (Pmap.lookup r.ref.ref_symname bindings_by_name)
    in
    (match maybe_found_bs with
        None -> failwith ("impossible: list of bindings does not include symbol reference `" ^ (r.ref.ref_symname ^ "` (map empty)"))
            (* FIXME: could this actually be an "undefined symbol" link error perhaps? *)
        | Some bis_and_bs -> (match List.filter (fun (b_idx, ((b_ref_idx, b_ref, b_ref_item), b_maybe_def)) ->
            if  dict_Basic_classes_Eq_b.isEqual_method b_ref_idx r_linkable_idx && (b_ref = r.ref) then
            (*let _ = Missing_pervasives.errln ("saw ref from linkable idx " ^ (show r_linkable_idx)
                ^ ", ref sym scn " ^ (show r.ref.ref_sym_scn) ^ ", ref sym idx "^ (show r.ref.ref_sym_idx)
                ^ ", item " ^ (show item) ^ "; binding to " ^ (
                    match b_maybe_def with
                        Just (def_idx, def, def_item) -> "linkable idx " ^ (show def_idx) ^
                            ", def sym scn " ^ (show def.def_sym_scn) ^ ", def sym idx " ^
                            (show def.def_sym_idx)
                      | Nothing -> "no definition"
                    end
                )
            )
            in*) true
            else false) bis_and_bs with
                  [] -> failwith ("impossible: list of bindings does not include symbol reference `" ^ (r.ref.ref_symname ^ "` (filtered list empty)"))
                | [(bi, b)] -> b
                | _ ->  failwith ("impossible: list of bindings binds reference to symbol `"
                    ^ (r.ref.ref_symname ^ "' more than one way (filtered list has >1 element)"))
            )
    ))

type reloc_site_resolution = reloc_site * binding * reloc_decision


(*val mark_fate_of_relocs : natural -> abi any_abi_feature -> set Command_line.link_option ->
    binding_map -> linkable_item -> elf_memory_image -> ((list reloc_site_resolution) * elf_memory_image)*)
let mark_fate_of_relocs linkable_idx a options bindings_by_name item img2:(reloc_site*((Nat_big_num.num*symbol_reference*(linkable_object*input_item*input_options))*(Nat_big_num.num*symbol_definition*(linkable_object*input_item*input_options))option)*reloc_decision)list*(any_abi_feature)annotated_memory_image=
     (
    (* Our image already models relocation sites. For each relocation *record*,
     * we use our bindings to make a decision about whether to apply it or not.
     *
     * Q1. How do we get the .rela.dyn made? Synthesise a fake reloc section?
     * Or pass them through to the linker script separately?
     * AHA. Note that the script already has an entry for .rela.dyn.
     * And it matches the ordinary rel sections, e.g. .rela.text and so on.
     * So if "-q" is active, the applied relocs need to be injected back in *after* the script
     * has run.
     * So we need both to materialize some relocs into the script inputs, *and* save some for later.
     *
     * Can we just use memory image metadata as the "saved for later" case? YES, I think so.
     * What do we do with metadata that is now being materialized?
     * I think we should only remove the metadata when we apply the relocation.
     * Q. When do we do that?
     * A. *After* address assignment has happened, i.e. all sections are allocated.
     *)let building_executable = (Pset.mem (Command_line.OutputKind(Command_line.Executable)) options) in
    let building_shared_library = (Pset.mem (Command_line.OutputKind(Command_line.SharedLibrary)) options) in
    let bind_functions_early = (Pset.mem Command_line.BindFunctionsEarly options) in
    let bind_non_functions_early = (Pset.mem Command_line.BindNonFunctionsEarly options) in
    let (new_by_tag, rev_decisions) = (List.fold_left (fun (acc_by_tag, rev_acc_decisions) -> (fun (tag, maybe_range) ->
        let pass_through = (Pset.add (tag, maybe_range) acc_by_tag, rev_acc_decisions)
        in
        (match tag with
            SymbolRef(r) ->
                (match r.maybe_reloc with
                    Some reloc1 ->
                        (* decision: do we want to
                         *  - apply it?   if so, do we need a consequent relocation (e.g. R_*_RELATIVE) in the output?
                         *  - PICify it, but leave it interposable?
                         *  - is "PICified, non-interposable" a thing? I don't think so, because non-interposable bindings are
                                     either intra-object *or* necessarily need load-time relocation to account for load addresses.
                                     In fact ELF can't express "non-interposable inter-object bindings" because we can't name
                                     specific objects when binding symbols.
                         *  - leave it alone, i.e. "relocate at load time"?
                         *
                         * Some useful questions: is the binding final?
                         * The GNU linker *never* leaves text relocs alone when generating shared libs;
                         * it always PICifies them.
                         * It can leave them alone when generating executables, though.
                         * This is an approximation; load-time text relocation can make sense for shared libs.
                         *     (but it's dangerous because PC32 relocs might overflow)
                         *)
                        let (binding_is_final : Command_line.link_option Pset.set -> binding -> bool)
                         = (fun options -> (fun ((ref_idx, ref1, ref_item), maybe_def) ->
                            (match maybe_def with
                                (* Weak bindings to 0 are final (though libcrunch wishes they weren't!). *)
                                None -> true
                                | Some (def_idx, def, def_item) -> Nat_big_num.equal
                                    (
                                    (* Bindings to non-global symbols are final. *)get_elf64_symbol_binding def.def_syment) stb_local
                                    ||
                                    (
                                    (* Bindings to hidden- or protected- or internal-visibility globals
                                     *    are final. *)Pset.mem (get_symbol_visibility def.def_syment.elf64_st_info)(Pset.from_list Nat_big_num.compare [ stv_hidden; stv_protected; stv_internal ])
                                    ||
                                    (
                                    (* Bindings to global symbols are non-final
                                     *    *unless*
                                     *      1. the symbol definition is [going to end up] in the executable
                                     *      2. we're -Bsymbolic, outputting a shared object,
                                     *           and the symbol definition is [going to end up] within the same shared object
                                     *      3. we're -Bsymbolic-functions, outputting a shared object,
                                     *           and the symbol definition has STT_FUNC and is [going to end up] within the same shared object
                                     *
                                     * ... where "going to end up in an X" means "we're building an X and def is in a RelocELF rather than a SharedELF".
                                     *)
                                    (* 1. *)(building_executable && def_is_in_reloc def_item) ||
                                    (* 2 and 3. *)
                                    (building_shared_library && (def_is_in_reloc def_item &&
                                        (  ( Nat_big_num.equal(get_elf64_symbol_type def.def_syment) stt_func  && bind_functions_early)
                                        || ( not (Nat_big_num.equal (get_elf64_symbol_type def.def_syment) stt_func) && bind_non_functions_early)
                                        ))
                                    )))
                                    (* FIXME: does it matter if the binding is intra-object or inter-object?
                                     * We don't get inter-object bindings much to non-{default global}s. How much? *)
                            )))
                        in
                        let (reloc_is_absolute : reloc_site -> bool) = (fun rs ->
                            let (kind, _) = (a.parse_reloc_info rs.ref_relent.elf64_ra_info) in
                            let (is_abs, _) = (a.reloc kind) in
                            is_abs)
                        in
                        (* What's our decision for this reloc? leave, apply, MakePIC?
                         * In fact we return both a decision and a maybe-function to create
                         * the consequent reloc.
                         * In what circumstances do we leave the reloc? If we're making an executable
                               and the definition is not in a relocatable input file or archive or script.
                               Or if we're making a shared library and the reference is "from data".
                               What does "from data" mean? I think it means it's a PC-relative reloc.
                               If we compile our code to do movabs $addr, even from a *local* address,
                               it's not PIC because that address needs load-time fixup.
                               So actually it's "is absolute address" again.
                         *)
                        let b = (retrieve_binding_for_ref 
  instance_Basic_classes_Eq_Num_natural_dict r linkable_idx item bindings_by_name)
                        in
                        let ((ref_idx, _, ref_item), maybe_def) = b
                        in
                        let defined_in_shared_lib = ((match maybe_def with
                            Some (def_idx, def, def_item) -> not (def_is_in_reloc def_item)
                            | None -> false (* i.e. the "definition", 0, can be "linked in" *)
                        ))
                        in
                        let decide = (fun decision -> (
                            (*let _ = errln ("Decided to " ^ match decision with
                                LeaveReloc -> "leave"
                                | ApplyReloc -> "apply"
                            end ^ " relocation in linkable " ^ (show ref_item) ^ "'s image, bound to " ^
                            match maybe_def with
                                Just(def_idx, def, def_item) -> "a definition called `" ^ def.def_symname ^ "' in linkable " ^
                                    (show def_item)
                                | Nothing -> "no definition"
                            end
                            )
                            in*)
                            Pset.add (SymbolRef({
                                ref           = (r.ref)
                                ; maybe_reloc = (r.maybe_reloc)
                                ; maybe_def_bound_to = (Some (decision,
                                    (match maybe_def with
                                        Some(def_idx, def, def_item) ->
                                                Some { def_symname = (def.def_symname)
                                                      ; def_syment  = (def.def_syment)
                                                      ; def_sym_scn = (def.def_sym_scn)
                                                      ; def_sym_idx = (def.def_sym_idx)
                                                      ; def_linkable_idx = def_idx
                                                      }
                                        | None -> None
                                    )
                                    ))
                                }
                            ), maybe_range) acc_by_tag,
                            ((reloc1, b, decision) :: rev_acc_decisions)))
                        in
                        if (building_executable && defined_in_shared_lib)
                        || (building_shared_library && (reloc_is_absolute reloc1))
                        then decide LeaveReloc
                        else
                        (* In what circumstances do we apply the reloc? If it's a final binding. *)
                        if binding_is_final options b then decide ApplyReloc
                        (* In what circumstances do we MakePIC? If it's a non-absolute relocatable field
                         *     and we're building a shared library.
                         *
                         * PIC is a kind of "consequent relocation", so let's think through it.
                         * A call site that calls <printf>      will usually be non-final (overridable).
                         * Output needs to call   <printf@plt>. BUT the trick is as follows:
                         *        the reloc is swizzled so that it binds to the PLT slot <printf@plt>;
                         *        the PLT slot is locally generated, so no reloc is needed.
                         * So the point is that
                         *        a *non*-applied reloc
                         *        might still need "applying" after a fashion (swizzling).
                         * The initial reloc is removed! Since PLT means removing relocs from code
                         * and reproducing their effect using a PLT.
                         * That's why we need this special MakePIC behaviour.
                         * Actually, generalise to a ChangeRelocTo.
                         *
                         * What about data?
                         * Suppose I have a shared library containing a read-only pointer to <environ>.
                         * The binding is final because <environ> is defined in the executable, say.
                         * PIC doesn't handle this case -- we still need load-time relocation.
                         * It's PIC, not PID: data can't be made position-independent.
                         *
                         * So, at least for simple cases of PIC, we don't need consequent relocation if
                         * we don't apply the reloc. We'll be removing the reloc. But we *do* need to create
                         * extra stuff later (PLT, GOT).
                         *)
                        else if building_shared_library then decide (* MakePIC *) (ChangeRelocTo( (Nat_big_num.of_int 0), r.ref, reloc1)) (* FIXME *)
                        (* The above are non-exclusive and non-exhaustive. Often, more than one option is available,
                         * ABIs / practice makes an arbitrary choice. For example, final bindings
                         * within a library could be realised the PIC way, but aren't (it'd create a
                         * pointless indirection). *)
                        else failwith "didn't know what to do with relocation"
                    | None ->
                        (* symbol ref with no reloc *)
                        pass_through
                )
        |   _ -> pass_through
        )
    )) ((Pset.from_list (pairCompare compare (maybeCompare (pairCompare compare (pairCompare Nat_big_num.compare Nat_big_num.compare)))) []), []) (Pset.elements img2.by_tag))
    in
    (List.rev rev_decisions, { elements = (img2.elements)
      ; by_tag = new_by_tag
      ; by_range = (by_range_from_by_tag 
  instance_Basic_classes_SetType_var_dict (instance_Basic_classes_SetType_Maybe_maybe_dict
   (instance_Basic_classes_SetType_tup2_dict
      instance_Basic_classes_SetType_var_dict
      (instance_Basic_classes_SetType_tup2_dict
         instance_Basic_classes_SetType_Num_natural_dict
         instance_Basic_classes_SetType_Num_natural_dict))) new_by_tag)
      }))

(*val strip_metadata_sections : list (reloc_site * binding * reloc_decision) -> abi any_abi_feature -> elf_memory_image -> elf_memory_image*)
let strip_metadata_sections reloc_decisions a img2:(any_abi_feature)annotated_memory_image=
     (let (section_tags, section_ranges) = (elf_memory_image_section_ranges img2)
    in
    let rel_sections = (Lem_list.mapMaybe (fun (range_tag1, (el_name, el_range)) ->
        (match range_tag1 with
            FileFeature(ElfSection(idx1, isec1)) ->
                if Pset.mem isec1.elf64_section_type(Pset.from_list Nat_big_num.compare [ sht_rel; sht_rela ])
                then Some (idx1, isec1, el_name)
                else None
            | _ -> None
        )
    ) (list_combine section_tags section_ranges))
    in
    let discarded_sections_with_element_name = (Lem_list.mapMaybe (fun (range_tag1, (el_name, el_range)) ->
        (match range_tag1 with
            FileFeature(ElfSection(idx1, isec1)) ->
                if a.section_is_special isec1 img2 (* discard reloc sections, and we'll re-add them *)
                then Some (el_name, range_tag1) else None
        )
    ) (list_combine section_tags section_ranges))
    in
    let discarded_elements_map = (List.fold_left (fun m -> (fun (el_name, range_tag1) ->
        (*let _ = errln ("Discarding a metadata element named `" ^ el_name ^ "'") in*)
        Pmap.add el_name range_tag1 m
        )) (Pmap.empty compare) discarded_sections_with_element_name)
    in
    let filtered_image = (Memory_image.filter_elements (fun (el_name, el) -> not (Pmap.mem el_name discarded_elements_map)) img2)
    in
    let new_reloc_section_length = (fun idx1 -> (fun isec1 ->
        let retained_relocs_from_this_section = (let x2 = 
  ([]) in  List.fold_right
   (fun(reloc1, b, decision) x2 ->
    if Nat_big_num.equal (* is it from this section? *) reloc1.ref_rel_scn
         idx1 (* are we retaining it? *) && (decision = LeaveReloc) then
      (reloc1, b, decision) :: x2 else x2) reloc_decisions x2)
        in Nat_big_num.mul (length retained_relocs_from_this_section) isec1.elf64_section_entsize
    ))
    in
    let (new_reloc_elements, new_reloc_tags_and_ranges) = (List.split (let x2 = 
  ([]) in  List.fold_right
   (fun(idx1, isec1, el_name) x2 ->
    if Nat_big_num.greater (new_reloc_section_length idx1 isec1)
         ( (Nat_big_num.of_int 0)) then
      (let new_len = (new_reloc_section_length idx1 isec1) in
       let new_el = ({ startpos = None ; length1 = (Some new_len); contents = 
                     ([]) }) in
       let new_isec = ({ elf64_section_name = (isec1.elf64_section_name)
                       ; elf64_section_type = (isec1.elf64_section_type)
                       ; elf64_section_flags = (isec1.elf64_section_flags)
                       ; elf64_section_addr =( (Nat_big_num.of_int 0)) (* should be 0 anyway *)
                       ; elf64_section_offset =( (Nat_big_num.of_int 0)) (* ignored *)
                       ; elf64_section_size = new_len
                       ; elf64_section_link = (isec1.elf64_section_link)
                       ; elf64_section_info = (isec1.elf64_section_info)
                       ; elf64_section_align = (isec1.elf64_section_align)
                       ; elf64_section_entsize = (isec1.elf64_section_entsize)
                       ; elf64_section_body = Byte_sequence.empty (* ignored *)
                       ; elf64_section_name_as_string = (isec1.elf64_section_name_as_string)
                       }) in
       let new_meta = (FileFeature (ElfSection (idx1, new_isec))) in
       ((el_name, new_el), (new_meta, Some
                                        (el_name, ( (Nat_big_num.of_int 0), new_len)))))
        :: x2 else x2) rel_sections x2))
    in
    let new_by_tag = (Pset.bigunion (pairCompare compare (maybeCompare (pairCompare compare (pairCompare Nat_big_num.compare Nat_big_num.compare))))(Pset.from_list (Pset.compare_by (pairCompare compare (maybeCompare (pairCompare compare (pairCompare Nat_big_num.compare Nat_big_num.compare))))) [ filtered_image.by_tag; (Pset.from_list (pairCompare compare (maybeCompare (pairCompare compare (pairCompare Nat_big_num.compare Nat_big_num.compare)))) new_reloc_tags_and_ranges) ]))
    in
    {
        elements = (List.fold_right Pmap.union [filtered_image.elements; Lem_map.fromList 
  (instance_Map_MapKeyType_var_dict instance_Basic_classes_SetType_var_dict) new_reloc_elements] (Pmap.empty compare))
     ;  by_tag   = new_by_tag
     ;  by_range = (by_range_from_by_tag 
  instance_Basic_classes_SetType_var_dict (instance_Basic_classes_SetType_Maybe_maybe_dict
   (instance_Basic_classes_SetType_tup2_dict
      instance_Basic_classes_SetType_var_dict
      (instance_Basic_classes_SetType_tup2_dict
         instance_Basic_classes_SetType_Num_natural_dict
         instance_Basic_classes_SetType_Num_natural_dict))) new_by_tag)
     })


let expand_sections_for_one_image a options bindings_by_name linkable_idx item strip_relocs:(reloc_site*binding*reloc_decision)list*(any_abi_feature)annotated_memory_image*(input_spec)list=
     ((match item with
    (RelocELF(img2), (fname1, blob, origin), input_opts) ->
        (*let _ = List.foldl (fun _ -> fun (isec, shndx) ->
            let _ = errln ("For file " ^ fname ^ " before stripping, saw section idx " ^ (show shndx) ^
                " with name " ^ isec.elf64_section_name_as_string ^ ", first 20 bytes: " ^ (show (take 20 (
                    (let maybe_elname = elf_memory_image_element_coextensive_with_section shndx img
                     in
                     match maybe_elname with
                        Nothing -> failwith ("impossible: no such section (" ^ (show shndx) ^ ") in image of " ^ fname)
                        | Just idstr ->
                            match Map.lookup idstr img.elements with
                                Just el -> el.contents
                                | Nothing -> failwith "no such element"
                            end
                    end
                    )))))
                in
                ()
            ) () (elf_memory_image_sections_with_indices img)
        in*)
        let ((reloc_decisions : (reloc_site * binding * reloc_decision) list), marked_img) = (mark_fate_of_relocs linkable_idx a options bindings_by_name item img2)
        in
        (* Now we have a decision for each reloc: Leave, Apply, MakePIC. Which ones
         * do we materialize? Only the Leave ones, for now. To support -q we'll
         * have to support tweaking this.
         *
         * For each relocation that we Leave, we figure out its originating section
         * and re-create a lookalike in the memory image.
         *
         * We also get called for the "generated" memory image that contains .plt,
         * .rela.plt and so on. We don't strip these, since they actually contain relocs
         * that need to go directly into the output file. That's what the strip_relocs
         * argument is for. FIXME: refactor this into two functions.
         *)
        let stripped_img_with_reloc_sections = (if strip_relocs
            then (*let _ = errln ("Discarding metadata sections from image of `" ^ fname ^ "'") in*)
            strip_metadata_sections reloc_decisions a marked_img
            else marked_img)
        in
        (* Now we have a whole new image! It differs from the old one in that
         * - non-special sections have been stripped
         * - the relocs we want to participate in linking have been materialized.
         *)
        (* The "-q" option is tricky. It causes all incoming relocs to be retained, but
         * they *don't* participate in linking -- notice that the default linker script
         * pulls all .rela.* sections into .rela.dyn, whereas these ones *don't* go in there.
         * So FIXME: to support this, we need a way to re-add them, probably when we
         * generate meta-output like .symtab etc.. *)
        let inputs =
        
        (List.rev_append (List.rev (let x2 = 
  ([]) (* not (a.section_is_special isec img *)in  
  List.fold_right
    (fun(isec1, shndx1) x2 ->
     if true then
       (let short_name = (short_string_of_linkable_item item) in
        (*let _ = errln ("For file " ^ short_name ^ " after stripping, saw section idx " ^ (show shndx) ^
                " with name " ^ isec.elf64_section_name_as_string ^ ", first 20 bytes: " ^ (show (take 20 (
                    (let maybe_elname = elf_memory_image_element_coextensive_with_section shndx stripped_img_with_reloc_sections
                     in
                     match maybe_elname with
                        Nothing -> failwith ("impossible: no such section (matching " ^ (show shndx) ^ ")")
                        | Just idstr ->
                            match Map.lookup idstr stripped_img_with_reloc_sections.elements with
                                Just el -> el.contents
                                | Nothing -> failwith "no such element"
                            end
                    end
                    )))))
            in*)
        InputSection
            ({ idx = linkable_idx ; fname = short_name
             ; img = stripped_img_with_reloc_sections ; shndx = shndx1
             ; secname = (isec1.elf64_section_name_as_string) ; isec = isec1
             })) :: x2 else x2)
    (elf_memory_image_sections_with_indices stripped_img_with_reloc_sections)
    x2)) (
        (* One item per common symbol. FIXME: what about common symbols that have the same name?
         * We need to explicitly instantiate common symbols somewhere, probably here.
         * This means dropping any that are unreferenced (does it?) and merging any multiply-defined.
         * Actually, we deal with section merging at the same time as section concatenation, so during
         * linker script processing. For discarding unused common symbols, I *think* that this has already
         * been done by discarding unreferenced inputs.  *)
        let common_symbols = (all_common_symbols stripped_img_with_reloc_sections)
        in
        (*let _ = errln ("Expanding " ^ (show (length common_symbols)) ^ " common symbols")
        in*)
        let x2 = ([]) in  List.fold_right
   (fun def x2 ->
    if
    (*let _ = Missing_pervasives.outln ((space_padded_and_maybe_newline 20 def.def_symname)
                ^ (let hexstr = "0x" ^ (hex_string_of_natural (natural_of_elf64_xword def.def_syment.elf64_st_size))
                  in
                  space_padded_and_maybe_newline 20 hexstr
                  )
                ^
                fname)
            in*)
    true then
      Common (linkable_idx, fname1, stripped_img_with_reloc_sections, def) ::
        x2 else x2) common_symbols x2
        ))
        in (reloc_decisions, stripped_img_with_reloc_sections, inputs)
    | _ -> failwith "non-reloc linkable not supported yet"
))

type reloc_resolution = reloc_site * binding * reloc_decision

(*val default_merge_generated : abi any_abi_feature -> elf_memory_image -> list (list Linker_script.input_spec) -> list (list Linker_script.input_spec)*)
let default_merge_generated a generated_img input_spec_lists:((input_spec)list)list=
     (
    (* We expand the sections in the generated image and hang them off
     * the first linkable item. *)
    (*let _ = errln ("Generated image has " ^ (show (Map.size generated_img.elements)) ^ " elements and " ^ (show (Set.size (generated_img.by_tag))) ^
        " metadata elements (sanity: " ^ (show (Set.size (generated_img.by_range))) ^ ")")
    in*)let dummy_input_item = ("(no file)", Input_list.Reloc(Byte_sequence.empty), ((Command_line.File(Command_line.Filename("(no file)"), Command_line.null_input_file_options)), [InCommandLine( (Nat_big_num.of_int 0))]))
    in
    let dummy_linkable_item = (RelocELF(generated_img), dummy_input_item, Input_list.null_input_options)
    in
    let (_, _, generated_inputs) = (expand_sections_for_one_image a(Pset.from_list compare []) (Pmap.empty compare)( (Nat_big_num.of_int 0)) dummy_linkable_item false)
    in
    (*let _ = errln ("Generated image yielded " ^ (show (length generated_inputs)) ^ " input items")
    in*)
    (* okay, hang them off the first one *)
    (match input_spec_lists with
        [] -> failwith "link job empty"
        | first_input_list :: more_input_lists -> ( List.rev_append (List.rev first_input_list) generated_inputs) :: more_input_lists
    ))
    (* input_spec_lists *)

(*val expand_sections_for_all_inputs : abi any_abi_feature -> set Command_line.link_option -> binding_map ->
    (abi any_abi_feature -> elf_memory_image -> list (list Linker_script.input_spec) -> list (list Linker_script.input_spec)) (* merge_generated *) ->
    list (natural * Linkable_list.linkable_item) ->
    list (list reloc_resolution * elf_memory_image * list Linker_script.input_spec)*)
let expand_sections_for_all_inputs a options bindings_by_name merge_generated idx_and_linkables:((reloc_site*binding*reloc_decision)list*(any_abi_feature)annotated_memory_image*(input_spec)list)list=
     (let (expanded_reloc_lists, expanded_imgs, linker_script_input_lists) = (unzip3 (Lem_list.map (fun (idx1, linkable) ->
        expand_sections_for_one_image a options bindings_by_name idx1 linkable true) idx_and_linkables))
    in
    let fnames = (Lem_list.map (fun (idx1, (_, (fname1, _, _), _)) -> fname1) idx_and_linkables)
    in
    (* We pass the collection of linkable images and reloc decision lists
     * to an ABI tap function.
     *
     * This returns us a new *image* containing all the elements. Logically
     * this is another participant in the link, which we could expand separately.
     * A personality function takes care of actually merging it back into the
     * linker script inputs... in the case of the GNU linker, this means pretending
     * the generated stuff came from the first input object.
     *)
    let generated_img = (a.generate_support (* expanded_relocs *) (list_combine fnames expanded_imgs))
    in
    (* We need to return a
     *
     *    list (list reloc_decision * elf_memory_image * list Linker_script.input_spec)
     *
     * i.e. one item for every input image. *)
    let (final_input_spec_lists : ( Linker_script.input_spec list) list) = (merge_generated a generated_img linker_script_input_lists)
    in
    zip3 expanded_reloc_lists expanded_imgs final_input_spec_lists)

(*val relocate_output_image : abi any_abi_feature -> map string (list (natural * binding)) -> elf_memory_image -> elf_memory_image*)
let relocate_output_image a bindings_by_name img2:(any_abi_feature)annotated_memory_image=
     (let relocs = (Multimap.lookupBy0 
  (instance_Basic_classes_Ord_Memory_image_range_tag_dict
     instance_Basic_classes_Ord_Abis_any_abi_feature_dict) (instance_Basic_classes_Ord_Maybe_maybe_dict
   (instance_Basic_classes_Ord_tup2_dict
      Lem_string_extra.instance_Basic_classes_Ord_string_dict
      (instance_Basic_classes_Ord_tup2_dict
         instance_Basic_classes_Ord_Num_natural_dict
         instance_Basic_classes_Ord_Num_natural_dict))) instance_Basic_classes_SetType_var_dict (instance_Basic_classes_SetType_Maybe_maybe_dict
   (instance_Basic_classes_SetType_tup2_dict
      instance_Basic_classes_SetType_var_dict
      (instance_Basic_classes_SetType_tup2_dict
         instance_Basic_classes_SetType_Num_natural_dict
         instance_Basic_classes_SetType_Num_natural_dict)))  (Memory_image_orderings.tagEquiv
    instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict) (SymbolRef(null_symbol_reference_and_reloc_site))
        img2.by_tag)
    in

    (*let _ = errln ("For __libc_multiple_threads (in relocate_output_image), we have " ^
        (let all_bs = match Map.lookup "__libc_multiple_threads" bindings_by_name with
            Just l -> l
            | Nothing -> []
        end
        in
        ((show (length all_bs)) ^
        " bindings, of which " ^
        (show (length (List.filter (fun (bi, ((ref_idx, ref, ref_item), maybe_def)) ->
            match maybe_def with
                Just _ -> true
                | _ -> false
            end
        ) all_bs))) ^ " have defs")))
    in*)
    let apply_reloc = (fun img2 -> fun (el_name, start, len) -> fun symref_and_reloc_site -> fun symaddr -> (
        let reloc_site1 = ((match symref_and_reloc_site.maybe_reloc with
            None -> failwith "impossible: no reloc site during relocation"
            | Some r -> r
        ))
        in
        let (rel_type1, _) = (a.parse_reloc_info reloc_site1.ref_relent.elf64_ra_info)
        in
        let (field_is_absolute_addr, applyfn) = (a.reloc rel_type1)
        in
        let element1 = ((match Pmap.lookup el_name img2.elements with
            None -> failwith "impossible: reloc site in nonexistent section"
            | Some e -> e
        ))
        in
        let site_address = ((match element1.startpos with
            Some addr -> Nat_big_num.add addr start
            | None -> failwith "error: relocation in section with no address"
        ))
        in
        let (width, calculate) = (applyfn img2 site_address symref_and_reloc_site)
        in
        let existing_field = (extract_natural_field width element1 start)
        in
        (*let _ = errln ("Existing field has value 0x" ^ (hex_string_of_natural existing_field))
        in*)
        (*let _ = errln ("Symaddr has value 0x" ^ (hex_string_of_natural symaddr))
        in*)
        let addend = (Nat_big_num.of_int64 reloc_site1.ref_relent.elf64_ra_addend)
        in
        let new_field_value = (calculate symaddr addend existing_field)
        in
        (*let _ = errln ("Calculated new field value 0x" ^ (hex_string_of_natural new_field_value))
        in*)
        let new_element = (write_natural_field new_field_value width element1 start)
        in
        {
            elements = (Pmap.add el_name new_element (Pmap.remove el_name img2.elements))
         ;  by_tag   = (Pset.diff img2.by_tag(Pset.from_list (pairCompare compare (maybeCompare (pairCompare compare (pairCompare Nat_big_num.compare Nat_big_num.compare)))) [(SymbolRef(symref_and_reloc_site), Some(el_name, (start, len)))]))
         ;  by_range = (Pset.diff img2.by_range(Pset.from_list (pairCompare (maybeCompare (pairCompare compare (pairCompare Nat_big_num.compare Nat_big_num.compare))) compare) [(Some(el_name, (start, len)), SymbolRef(symref_and_reloc_site))]))
         }
    ))
    in
    let (ranges_and_defs : ( element_range option * symbol_definition) list) = (Memory_image_orderings.defined_symbols_and_ranges 
  instance_Basic_classes_Ord_Abis_any_abi_feature_dict instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict img2)
    in
    let relocated_img = (List.fold_left (fun acc_img -> (fun (tag, maybe_range) ->
        (match tag with
            SymbolRef(x) -> (match x.maybe_reloc with
                Some rs ->
                    (match maybe_range with
                        None -> failwith "impossible: reloc site with no range"
                        | Some (el_name, (start, len)) ->
                            (*let _ = errln ("During relocation, saw a reloc site in element " ^ el_name ^ ", offset 0x" ^
                                (hex_string_of_natural start) ^ ", length 0x" ^ (hex_string_of_natural len) ^
                                ", reloc type " ^ (* a. *) Abi_amd64_relocation.string_of_amd64_relocation_type (get_elf64_relocation_a_type rs.ref_relent) ^
                                ", symbol name `" ^ x.ref.ref_symname ^ "'")
                            in*)
                            let symaddr = ((match x.maybe_def_bound_to with
                                Some(ApplyReloc, Some(bound_def)) ->
                                    (* Here we are mapping
                                     * *from* the definition found in an input object during resolution (bound_def)
                                     * *to* the corresponding symbol in the output image, now that we've built it.
                                     *
                                     * Q. What about ABI-specific interventions, e.g.
                                     * redirecting a symbol reference to its GOT or PLT slot?
                                     * A. Indeed, we need to ask the ABI to give us the target
                                     * address. The default implementation is just to look for
                                     * a matching symbol and use its address. But ABIs can do
                                     * wacky things if they like.
                                     *)
                                    a.get_reloc_symaddr bound_def img2 ranges_and_defs x.maybe_reloc
                                | None -> failwith "no def found for bound-to symbol"
                                | Some(ApplyReloc, None) ->
                                    (*let _ = errln "No definition, so we think this is a weak reference; giving it value 0."
                                    in*)
                                    (* CHECK: does the syment say it's weak? *)
                                    if not (Nat_big_num.equal (get_elf64_symbol_binding x.ref.ref_syment) stb_weak) then
                                        (*let _ = errln "Actually not weak! bailing"
                                        in*)
                                        failwith "not a weak reference, but no binding"
                                    else 
                                    (* Weak symbol. *) (Nat_big_num.of_int 0)
                                | Some(LeaveReloc, _) ->
                                    (* We shouldn't be seeing this, given that we're applying the reloc Right Now. *)
                                    failwith "internal error: applying reloc that is not to be applied"
                            ))
                            in
                            (*let _ = errln ("Got symaddr: 0x" ^ (hex_string_of_natural symaddr))
                            in*)
                            apply_reloc acc_img (el_name, start, len) x symaddr
                    )
                | None -> (* okay, do nothing *) acc_img
                )
            | _ -> failwith "impossible: not a symbol ref"
        )
    )) img2 relocs)
    in
    relocated_img)

(*val link : address_expr_fn_map allocated_sections_map -> linker_control_script -> abi any_abi_feature -> set Command_line.link_option -> linkable_list -> elf_memory_image*)
let link alloc_map script1 a options linkables:(any_abi_feature)annotated_memory_image=
     (let initial_included_indices = (mapMaybei (fun i -> (fun (obj, inp, (opts : input_options)) ->
        if opts.item_force_output
        then Some i
        else None
    )) linkables)
    in
    let linker_script_linkable_idx = (length linkables)
    in
    let defmap =  (all_definitions_by_name linkables)
    in
    let (accumulated_bindings : binding list)
     =
          ( (* accumulate_bindings_bf a linkables defmap {} initial_included_indices []  *)accumulate_bindings_objectwise_df a linkables defmap [](Pset.from_list Nat_big_num.compare []) initial_included_indices)
    in
    (* Keep a map whose keys are referenced objects, and whose values are
     * *some* (diagnostic purposes only) reference to that linkable. *)
    let referenced_object_indices_and_reasons = (List.fold_left (fun acc_m -> (fun ((ref_idx, ref_sym, ref_linkable), maybe_def_idx_and_sym_and_linkable) ->
        (match maybe_def_idx_and_sym_and_linkable with
            None -> acc_m
            | Some (def_idx, def_sym, def_linkable) ->
                (* Make sure the map contains this key. *)
                if (Lem.option_equal (Lem.pair_equal (=) 
  (tripleEqual instance_Basic_classes_Eq_var_dict
     (instance_Basic_classes_Eq_tup3_dict
        instance_Basic_classes_Eq_string_dict
        instance_Basic_classes_Eq_var_dict
        (instance_Basic_classes_Eq_tup2_dict
           instance_Basic_classes_Eq_var_dict
           (instance_Basic_classes_Eq_list_dict
              instance_Basic_classes_Eq_var_dict)))
     instance_Basic_classes_Eq_var_dict)) (Pmap.lookup def_idx acc_m) None)
                    then Pmap.add def_idx (ref_sym, ref_linkable) acc_m
                    else acc_m
        )
    )) ((Pmap.empty Nat_big_num.compare) : (Nat_big_num.num, (symbol_reference * linkable_item)) Pmap.map) accumulated_bindings)
    in
    (* Print something similar to GNU ld's linker map output, about included archive members. *)
    (*let _ = Missing_pervasives.outln "Archive member included to satisfy reference by file (symbol)\n" in*)
    let linkables_not_discarded = (mapMaybei (fun i -> (fun (obj, inp, opts) ->
        let referenced_object_map_entry = (Pmap.lookup i referenced_object_indices_and_reasons)
        in
        let referenced = ( not ((Lem.option_equal (Lem.pair_equal (=) 
  (tripleEqual instance_Basic_classes_Eq_var_dict
     (instance_Basic_classes_Eq_tup3_dict
        instance_Basic_classes_Eq_string_dict
        instance_Basic_classes_Eq_var_dict
        (instance_Basic_classes_Eq_tup2_dict
           instance_Basic_classes_Eq_var_dict
           (instance_Basic_classes_Eq_list_dict
              instance_Basic_classes_Eq_var_dict)))
     instance_Basic_classes_Eq_var_dict)) referenced_object_map_entry None)))
        in
        (* Print our link map thing *)
        (*let _ = (
            if (not referenced) then () else
                (* Did it come from an archive? *)
                let (name, _, (inp_unit, coordlist)) = inp in
                match coordlist with
                    InArchive(aid, aidx, aname, _) :: _ ->
                        (* yes, from an archive, so print a line *)
                        let (ref_sym, (ref_obj, (ref_name, ref_blob, ref_origin), ref_opts)) = match referenced_object_map_entry with
                            Just(x, y) -> (x, y)
                            | Nothing -> failwith "impossible: referenced item has no definition"
                        end
                        in
                        let lhs_name = aname ^ "(" ^ name ^ ")"
                        in
                        let lhs_name_len = stringLength lhs_name
                        in
                        let spacing = if lhs_name_len >= 29
                            then ("\n" ^ (makeString 30 #' '))
                            else makeString (30 - lhs_name_len) #' '
                        in
                        Missing_pervasives.outln (
                            lhs_name ^ spacing ^
                            (match ref_origin with
                                (_, InArchive(bid, bidx, bname, _) :: _) -> bname ^ "(" ^ ref_name ^ ")"
                                | _ -> ref_name
                            end)
                            ^ " (" ^ ref_sym.ref_symname ^ ")"
                        )
                    | _ (* not from an archive *) -> ()
                end
        )
        in*)
        if referenced || opts.item_force_output
        then Some (i, (obj, inp, opts))
        else None
    )) linkables)
    in
    (*let _ = Missing_pervasives.outln "\nAllocating common symbols\nCommon symbol       size              file\n"
    in*)
    (* We have to do a pass over relocations quite early. This is because relocs *do* participate
     * in linking. For each reloc, we need to decide whether to apply it or not. For those not applied,
     * we include it in a synthesised section that participates in linking.
     *
     * Similarly, the GOT needs to participate in linking, so that it gets assigned an address
     * at the appropriate place (as determined by the script). So we have to generate the GOT
     * *before* running the linker script. The GNU linker hangs the whole GOT and PLT content
     * off the first input object (usually crt1.o). In general, expand_sections calls an ABI tap
     * which synthesises all the necessary things, like (in the GNU case) the .got and .plt sections
     * hanging off the first input object. *)
    let (initial_bindings_by_name : (string, ( (Nat_big_num.num * binding)list)) Pmap.map) =
        (List.fold_left (fun m -> fun (b_idx, ((ref_idx, ref1, ref_item), maybe_def)) -> (match Pmap.lookup ref1.ref_symname m with
            None                  -> Pmap.add ref1.ref_symname [ (b_idx, ((ref_idx, ref1, ref_item), maybe_def)) ] m
            | Some ((bi, b) :: more) -> Pmap.add ref1.ref_symname  ((b_idx, ((ref_idx, ref1, ref_item), maybe_def)) :: ((bi, b) :: more)) m
            | _ -> failwith "impossible: found empty list in map lacking empties by construction"
        )) (Pmap.empty compare) (Lem_list.mapi (fun i -> fun b -> (Nat_big_num.of_int i, b)) accumulated_bindings))
    in
    let (expanded_triples : ( reloc_resolution list * elf_memory_image * Linker_script.input_spec list) list)
     = (expand_sections_for_all_inputs a options initial_bindings_by_name default_merge_generated linkables_not_discarded)
    in
    let (reloc_resolutions, imgs, input_lists) = (unzip3 expanded_triples)
    in
    let input_sections = (list_concat input_lists)
    in
    let seen_ordering = (fun is1 -> (fun is2 -> (
        let toNaturalList = (fun is -> (
            (* We're mapping the item to a list of naturals that determine a
             * lexicographic order. The list has a fixed depth:
             *
             * [within-commandline, within-group, within-archive, section-or-symbol]
             *
             * For .o files on the command line, we use the command line order. This
             * is the first level in the hierarchy.
             *
             * For .a files with --whole-archive, we want to do the same. Do this
             * by using archive position as the second level of the hierarchy, *if*
             * the item is marked as force_output.
             *
             * For other archives, "order seen" means something different: it's
             * the order in which they were "pulled in" during input enumeration. Another
             * way to say this is that they're ordered by the first binding that was
             * made to them. We map these to numbers starting from the size of the archive,
             * i.e. so that "force_output" makes an element appear sooner. In practice
             * we won't get a mixture of force_output and non- in the same archive,
             * so each archive will use only one of the two orderings.
             *
             * How do sections order relative to common symbols? Again, in practice it
             * doesn't matter because no input query will get a mixture of the two.
             * For symbols, we start the numbering from the number of sections in the file,
             * so symbols always appear later in the sortd order.
             *)
            let (linkable_idx, section_or_symbol_idx) = ((match is with
                Common(idx1, fname1, img2, def) -> (idx1, Nat_big_num.add
                    (let (_, l) = (elf_memory_image_section_ranges img2) in length l) def.def_sym_idx)
                | InputSection(isrec) -> (isrec.idx, isrec.shndx)
            ))
            in
            (match Lem_list.list_index linkables (Nat_big_num.to_int linkable_idx) with
                None -> failwith "impossible: linker input not in linkables list"
                | Some (obj, (fname1, blob, (inp_unit, coords)), options) ->
                    let (our_cid, our_gid, our_aid, maybe_archive_size) = ((match coords with
                      InArchive(aid, aidx, _, asize) :: InGroup(gid1, gidx) :: [InCommandLine(cid)] -> (cid, gid1, aid, Some asize)
                    | InArchive(aid, aidx, _, asize) :: [InCommandLine(cid)]                       -> (cid, (Nat_big_num.of_int 0), aid,   Some asize)
                    | InGroup(gid1, gidx) :: [InCommandLine(cid)]                                   -> (cid, gid1, (Nat_big_num.of_int 0),   None)
                    | [InCommandLine(cid)]                                                         -> (cid, (Nat_big_num.of_int 0), (Nat_big_num.of_int 0),     None)
                    | _ -> failwith "internal error: impossible coordinates"
                    ))
                    in
                    let aid_to_use = (if options.item_force_output then our_aid
                    else (* how many elements does the archive have? *)
                        let archive_size = ((match maybe_archive_size with
                            None -> failwith "impossible: archive with no size"
                            | Some a -> a
                        ))
                        in Nat_big_num.add archive_size
                        (* search the bindings: we want the index of the first binding
                           that refers to this object.
                         *)
                        (match Lem_list.find_index (fun ((b_ref_idx, b_ref, b_ref_item), b_maybe_def) -> (match b_maybe_def with
                            Some (b_def_idx, b_def, b_def_item) -> Nat_big_num.equal b_def_idx linkable_idx
                            | _ -> false
                        )) accumulated_bindings with
                            Some n -> Nat_big_num.of_int n
                            | None -> failwith "impossible: non-force-output object does not contain any bound-to defs"
                        ))
                    in
                    (* do we care about group idx? probably not. *)
                    [our_cid; aid_to_use; section_or_symbol_idx]
            )
        ))
        in
        (lexicographic_compare Nat_big_num.compare (toNaturalList is1) (toNaturalList is2))
    )))
    in
    (*
    let get_binding_for_ref = (fun symref -> (fun linkable_idx -> (fun fname ->
        let name_matches = match Map.lookup symref.ref_symname bindings_by_name with Just x -> x | Nothing -> [] end
        in
        match List.filter (fun (bi, ((r_idx, r, r_item), m_d)) -> r_idx = linkable_idx && r = symref) name_matches with
            [(b_idx, b)] -> (b_idx, b)
            | [] -> failwith "no binding found"
            | _  -> failwith ("ambiguous binding found for symbol `" ^ symref.ref_symname ^ "' in file " ^ fname)
        end
    )))
    in
    *)
    let (unrelocated_output_image_lacking_abs_symbols, bindings_by_name)
     = (interpret_linker_control_script alloc_map script1 linkables linker_script_linkable_idx a input_sections seen_ordering default_place_orphans initial_bindings_by_name)
    in
    (* also copy over ABS (range-less) symbols from all included input items *)
    let all_abs_range_tags_in_included_inputs = (List.concat (
        Lem_list.map (fun (img2, (idx1, linkable)) ->
          let abslist = (Lem_list.mapMaybe (fun (tag, maybeRange) ->
            (match tag with
                SymbolDef(ent) -> if (Lem.option_equal (Lem.pair_equal (=) (Lem.pair_equal Nat_big_num.equal Nat_big_num.equal)) maybeRange None) && Nat_big_num.equal (Uint32_wrapper.to_bigint ent.def_syment.elf64_st_shndx) shn_abs
                    then Some (maybeRange, ent)
                    else None
                | _ -> None
            )
          ) (tagged_ranges_matching_tag 
  instance_Basic_classes_Ord_Abis_any_abi_feature_dict instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict (SymbolDef(null_symbol_definition)) img2))
          in
          (*let _ = errln ("Copying " ^ (show (length abslist)) ^ " ABS symbols (names: " ^
            List.foldl (fun acc -> fun str -> if stringLength acc = 0 then str else acc ^ ", " ^ str) ""
                (List.map (fun (_, x) -> x.def_symname) abslist)
            ^ ") from not-discarded linkable item " ^
            (short_string_of_linkable_item linkable))
          in*)
          let x2 = ([]) in  List.fold_right
   (fun(maybe_range, ent) x2 ->
    if true then
      (maybe_range, SymbolDef
                        ({ def_symname = (ent.def_symname)
                         ; def_syment = (ent.def_syment)
                         ; def_sym_scn = (ent.def_sym_scn)
                         ; def_sym_idx = (ent.def_sym_idx)
                         ; def_linkable_idx = idx1 })) :: x2 else x2) 
 abslist x2
        ) (list_combine imgs linkables_not_discarded)
    ))
    in
    let by_range_including_abs_symbols =
        
        (Pset.(union) unrelocated_output_image_lacking_abs_symbols.by_range
        ((Pset.from_list (pairCompare (maybeCompare (pairCompare compare (pairCompare Nat_big_num.compare Nat_big_num.compare))) compare) all_abs_range_tags_in_included_inputs)))
    in
    let unrelocated_output_image = ({
        elements = (unrelocated_output_image_lacking_abs_symbols.elements)
    ;   by_range = by_range_including_abs_symbols
    ;   by_tag   = (by_tag_from_by_range 
  (instance_Basic_classes_SetType_Maybe_maybe_dict
     (instance_Basic_classes_SetType_tup2_dict
        instance_Basic_classes_SetType_var_dict
        (instance_Basic_classes_SetType_tup2_dict
           instance_Basic_classes_SetType_Num_natural_dict
           instance_Basic_classes_SetType_Num_natural_dict))) instance_Basic_classes_SetType_var_dict by_range_including_abs_symbols)
    })
    (* This image has
     * - addresses assigned
     * - relocations *not* applied
     * - no entry point
     * - some ABI features not generated? GOT, certainly. HMM.
           -- don't consider output features, like symtabs, yet;
           -- other ABI features have to be generated before the linker script runs (dyn relocs, GOT, PLT?)
           -- ... so we might be okay for now.
     *)
    in
    let remaining_relocs = (Multimap.lookupBy0 
  (instance_Basic_classes_Ord_Memory_image_range_tag_dict
     instance_Basic_classes_Ord_Abis_any_abi_feature_dict) (instance_Basic_classes_Ord_Maybe_maybe_dict
   (instance_Basic_classes_Ord_tup2_dict
      Lem_string_extra.instance_Basic_classes_Ord_string_dict
      (instance_Basic_classes_Ord_tup2_dict
         instance_Basic_classes_Ord_Num_natural_dict
         instance_Basic_classes_Ord_Num_natural_dict))) instance_Basic_classes_SetType_var_dict (instance_Basic_classes_SetType_Maybe_maybe_dict
   (instance_Basic_classes_SetType_tup2_dict
      instance_Basic_classes_SetType_var_dict
      (instance_Basic_classes_SetType_tup2_dict
         instance_Basic_classes_SetType_Num_natural_dict
         instance_Basic_classes_SetType_Num_natural_dict)))  (Memory_image_orderings.tagEquiv
    instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict) (SymbolRef(null_symbol_reference_and_reloc_site))
        unrelocated_output_image.by_tag)
    in
    let _ = (List.fold_left (fun _ -> (fun (tag, maybe_range) ->
        let _ = ((match tag with
            SymbolRef(x) -> (match x.maybe_reloc with
                Some rs ->
                    (match maybe_range with
                        None -> failwith "impossible: reloc site with no range"
                        | Some (el_name, (start, len)) ->
                            () (* errln ("After linking, saw a reloc site in element " ^ el_name ^ ", offset 0x" ^
                                (hex_string_of_natural start) ^ ", length 0x" ^ (hex_string_of_natural len) ^
                                ", reloc type " ^ Abi_amd64_relocation.string_of_amd64_relocation_type (get_elf64_relocation_a_type rs.ref_relent)) *)
                    )
                | None -> (* okay, do nothing *) ()
                )
            | _ -> failwith "impossible: not a symbol ref"
        ))
        in
        ()
    )) () remaining_relocs)
    in
    (* Before we relocate, we concretise any ABI features that we've linked in. *)
    (*let _ = errln "Asking ABI to concretise support structures" in*)
    let unrelocated_concrete_output_image = (a.concretise_support unrelocated_output_image)
    in
    let output_image = (relocate_output_image a bindings_by_name unrelocated_concrete_output_image)
    in
    let (maybe_entry_point_address :  Nat_big_num.num option) =
        ((match Command_line.find_option_matching_tag (Command_line.EntryAddress( (Nat_big_num.of_int 0))) options with
            None -> a.guess_entry_point output_image
            | Some(Command_line.EntryAddress(x)) -> Some x
        ))
    in
    (match maybe_entry_point_address with
        Some addr ->
            (match address_to_element_and_offset addr output_image with
                Some (el_name, el_offset) ->
                    (*let _ = errln ("Tagging element " ^ el_name ^ " as containing entry point at offset 0x" ^ (hex_string_of_natural el_offset))
                    in*)
                    tag_image (EntryPoint) el_name el_offset( (Nat_big_num.of_int 0)) output_image
                | None ->
                    (* HMM. entry point symbol has no address at present. *)
                    failwith ("error: entry point address 0x" ^ ((hex_string_of_natural addr) ^ " does not correspond to any element position"))
            )
        | None ->
            let _ = (prerr_endline "Warning: not tagging entry point in output image")
            in
            output_image
    ))
OCaml

Innovation. Community. Security.