Source file elf_symbol_table.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
(** [elf_symbol_table] provides types, functions and other definitions for
* working with ELF symbol tables.
*)
open Lem_basic_classes
open Lem_bool
open Lem_list
open Lem_maybe
open Lem_num
open Lem_string
open Lem_tuple
open Byte_sequence
open Error
open Missing_pervasives
open Show
open Elf_header
open Elf_types_native_uint
open Endianness
open String_table
(** Undefined symbol index *)
let stn_undef : Nat_big_num.num= ( (Nat_big_num.of_int 0))
(** Symbol binding *)
(** Local symbols are not visible outside of the object file containing their
* definition.
*)
let stb_local : Nat_big_num.num= ( (Nat_big_num.of_int 0))
(** Global symbols are visible to all object files being combined.
*)
let stb_global : Nat_big_num.num= ( (Nat_big_num.of_int 1))
(** Weak symbols resemble global symbols but their definitions have lower
* precedence.
*)
let stb_weak : Nat_big_num.num= ( (Nat_big_num.of_int 2))
(** Values in the following range have reserved OS specific semantics.
*)
let stb_loos : Nat_big_num.num= ( (Nat_big_num.of_int 10))
let stb_hios : Nat_big_num.num= ( (Nat_big_num.of_int 12))
(** Values in the following range have reserved processor specific semantics.
*)
let stb_loproc : Nat_big_num.num= ( (Nat_big_num.of_int 13))
let stb_hiproc : Nat_big_num.num= ( (Nat_big_num.of_int 15))
(** string_of_symbol_binding b os proc] produces a string representation of
* binding [m] using printing functions [os] and [proc] for OS- and processor-
* specific values respectively.
* OCaml specific definition.
*)
let string_of_symbol_binding m os proc:string=
(if Nat_big_num.equal m stb_local then
"LOCAL"
else if Nat_big_num.equal m stb_global then
"GLOBAL"
else if Nat_big_num.equal m stb_weak then
"WEAK"
else if Nat_big_num.greater_equal m stb_loos && Nat_big_num.less_equal m stb_hios then
os m
else if Nat_big_num.greater_equal m stb_loproc && Nat_big_num.less_equal m stb_hiproc then
proc m
else
"Invalid symbol binding")
(** Symbol types *)
(** The symbol's type is not specified.
*)
let stt_notype : Nat_big_num.num= ( (Nat_big_num.of_int 0))
(** The symbol is associated with a data object such as a variable.
*)
let stt_object : Nat_big_num.num= ( (Nat_big_num.of_int 1))
(** The symbol is associated with a function or other executable code.
*)
let stt_func : Nat_big_num.num= ( (Nat_big_num.of_int 2))
(** The symbol is associated with a section.
*)
let stt_section : Nat_big_num.num= ( (Nat_big_num.of_int 3))
(** Conventionally the symbol's value gives the name of the source file associated
* with the object file.
*)
let stt_file : Nat_big_num.num= ( (Nat_big_num.of_int 4))
(** The symbol is an uninitialised common block.
*)
let stt_common : Nat_big_num.num= ( (Nat_big_num.of_int 5))
(** The symbol specified a Thread Local Storage (TLS) entity.
*)
let stt_tls : Nat_big_num.num= ( (Nat_big_num.of_int 6))
(** Values in the following range are reserved solely for OS-specific semantics.
*)
let stt_loos : Nat_big_num.num= ( (Nat_big_num.of_int 10))
let stt_hios : Nat_big_num.num= ( (Nat_big_num.of_int 12))
(** Values in the following range are reserved solely for processor-specific
* semantics.
*)
let stt_loproc : Nat_big_num.num= ( (Nat_big_num.of_int 13))
let stt_hiproc : Nat_big_num.num= ( (Nat_big_num.of_int 15))
(** [string_of_symbol_type sym os proc] produces a string representation of
* symbol type [m] using [os] and [proc] to pretty-print values reserved for
* OS- and processor-specific functionality.
*)
let string_of_symbol_type m os proc:string=
(if Nat_big_num.equal m stt_notype then
"NOTYPE"
else if Nat_big_num.equal m stt_object then
"OBJECT"
else if Nat_big_num.equal m stt_func then
"FUNC"
else if Nat_big_num.equal m stt_section then
"SECTION"
else if Nat_big_num.equal m stt_file then
"FILE"
else if Nat_big_num.equal m stt_common then
"COMMON"
else if Nat_big_num.equal m stt_tls then
"TLS"
else if Nat_big_num.greater_equal m stt_loos && Nat_big_num.less_equal m stt_hios then
os m
else if Nat_big_num.greater_equal m stt_loproc && Nat_big_num.less_equal m stt_hiproc then
proc m
else
"Invalid symbol type")
(** Symbol visibility *)
(** The visibility of the symbol is as specified by the symbol's binding type.
*)
let stv_default : Nat_big_num.num= ( (Nat_big_num.of_int 0))
(** The meaning of this visibility may be defined by processor supplements to
* further constrain hidden symbols.
*)
let stv_internal : Nat_big_num.num= ( (Nat_big_num.of_int 1))
(** The symbol's name is not visible in other components.
*)
let stv_hidden : Nat_big_num.num= ( (Nat_big_num.of_int 2))
(** The symbol is visible in other components but not pre-emptable. That is,
* references to the symbol in the same component resolve to this symbol even
* if other symbols of the same name in other components would normally be
* resolved to instead if we followed the normal rules of symbol resolution.
*)
let stv_protected : Nat_big_num.num= ( (Nat_big_num.of_int 3))
(** [string_of_symbol_visibility m] produces a string representation of symbol
* visibility [m].
*)
let string_of_symbol_visibility m:string=
(if Nat_big_num.equal m stv_default then
"DEFAULT"
else if Nat_big_num.equal m stv_internal then
"INTERNAL"
else if Nat_big_num.equal m stv_hidden then
"HIDDEN"
else if Nat_big_num.equal m stv_protected then
"PROTECTED"
else
"Invalid symbol visibility")
(** Symbol table entry type *)
(** [elf32_symbol_table_entry] is an entry in a symbol table.
*)
type elf32_symbol_table_entry =
{ elf32_st_name : Uint32_wrapper.uint32 (** Index into the object file's string table *)
; elf32_st_value : Uint32_wrapper.uint32 (** Gives the value of the associated symbol *)
; elf32_st_size : Uint32_wrapper.uint32 (** Size of the associated symbol *)
; elf32_st_info : Uint32_wrapper.uint32 (** Specifies the symbol's type and binding attributes *)
; elf32_st_other : Uint32_wrapper.uint32 (** Currently specifies the symbol's visibility *)
; elf32_st_shndx : Uint32_wrapper.uint32 (** Section header index symbol is defined with respect to *)
}
(** [elf32_symbol_table_entry_compare ent1 ent2] is an ordering-comparison function
* for symbol table entries suitable for constructing sets, finite maps and other
* ordered data structures from.
*)
let elf32_symbol_table_entry_compare ent1 ent2:int=
(sextupleCompare Nat_big_num.compare Nat_big_num.compare Nat_big_num.compare Nat_big_num.compare Nat_big_num.compare Nat_big_num.compare (Uint32_wrapper.to_bigint ent1.elf32_st_name, Uint32_wrapper.to_bigint ent1.elf32_st_value,
Uint32_wrapper.to_bigint ent1.elf32_st_size, Uint32_wrapper.to_bigint ent1.elf32_st_info,
Uint32_wrapper.to_bigint ent1.elf32_st_other, Uint32_wrapper.to_bigint ent1.elf32_st_shndx)
(Uint32_wrapper.to_bigint ent2.elf32_st_name, Uint32_wrapper.to_bigint ent2.elf32_st_value,
Uint32_wrapper.to_bigint ent2.elf32_st_size, Uint32_wrapper.to_bigint ent2.elf32_st_info,
Uint32_wrapper.to_bigint ent2.elf32_st_other, Uint32_wrapper.to_bigint ent2.elf32_st_shndx))
let instance_Basic_classes_Ord_Elf_symbol_table_elf32_symbol_table_entry_dict:(elf32_symbol_table_entry)ord_class= ({
compare_method = elf32_symbol_table_entry_compare;
isLess_method = (fun f1 -> (fun f2 -> ( Lem.orderingEqual(elf32_symbol_table_entry_compare f1 f2) (-1))));
isLessEqual_method = (fun f1 -> (fun f2 -> Pset.mem (elf32_symbol_table_entry_compare f1 f2)(Pset.from_list compare [(-1); 0])));
isGreater_method = (fun f1 -> (fun f2 -> ( Lem.orderingEqual(elf32_symbol_table_entry_compare f1 f2) 1)));
isGreaterEqual_method = (fun f1 -> (fun f2 -> Pset.mem (elf32_symbol_table_entry_compare f1 f2)(Pset.from_list compare [1; 0])))})
(** [elf64_symbol_table_entry] is an entry in a symbol table.
*)
type elf64_symbol_table_entry =
{ elf64_st_name : Uint32_wrapper.uint32 (** Index into the object file's string table *)
; elf64_st_info : Uint32_wrapper.uint32 (** Specifies the symbol's type and binding attributes *)
; elf64_st_other : Uint32_wrapper.uint32 (** Currently specifies the symbol's visibility *)
; elf64_st_shndx : Uint32_wrapper.uint32 (** Section header index symbol is defined with respect to *)
; elf64_st_value : Uint64_wrapper.uint64 (** Gives the value of the associated symbol *)
; elf64_st_size : Uint64_wrapper.uint64 (** Size of the associated symbol *)
}
(** [elf64_symbol_table_entry_compare ent1 ent2] is an ordering-comparison function
* for symbol table entries suitable for constructing sets, finite maps and other
* ordered data structures from.
*)
let elf64_symbol_table_entry_compare ent1 ent2:int=
(sextupleCompare Nat_big_num.compare Nat_big_num.compare Nat_big_num.compare Nat_big_num.compare Nat_big_num.compare Nat_big_num.compare (Uint32_wrapper.to_bigint ent1.elf64_st_name, Ml_bindings.nat_big_num_of_uint64 ent1.elf64_st_value,
Ml_bindings.nat_big_num_of_uint64 ent1.elf64_st_size, Uint32_wrapper.to_bigint ent1.elf64_st_info,
Uint32_wrapper.to_bigint ent1.elf64_st_other, Uint32_wrapper.to_bigint ent1.elf64_st_shndx)
(Uint32_wrapper.to_bigint ent2.elf64_st_name, Ml_bindings.nat_big_num_of_uint64 ent2.elf64_st_value,
Ml_bindings.nat_big_num_of_uint64 ent2.elf64_st_size, Uint32_wrapper.to_bigint ent2.elf64_st_info,
Uint32_wrapper.to_bigint ent2.elf64_st_other, Uint32_wrapper.to_bigint ent2.elf64_st_shndx))
let instance_Basic_classes_Ord_Elf_symbol_table_elf64_symbol_table_entry_dict:(elf64_symbol_table_entry)ord_class= ({
compare_method = elf64_symbol_table_entry_compare;
isLess_method = (fun f1 -> (fun f2 -> ( Lem.orderingEqual(elf64_symbol_table_entry_compare f1 f2) (-1))));
isLessEqual_method = (fun f1 -> (fun f2 -> Pset.mem (elf64_symbol_table_entry_compare f1 f2)(Pset.from_list compare [(-1); 0])));
isGreater_method = (fun f1 -> (fun f2 -> ( Lem.orderingEqual(elf64_symbol_table_entry_compare f1 f2) 1)));
isGreaterEqual_method = (fun f1 -> (fun f2 -> Pset.mem (elf64_symbol_table_entry_compare f1 f2)(Pset.from_list compare [1; 0])))})
type elf32_symbol_table = elf32_symbol_table_entry
list
type elf64_symbol_table = elf64_symbol_table_entry
list
(** Extraction of symbol table data *)
(** [extract_symbol_binding u] extracts a symbol table entry's symbol binding. [u]
* in this case is the [elfXX_st_info] field from a symbol table entry.
*)
let entry:Nat_big_num.num=
(Uint32_wrapper.to_bigint (Uint32_wrapper.shift_right entry 4))
(** [extract_symbol_type u] extracts a symbol table entry's symbol type. [u]
* in this case is the [elfXX_st_info] field from a symbol table entry.
*)
let entry:Nat_big_num.num=
(Uint32_wrapper.to_bigint (Uint32_wrapper.logand entry (Uint32_wrapper.of_bigint( (Nat_big_num.of_int 15)))))
(** [get_symbol_info u] extracts a symbol table entry's symbol info. [u]
* in this case is the [elfXX_st_info] field from a symbol table entry.
*)
let make_symbol_info binding1 symtype:Uint32_wrapper.uint32=
(Uint32_wrapper.add
(Uint32_wrapper.shift_left (Uint32_wrapper.of_bigint binding1) 4)
(Uint32_wrapper.logand (Uint32_wrapper.of_bigint symtype)
(Uint32_wrapper.of_bigint( (Nat_big_num.of_int 15)))))
(** [get_symbol_visibility u] extracts a symbol table entry's symbol visibility. [u]
* in this case is the [elfXX_st_other] field from a symbol table entry.
*)
let get_symbol_visibility info:Nat_big_num.num=
(Uint32_wrapper.to_bigint (Uint32_wrapper.logand info (Uint32_wrapper.of_bigint( (Nat_big_num.of_int 3)))))
(** [make_symbol_other m] converts a natural [m] to an unsigned char suitable
* for use in a symbol table entry's "other" field.
* XXX: WHY?
*)
let make_symbol_other visibility:Uint32_wrapper.uint32=
(Uint32_wrapper.of_bigint visibility)
(** [is_elf32_shndx_too_large ent] tests whether the symbol table entry's
* [shndx] field is equal to SHN_XINDEX, in which case the real value is stored
* elsewhere.
*)
let is_elf32_shndx_too_large syment:bool= (Nat_big_num.equal
(Uint32_wrapper.to_bigint syment.elf32_st_shndx) shn_xindex)
(** [is_elf64_shndx_too_large ent] tests whether the symbol table entry's
* [shndx] field is equal to SHN_XINDEX, in which case the real value is stored
* elsewhere.
*)
let is_elf64_shndx_too_large syment:bool= (Nat_big_num.equal
(Uint32_wrapper.to_bigint syment.elf64_st_shndx) shn_xindex)
(** NULL tests *)
(** [is_elf32_null_entry ent] tests whether [ent] is a null symbol table entry,
* i.e. all fields set to [0].
*)
let is_elf32_null_entry ent:bool= (Nat_big_num.equal
(Uint32_wrapper.to_bigint ent.elf32_st_name)( (Nat_big_num.of_int 0))
&& (( Nat_big_num.equal(Uint32_wrapper.to_bigint ent.elf32_st_value)( (Nat_big_num.of_int 0)))
&& (( Nat_big_num.equal(Uint32_wrapper.to_bigint ent.elf32_st_size)( (Nat_big_num.of_int 0)))
&& (( Nat_big_num.equal(Uint32_wrapper.to_bigint ent.elf32_st_info)( (Nat_big_num.of_int 0)))
&& (( Nat_big_num.equal(Uint32_wrapper.to_bigint ent.elf32_st_other)( (Nat_big_num.of_int 0)))
&& ( Nat_big_num.equal(Uint32_wrapper.to_bigint ent.elf32_st_shndx)( (Nat_big_num.of_int 0))))))))
(** [is_elf64_null_entry ent] tests whether [ent] is a null symbol table entry,
* i.e. all fields set to [0].
*)
let is_elf64_null_entry ent:bool= (Nat_big_num.equal
(Uint32_wrapper.to_bigint ent.elf64_st_name)( (Nat_big_num.of_int 0))
&& (( Nat_big_num.equal(Ml_bindings.nat_big_num_of_uint64 ent.elf64_st_value)( (Nat_big_num.of_int 0)))
&& (( Nat_big_num.equal(Ml_bindings.nat_big_num_of_uint64 ent.elf64_st_size)( (Nat_big_num.of_int 0)))
&& (( Nat_big_num.equal(Uint32_wrapper.to_bigint ent.elf64_st_info)( (Nat_big_num.of_int 0)))
&& (( Nat_big_num.equal(Uint32_wrapper.to_bigint ent.elf64_st_other)( (Nat_big_num.of_int 0)))
&& ( Nat_big_num.equal(Uint32_wrapper.to_bigint ent.elf64_st_shndx)( (Nat_big_num.of_int 0))))))))
(** Printing symbol table entries *)
type symtab_print_bundle =
(Nat_big_num.num -> string) * (Nat_big_num.num -> string)
(** [string_of_elf32_symbol_table_entry ent] produces a string based representation
* of symbol table entry [ent].
*)
let string_of_elf32_symbol_table_entry entry:string=
(unlines [
("\t" ^ ("Name: " ^ Uint32_wrapper.to_string entry.elf32_st_name))
; ("\t" ^ ("Value: " ^ Uint32_wrapper.to_string entry.elf32_st_value))
; ("\t" ^ ("Size: " ^ Uint32_wrapper.to_string entry.elf32_st_size))
; ("\t" ^ ("Info: " ^ Uint32_wrapper.to_string entry.elf32_st_info))
; ("\t" ^ ("Other: " ^ Uint32_wrapper.to_string entry.elf32_st_other))
; ("\t" ^ ("Shndx: " ^ Uint32_wrapper.to_string entry.elf32_st_shndx))
])
(** [string_of_elf64_symbol_table_entry ent] produces a string based representation
* of symbol table entry [ent].
*)
let string_of_elf64_symbol_table_entry entry:string=
(unlines [
("\t" ^ ("Name: " ^ Uint32_wrapper.to_string entry.elf64_st_name))
; ("\t" ^ ("Info: " ^ Uint32_wrapper.to_string entry.elf64_st_info))
; ("\t" ^ ("Other: " ^ Uint32_wrapper.to_string entry.elf64_st_other))
; ("\t" ^ ("Shndx: " ^ Uint32_wrapper.to_string entry.elf64_st_shndx))
; ("\t" ^ ("Value: " ^ Uint64_wrapper.to_string entry.elf64_st_value))
; ("\t" ^ ("Size: " ^ Uint64_wrapper.to_string entry.elf64_st_size))
])
(** [string_of_elf32_symbol_table stbl] produces a string based representation
* of symbol table [stbl].
*)
let string_of_elf32_symbol_table symtab:string=
(unlines (Lem_list.map string_of_elf32_symbol_table_entry symtab))
(** [elf64_null_symbol_table_entry] is the null symbol table entry, with all
* fields set to zero.
*)
let elf64_null_symbol_table_entry:elf64_symbol_table_entry=
({ elf64_st_name = (Uint32_wrapper.of_bigint( (Nat_big_num.of_int 0)))
; elf64_st_info = (Uint32_wrapper.of_bigint( (Nat_big_num.of_int 0)))
; elf64_st_other = (Uint32_wrapper.of_bigint( (Nat_big_num.of_int 0)))
; elf64_st_shndx = (Uint32_wrapper.of_bigint( (Nat_big_num.of_int 0)))
; elf64_st_value = (Uint64_wrapper.of_bigint( (Nat_big_num.of_int 0)))
; elf64_st_size = (Uint64_wrapper.of_bigint( (Nat_big_num.of_int 0)))
})
let string_of_elf64_symbol_table symtab:string=
(unlines (Lem_list.map string_of_elf64_symbol_table_entry symtab))
let instance_Show_Show_Elf_symbol_table_elf32_symbol_table_entry_dict:(elf32_symbol_table_entry)show_class= ({
show_method = string_of_elf32_symbol_table_entry})
let instance_Show_Show_Elf_symbol_table_elf64_symbol_table_entry_dict:(elf64_symbol_table_entry)show_class= ({
show_method = string_of_elf64_symbol_table_entry})
(** Reading in symbol table (entries) *)
(** [read_elf32_symbol_table_entry endian bs0] reads an ELF symbol table entry
* record from byte sequence [bs0] assuming endianness [endian], returning the
* remainder of the byte sequence. Fails if the byte sequence is not long enough.
*)
let read_elf32_symbol_table_entry endian bs0:(elf32_symbol_table_entry*Byte_sequence_wrapper.byte_sequence)error= (bind (read_elf32_word endian bs0) (fun (st_name, bs0) -> bind (read_elf32_addr endian bs0) (fun (st_value, bs0) -> bind (read_elf32_word endian bs0) (fun (st_size, bs0) -> bind (read_unsigned_char endian bs0) (fun (st_info, bs0) -> bind (read_unsigned_char endian bs0) (fun (st_other, bs0) -> bind (read_elf32_half endian bs0) (fun (st_shndx, bs0) ->
return ({ elf32_st_name = st_name; elf32_st_value = st_value;
elf32_st_size = st_size; elf32_st_info = st_info;
elf32_st_other = st_other; elf32_st_shndx = st_shndx }, bs0))))))))
let bytes_of_elf32_symbol_table_entry endian entry:Byte_sequence_wrapper.byte_sequence=
(Byte_sequence.from_byte_lists [
bytes_of_elf32_word endian entry.elf32_st_name
; bytes_of_elf32_addr endian entry.elf32_st_value
; bytes_of_elf32_word endian entry.elf32_st_size
; bytes_of_unsigned_char entry.elf32_st_info
; bytes_of_unsigned_char entry.elf32_st_other
; bytes_of_elf32_half endian entry.elf32_st_shndx
])
(** [read_elf64_symbol_table_entry endian bs0] reads an ELF symbol table entry
* record from byte sequence [bs0] assuming endianness [endian], returning the
* remainder of the byte sequence. Fails if the byte sequence is not long enough.
*)
let read_elf64_symbol_table_entry endian bs0:(elf64_symbol_table_entry*Byte_sequence_wrapper.byte_sequence)error= (bind (read_elf64_word endian bs0) (fun (st_name, bs0) -> bind (read_unsigned_char endian bs0) (fun (st_info, bs0) -> bind (read_unsigned_char endian bs0) (fun (st_other, bs0) -> bind (read_elf64_half endian bs0) (fun (st_shndx, bs0) -> bind (read_elf64_addr endian bs0) (fun (st_value, bs0) -> bind (read_elf64_xword endian bs0) (fun (st_size, bs0) ->
return ({ elf64_st_name = st_name; elf64_st_info = st_info;
elf64_st_other = st_other; elf64_st_shndx = st_shndx;
elf64_st_value = st_value; elf64_st_size = st_size }, bs0))))))))
let bytes_of_elf64_symbol_table_entry endian entry:Byte_sequence_wrapper.byte_sequence=
(Byte_sequence.from_byte_lists [
bytes_of_elf64_word endian entry.elf64_st_name
; bytes_of_unsigned_char entry.elf64_st_info
; bytes_of_unsigned_char entry.elf64_st_other
; bytes_of_elf64_half endian entry.elf64_st_shndx
; bytes_of_elf64_addr endian entry.elf64_st_value
; bytes_of_elf64_xword endian entry.elf64_st_size
])
(** [read_elf32_symbol_table endian bs0] reads a symbol table from byte sequence
* [bs0] assuming endianness [endian]. Assumes [bs0]'s length modulo the size
* of a symbol table entry is 0. Fails otherwise.
*)
let rec read_elf32_symbol_table endian bs0:((elf32_symbol_table_entry)list)error=
(if Nat_big_num.equal (Byte_sequence.length0 bs0)( (Nat_big_num.of_int 0)) then
return []
else bind (read_elf32_symbol_table_entry endian bs0) (fun (head, bs0) -> bind (read_elf32_symbol_table endian bs0) (fun tail ->
return (head::tail))))
(** [read_elf64_symbol_table endian bs0] reads a symbol table from byte sequence
* [bs0] assuming endianness [endian]. Assumes [bs0]'s length modulo the size
* of a symbol table entry is 0. Fails otherwise.
*)
let rec read_elf64_symbol_table endian bs0:((elf64_symbol_table_entry)list)error=
(if Nat_big_num.equal (Byte_sequence.length0 bs0)( (Nat_big_num.of_int 0)) then
return []
else bind (read_elf64_symbol_table_entry endian bs0) (fun (head, bs0) -> bind (read_elf64_symbol_table endian bs0) (fun tail ->
return (head::tail))))
(** Association map of symbol name, symbol type, symbol size, symbol address
* and symbol binding.
* A PPCMemism.
*)
type symbol_address_map
= (string * (Nat_big_num.num * Nat_big_num.num * Nat_big_num.num * Nat_big_num.num)) list
(** [get_elf32_symbol_image_address symtab stbl] extracts the symbol address map
* from the symbol table [symtab] using the string table [stbl].
* A PPCMemism.
*)
let get_elf32_symbol_image_address symtab strtab:((string*(Nat_big_num.num*Nat_big_num.num*Nat_big_num.num*Nat_big_num.num))list)error=
(mapM (fun entry ->
let name1 = (Uint32_wrapper.to_bigint entry.elf32_st_name) in
let addr = (Uint32_wrapper.to_bigint entry.elf32_st_value) in
let size2 = (Nat_big_num.mul (Uint32_wrapper.to_bigint entry.elf32_st_size)( (Nat_big_num.of_int 8))) in
let typ = (extract_symbol_type entry.elf32_st_info) in
let bnd = (extract_symbol_binding entry.elf32_st_info) in bind (String_table.get_string_at name1 strtab) (fun str ->
return (str, (typ, size2, addr, bnd)))
) symtab)
(** [get_elf64_symbol_image_address symtab stbl] extracts the symbol address map
* from the symbol table [symtab] using the string table [stbl].
* A PPCMemism.
*)
let get_elf64_symbol_image_address symtab strtab:((string*(Nat_big_num.num*Nat_big_num.num*Nat_big_num.num*Nat_big_num.num))list)error=
(mapM (fun entry ->
let name1 = (Uint32_wrapper.to_bigint entry.elf64_st_name) in
let addr = (Ml_bindings.nat_big_num_of_uint64 entry.elf64_st_value) in
let size2 = (Ml_bindings.nat_big_num_of_uint64 entry.elf64_st_size) in
let typ = (extract_symbol_type entry.elf64_st_info) in
let bnd = (extract_symbol_binding entry.elf64_st_info) in bind (String_table.get_string_at name1 strtab) (fun str ->
return (str, (typ, size2, addr, bnd)))
) symtab)
(** [get_el32_symbol_type ent] extracts the symbol type from symbol table entry
* [ent].
*)
let get_elf32_symbol_type syment:Nat_big_num.num= (extract_symbol_type syment.elf32_st_info)
(** [get_el64_symbol_type ent] extracts the symbol type from symbol table entry
* [ent].
*)
let get_elf64_symbol_type syment:Nat_big_num.num= (extract_symbol_type syment.elf64_st_info)
(** [get_el32_symbol_binding ent] extracts the symbol binding from symbol table entry
* [ent].
*)
let get_elf32_symbol_binding syment:Nat_big_num.num= (extract_symbol_binding syment.elf32_st_info)
(** [get_el64_symbol_binding ent] extracts the symbol binding from symbol table entry
* [ent].
*)
let get_elf64_symbol_binding syment:Nat_big_num.num= (extract_symbol_binding syment.elf64_st_info)