package kappa-library

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file nbr.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
(******************************************************************************)
(*  _  __ * The Kappa Language                                                *)
(* | |/ / * Copyright 2010-2020 CNRS - Harvard Medical School - INRIA - IRIF  *)
(* | ' /  *********************************************************************)
(* | . \  * This file is distributed under the terms of the                   *)
(* |_|\_\ * GNU Lesser General Public License Version 3                       *)
(******************************************************************************)

type t = F of float | I of int | I64 of Int64.t

let cast_bin_op ~op_f ?op_i ?op_i64 x y =
  match x, y with
  | F x, F y -> F (op_f x y)
  | I x, F y -> F (op_f (float_of_int x) y)
  | F x, I y -> F (op_f x (float_of_int y))
  | I x, I y ->
    (match op_i with
    | None -> F (op_f (float_of_int x) (float_of_int y))
    | Some op_i -> I (op_i x y))
  | I x, I64 y ->
    (match op_i64 with
    | None -> F (op_f (float_of_int x) (Int64.to_float y))
    | Some op_i64 -> I64 (op_i64 (Int64.of_int x) y))
  | I64 x, I y ->
    (match op_i64 with
    | None -> F (op_f (Int64.to_float x) (float_of_int y))
    | Some op_i64 -> I64 (op_i64 x (Int64.of_int y)))
  | I64 x, I64 y ->
    (match op_i64 with
    | None -> F (op_f (Int64.to_float x) (Int64.to_float y))
    | Some op_i64 -> I64 (op_i64 x y))
  | F x, I64 y -> F (op_f x (Int64.to_float y))
  | I64 x, F y -> F (op_f (Int64.to_float x) y)

let cast_un_op ?op_f ?op_i ?op_i64 x =
  match x with
  | F x ->
    (match op_f with
    | Some op_f -> F (op_f x)
    | None ->
      (match op_i with
      | None -> invalid_arg "cast_un"
      | Some op_i -> I (op_i (int_of_float x))))
  | I64 x ->
    (match op_i64 with
    | Some op_i64 -> I64 (op_i64 x)
    | None ->
      (match op_f with
      | None -> invalid_arg "cast_un_op"
      | Some op_f -> F (op_f (Int64.to_float x))))
  | I x ->
    (match op_i with
    | Some op_i -> I (op_i x)
    | None ->
      (match op_f with
      | None -> invalid_arg "cast_un_op"
      | Some op_f -> F (op_f (float_of_int x))))

let compare n1 n2 =
  match n1, n2 with
  | F x, F y -> Stdlib.compare x y
  | I x, I y -> Stdlib.compare x y
  | F x, I y -> Stdlib.compare x (float_of_int y)
  | I x, F y -> Stdlib.compare (float_of_int x) y
  | I x, I64 y -> Stdlib.compare (Int64.of_int x) y
  | I64 x, I64 y -> Stdlib.compare x y
  | I64 x, I y -> Stdlib.compare x (Int64.of_int y)
  | F x, I64 y -> Stdlib.compare x (Int64.to_float y)
  | I64 x, F y -> Stdlib.compare (Int64.to_float x) y

let is_greater n1 n2 = compare n1 n2 > 0
let is_smaller n1 n2 = compare n1 n2 < 0
let is_equal n1 n2 = compare n1 n2 = 0
let add n1 n2 = cast_bin_op ~op_f:( +. ) ~op_i:( + ) ~op_i64:Int64.add n1 n2
let sub n1 n2 = cast_bin_op ~op_f:( -. ) ~op_i:( - ) ~op_i64:Int64.sub n1 n2
let mult n1 n2 = cast_bin_op ~op_f:( *. ) ~op_i:( * ) ~op_i64:Int64.mul n1 n2
let min n1 n2 = cast_bin_op ~op_f:min ~op_i:min ~op_i64:min n1 n2
let max n1 n2 = cast_bin_op ~op_f:max ~op_i:max ~op_i64:max n1 n2

let rem n1 n2 =
  cast_bin_op ~op_i:( mod ) ~op_i64:Int64.rem ~op_f:mod_float n1 n2

let internal_div n1 n2 =
  cast_bin_op ~op_i:( / ) ~op_i64:Int64.div ~op_f:( /. ) n1 n2

let succ n = cast_un_op ~op_f:(( +. ) 1.) ~op_i:succ ~op_i64:Int64.succ n
let pred n = cast_un_op ~op_f:(fun x -> x -. 1.) ~op_i:pred ~op_i64:Int64.pred n
let neg n = cast_un_op ~op_f:( ~-. ) ~op_i:( ~- ) ~op_i64:Int64.neg n

let to_float n =
  match n with
  | I x -> Some (float_of_int x)
  | I64 x -> Some (Int64.to_float x)
  | F x ->
    (match classify_float x with
    | FP_zero | FP_normal | FP_subnormal -> Some x
    | FP_infinite | FP_nan -> None)

let to_int n =
  match n with
  | F x -> int_of_float x
  | I x -> x
  | I64 x -> Int64.to_int x (*Might exceed thebiggest 32 bits integer*)

let zero = I 0

let is_zero = function
  | I64 x -> x = Int64.zero
  | I x -> x = 0
  | F x -> Tools.float_is_zero x

let one = I 1

let is_strictly_positive = function
  | F x -> x > 0.
  | I x -> x > 0
  | I64 x -> x > Int64.zero

let pos_pow n1 n2 =
  cast_bin_op ~op_f:( ** ) ~op_i:Tools.pow ~op_i64:Tools.pow64 n1 n2

let pow x n =
  if is_zero n || is_strictly_positive n then
    pos_pow x n
  else (
    match to_float x with
    | Some x -> pos_pow (F (1. /. x)) (neg n)
    | None -> F nan
  )

let print f = function
  | F x -> Format.fprintf f "%s" (string_of_float x)
  | I64 x -> Format.fprintf f "%Ld" x
  | I x -> Format.fprintf f "%d" x

let pretty_print f = function
  | F x -> Format.fprintf f "%g" x
  | I64 x -> Format.fprintf f "%Ld" x
  | I x -> Format.fprintf f "%d" x

let print_option f = function
  | I x -> Format.fprintf f "%d" x
  | I64 x -> Format.fprintf f "%Ld" x
  | F x ->
    (match classify_float x with
    | FP_zero | FP_normal | FP_subnormal ->
      Format.fprintf f "%s" (string_of_float x)
    | FP_infinite | FP_nan -> ())

let to_string = function
  | F x -> string_of_float x
  | I64 x -> Int64.to_string x
  | I x -> string_of_int x

let rec iteri f x n =
  if is_strictly_positive n then
    iteri f (f n x) (pred n)
  else
    x

let rec maybe_iteri f x n =
  if is_strictly_positive n then (
    match f n x with
    | None -> x
    | Some x' -> maybe_iteri f x' (pred n)
  ) else
    x

let of_string x =
  try I (int_of_string x) with Failure _ -> F (float_of_string x)

let to_yojson = function
  | I x -> `Int x
  | I64 x -> `String (Int64.to_string x)
  | F x ->
    (match classify_float x with
    | FP_zero | FP_normal | FP_subnormal -> `Float x
    | FP_infinite | FP_nan -> `String (string_of_float x))

let of_yojson = function
  | `Int x -> I x
  | `Float x -> F x
  | `String n as x ->
    (try I64 (Int64.of_string n)
     with Failure _ ->
       (try F (float_of_string n)
        with Failure _ ->
          raise (Yojson.Basic.Util.Type_error ("Not an Nbr", x))))
  | x -> raise (Yojson.Basic.Util.Type_error ("Not an Nbr", x))

let write_t ob f = Yojson.Basic.to_buffer ob (to_yojson f)

let string_of_t ?(len = 1024) x =
  let ob = Buffer.create len in
  write_t ob x;
  Buffer.contents ob

let read_t p lb = of_yojson (Yojson.Basic.from_lexbuf ~stream:true p lb)
let t_of_string s = read_t (Yojson.Safe.init_lexer ()) (Lexing.from_string s)

let of_bin_alg_op = function
  | Operator.MULT -> mult
  | Operator.SUM -> add
  | Operator.DIV ->
    fun x y ->
      if (not (is_zero y)) && is_zero (rem x y) then
        internal_div x y
      else
        cast_bin_op ~op_f:( /. ) x y
  | Operator.MINUS -> sub
  | Operator.MODULO -> rem
  | Operator.MIN -> min
  | Operator.MAX -> max
  | Operator.POW -> pow

let of_un_alg_op = function
  | Operator.LOG -> fun x -> cast_un_op ~op_f:log x
  | Operator.SQRT -> fun x -> cast_un_op ~op_f:sqrt x
  | Operator.EXP -> fun x -> cast_un_op ~op_f:exp x
  | Operator.SINUS -> fun x -> cast_un_op ~op_f:sin x
  | Operator.COSINUS -> fun x -> cast_un_op ~op_f:cos x
  | Operator.TAN -> fun x -> cast_un_op ~op_f:tan x
  | Operator.INT ->
    fun x -> cast_un_op ~op_i:(fun n -> n) ~op_i64:(fun n -> n) x
  | Operator.UMINUS -> neg

let of_compare_op = function
  | Operator.GREATER -> is_greater
  | Operator.SMALLER -> is_smaller
  | Operator.EQUAL -> is_equal
  | Operator.DIFF -> fun v v' -> not (is_equal v v')
OCaml

Innovation. Community. Security.