package catala

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file var.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
(* This file is part of the Catala compiler, a specification language for tax
   and social benefits computation rules. Copyright (C) 2020-2022 Inria,
   contributor: Louis Gesbert <louis.gesbert@inria.fr>

   Licensed under the Apache License, Version 2.0 (the "License"); you may not
   use this file except in compliance with the License. You may obtain a copy of
   the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
   WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
   License for the specific language governing permissions and limitations under
   the License. *)

open Definitions

(** {1 Variables and their collections} *)

(** This module provides types and helpers for Bindlib variables on the [gexpr]
    type *)

type 'e t = ('a, 't) naked_gexpr Bindlib.var constraint 'e = ('a any, 't) gexpr

type 'e vars = ('a, 't) naked_gexpr Bindlib.mvar
  constraint 'e = ('a any, 't) gexpr

let make (name : string) : 'e t = Bindlib.new_var (fun x -> EVar x) name
let compare = Bindlib.compare_vars
let eq = Bindlib.eq_vars

let translate (v : 'e1 t) : 'e2 t =
  Bindlib.copy_var v (fun x -> EVar x) (Bindlib.name_of v)

type 'e var = 'e t

(* The purpose of this module is just to lift a type parameter outside of
   [Set.S] and [Map.S], so that we can have ['e Var.Set.t] for sets of variables
   bound to the ['e = ('a, 't) gexpr] expression type. This is made possible by
   the fact that [Bindlib.compare_vars] is polymorphic in that parameter; we
   first hide that parameter inside an existential, then re-add a phantom type
   outside of the set to ensure consistency. Extracting the elements is then
   done with [Bindlib.copy_var] but technically it's not much different from an
   [Obj] conversion.

   If anyone has a better solution, besides a copy-paste of Set.Make / Map.Make
   code... *)
module Generic = struct
  (* Existentially quantify the type parameters to allow application of
     Set.Make *)
  type t = Var : 'e var -> t
  (* Note: adding [[@@ocaml.unboxed]] would be OK and make our wrappers live at
     the type-level without affecting the actual data representation. But
     [Bindlib.var] being abstract, we can't convince OCaml it's ok at the moment
     and have to hold it *)

  let t v = Var v
  let get (Var v) = Bindlib.copy_var v (fun x -> EVar x) (Bindlib.name_of v)
  let compare (Var x) (Var y) = Bindlib.compare_vars x y
  let eq (Var x) (Var y) = Bindlib.eq_vars x y [@@ocaml.warning "-32"]
end

(* Wrapper around Set.Make to re-add type parameters (avoid inconsistent
   sets) *)
module Set = struct
  open Generic
  open Set.Make (Generic)

  type nonrec 'e t = t

  let empty = empty
  let singleton x = singleton (t x)
  let add x s = add (t x) s
  let remove x s = remove (t x) s
  let union s1 s2 = union s1 s2
  let mem x s = mem (t x) s
  let of_list l = of_list (List.map t l)
  let elements s = elements s |> List.map get
  let diff s1 s2 = diff s1 s2

  (* Add more as needed *)
end

(* Wrapper around Map.Make to re-add type parameters (avoid inconsistent
   maps) *)
module Map = struct
  open Generic
  open Map.Make (Generic)

  type nonrec ('e, 'x) t = 'x t

  let empty = empty
  let singleton v x = singleton (t v) x
  let add v x m = add (t v) x m
  let update v f m = update (t v) f m
  let find v m = find (t v) m
  let find_opt v m = find_opt (t v) m
  let bindings m = bindings m |> List.map (fun (v, x) -> get v, x)
  let mem x m = mem (t x) m
  let union f m1 m2 = union (fun v x1 x2 -> f (get v) x1 x2) m1 m2
  let fold f m acc = fold (fun v x acc -> f (get v) x acc) m acc

  (* Add more as needed *)
end
OCaml

Innovation. Community. Security.