package catala

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file dependency.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
(* This file is part of the Catala compiler, a specification language for tax
   and social benefits computation rules. Copyright (C) 2020 Inria, contributor:
   Nicolas Chataing <nicolas.chataing@ens.fr>

   Licensed under the Apache License, Version 2.0 (the "License"); you may not
   use this file except in compliance with the License. You may obtain a copy of
   the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
   WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
   License for the specific language governing permissions and limitations under
   the License. *)

(** Scope dependencies computations using {{:http://ocamlgraph.lri.fr/}
    OCamlgraph} *)

open Catala_utils
open Shared_ast

(** {1 Scope variables dependency graph} *)

(** {2 Graph declaration} *)

(** Vertices: scope variables or subscopes.

    The vertices of the scope dependency graph are either :

    - the variables of the scope ;
    - the subscopes of the scope.

    Indeed, during interpretation, subscopes are executed atomically. *)
module Vertex = struct
  type t = Var of ScopeVar.t * StateName.t option | SubScope of SubScopeName.t

  let hash x =
    match x with
    | Var (x, None) -> ScopeVar.hash x
    | Var (x, Some sx) -> Int.logxor (ScopeVar.hash x) (StateName.hash sx)
    | SubScope x -> SubScopeName.hash x

  let compare x y =
    match x, y with
    | Var (x, xst), Var (y, yst) -> (
      match ScopeVar.compare x y with
      | 0 -> Option.compare StateName.compare xst yst
      | n -> n)
    | SubScope x, SubScope y -> SubScopeName.compare x y
    | Var _, _ -> -1
    | _, Var _ -> 1
    | SubScope _, _ -> .
    | _, SubScope _ -> .

  let equal x y =
    match x, y with
    | Var (x, sx), Var (y, sy) ->
      ScopeVar.equal x y && Option.equal StateName.equal sx sy
    | SubScope x, SubScope y -> SubScopeName.equal x y
    | (Var _ | SubScope _), _ -> false

  let format_t (fmt : Format.formatter) (x : t) : unit =
    match x with
    | Var (v, None) -> ScopeVar.format_t fmt v
    | Var (v, Some sv) ->
      Format.fprintf fmt "%a@%a" ScopeVar.format_t v StateName.format_t sv
    | SubScope v -> SubScopeName.format_t fmt v

  let info = function
    | Var (v, None) -> ScopeVar.get_info v
    | Var (_, Some sv) -> StateName.get_info sv
    | SubScope v -> SubScopeName.get_info v
end

(** On the edges, the label is the position of the expression responsible for
    the use of the variable. In the graph, [x -> y] if [x] is used in the
    definition of [y].*)
module Edge = struct
  type t = Pos.t

  let compare = compare
  let default = Pos.no_pos
end

module ScopeDependencies =
  Graph.Persistent.Digraph.ConcreteBidirectionalLabeled (Vertex) (Edge)
(** Module of the graph, provided by OCamlGraph *)

module TopologicalTraversal = Graph.Topological.Make (ScopeDependencies)
(** Module of the topological traversal of the graph, provided by OCamlGraph *)

module SCC = Graph.Components.Make (ScopeDependencies)
(** Tarjan's stongly connected components algorithm, provided by OCamlGraph *)

(** {2 Graph computations} *)

(** Returns an ordering of the scope variables and subscope compatible with the
    dependencies of the computation *)
let correct_computation_ordering (g : ScopeDependencies.t) : Vertex.t list =
  List.rev (TopologicalTraversal.fold (fun sd acc -> sd :: acc) g [])

(** Outputs an error in case of cycles. *)
let check_for_cycle (scope : Ast.scope) (g : ScopeDependencies.t) : unit =
  (* if there is a cycle, there will be a strongly connected component of
     cardinality > 1 *)
  let sccs = SCC.scc_list g in
  match List.find_opt (function [] | [_] -> false | _ -> true) sccs with
  | None -> ()
  | Some [] -> assert false
  | Some (v0 :: _ as scc) ->
    let module VSet = Set.Make (Vertex) in
    let scc = VSet.of_list scc in
    let rec get_cycle cycle cycle_set v =
      let cycle = v :: cycle in
      let cycle_set = VSet.add v cycle_set in
      let succ = ScopeDependencies.succ g v in
      if List.exists (fun v -> VSet.mem v cycle_set) succ then
        (* a cycle may be smaller than the scc, in that case we just return the
           first one found *)
        let rec cut_after acc = function
          | [] -> acc
          | v :: vs ->
            if List.mem v succ then v :: acc else cut_after (v :: acc) vs
        in
        cut_after [] cycle
      else
        get_cycle cycle cycle_set
          (List.find (fun succ -> VSet.mem succ scc) succ)
    in
    let cycle = get_cycle [] VSet.empty v0 in
    let spans =
      List.map2
        (fun v1 v2 ->
          let msg =
            Format.asprintf "%a is used here in the definition of %a:"
              Vertex.format_t v1 Vertex.format_t v2
          in
          let _, edge_pos, _ = ScopeDependencies.find_edge g v1 v2 in
          Some msg, edge_pos)
        cycle
        (List.tl cycle @ [List.hd cycle])
    in
    Errors.raise_multispanned_error spans
      "@[<hov 2>Cyclic dependency detected between the following variables of \
       scope %a:@ @[<hv>%a@]@]"
      ScopeName.format_t scope.scope_uid
      (Format.pp_print_list
         ~pp_sep:(fun ppf () -> Format.fprintf ppf " →@ ")
         Vertex.format_t)
      (cycle @ [List.hd cycle])

(** Builds the dependency graph of a particular scope *)
let build_scope_dependencies (scope : Ast.scope) : ScopeDependencies.t =
  let g = ScopeDependencies.empty in
  (* Add all the vertices to the graph *)
  let g =
    ScopeVar.Map.fold
      (fun (v : ScopeVar.t) var_or_state g ->
        match var_or_state with
        | Ast.WholeVar -> ScopeDependencies.add_vertex g (Vertex.Var (v, None))
        | Ast.States states ->
          List.fold_left
            (fun g state ->
              ScopeDependencies.add_vertex g (Vertex.Var (v, Some state)))
            g states)
      scope.scope_vars g
  in
  let g =
    SubScopeName.Map.fold
      (fun (v : SubScopeName.t) _ g ->
        ScopeDependencies.add_vertex g (Vertex.SubScope v))
      scope.scope_sub_scopes g
  in
  let g =
    Ast.ScopeDefMap.fold
      (fun def_key scope_def g ->
        let def = scope_def.Ast.scope_def_rules in
        let fv = Ast.free_variables def in
        Ast.ScopeDefMap.fold
          (fun fv_def fv_def_pos g ->
            match def_key, fv_def with
            | ( Ast.ScopeDef.Var (v_defined, s_defined),
                Ast.ScopeDef.Var (v_used, s_used) ) ->
              (* simple case *)
              if
                ScopeVar.equal v_used v_defined
                && Option.equal StateName.equal s_used s_defined
              then
                (* variable definitions cannot be recursive *)
                Errors.raise_spanned_error fv_def_pos
                  "The variable %a is used in one of its definitions, but \
                   recursion is forbidden in Catala"
                  Ast.ScopeDef.format_t def_key
              else
                let edge =
                  ScopeDependencies.E.create
                    (Vertex.Var (v_used, s_used))
                    fv_def_pos
                    (Vertex.Var (v_defined, s_defined))
                in
                ScopeDependencies.add_edge_e g edge
            | ( Ast.ScopeDef.SubScopeVar (defined, _, _),
                Ast.ScopeDef.Var (v_used, s_used) ) ->
              (* here we are defining the input of a subscope using a var of the
                 scope *)
              let edge =
                ScopeDependencies.E.create
                  (Vertex.Var (v_used, s_used))
                  fv_def_pos (Vertex.SubScope defined)
              in
              ScopeDependencies.add_edge_e g edge
            | ( Ast.ScopeDef.SubScopeVar (defined, _, _),
                Ast.ScopeDef.SubScopeVar (used, _, _) ) ->
              (* here we are defining the input of a scope with the output of
                 another subscope *)
              if SubScopeName.equal used defined then
                (* subscopes are not recursive functions *)
                Errors.raise_spanned_error fv_def_pos
                  "The subscope %a is used when defining one of its inputs, \
                   but recursion is forbidden in Catala"
                  SubScopeName.format_t defined
              else
                let edge =
                  ScopeDependencies.E.create (Vertex.SubScope used) fv_def_pos
                    (Vertex.SubScope defined)
                in
                ScopeDependencies.add_edge_e g edge
            | ( Ast.ScopeDef.Var (v_defined, s_defined),
                Ast.ScopeDef.SubScopeVar (used, _, _) ) ->
              (* finally we define a scope var with the output of a subscope *)
              let edge =
                ScopeDependencies.E.create (Vertex.SubScope used) fv_def_pos
                  (Vertex.Var (v_defined, s_defined))
              in
              ScopeDependencies.add_edge_e g edge)
          fv g)
      scope.scope_defs g
  in
  g

(** {1 Exceptions dependency graph} *)

(** {2 Graph declaration} *)

module ExceptionVertex = struct
  include RuleName.Set

  let hash (x : t) : int =
    RuleName.Set.fold (fun r acc -> Int.logxor (RuleName.hash r) acc) x 0

  let equal x y = compare x y = 0
end

module EdgeExceptions = struct
  type t = Pos.t list

  let compare = compare
  let default = [Pos.no_pos]
end

module ExceptionsDependencies =
  Graph.Persistent.Digraph.ConcreteBidirectionalLabeled
    (ExceptionVertex)
    (EdgeExceptions)
(** Module of the graph, provided by OCamlGraph. [x -> y] if [y] is an exception
    to [x] *)

module ExceptionsSCC = Graph.Components.Make (ExceptionsDependencies)
(** Tarjan's stongly connected components algorithm, provided by OCamlGraph *)

(** {2 Graph computations} *)

type exception_edge = {
  label_from : LabelName.t;
  label_to : LabelName.t;
  edge_positions : Pos.t list;
}

let build_exceptions_graph
    (def : Ast.rule RuleName.Map.t)
    (def_info : Ast.ScopeDef.t) : ExceptionsDependencies.t =
  (* First we partition the definitions into groups bearing the same label. To
     handle the rules that were not labeled by the user, we create implicit
     labels. *)

  (* All the rules of the form [definition x ...] are base case with no explicit
     label, so they should share this implicit label. *)
  let base_case_implicit_label = LabelName.fresh ("base_case", Pos.no_pos) in
  (* When declaring [exception definition x ...], it means there is a unique
     rule [R] to which this can be an exception to. So we give a unique label to
     all the rules that are implicitly exceptions to rule [R]. *)
  let exception_to_rule_implicit_labels : LabelName.t RuleName.Map.t =
    RuleName.Map.fold
      (fun _ rule_from exception_to_rule_implicit_labels ->
        match rule_from.Ast.rule_exception with
        | Ast.ExceptionToRule (rule_to, _) -> (
          match
            RuleName.Map.find_opt rule_to exception_to_rule_implicit_labels
          with
          | Some _ ->
            (* we already created the label *) exception_to_rule_implicit_labels
          | None ->
            RuleName.Map.add rule_to
              (LabelName.fresh
                 ( "exception_to_" ^ Marked.unmark (RuleName.get_info rule_to),
                   Pos.no_pos ))
              exception_to_rule_implicit_labels)
        | _ -> exception_to_rule_implicit_labels)
      def RuleName.Map.empty
  in
  (* When declaring [exception foo_l definition x ...], the rule is exception to
     all the rules sharing label [foo_l]. So we give a unique label to all the
     rules that are implicitly exceptions to rule [foo_l]. *)
  let exception_to_label_implicit_labels : LabelName.t LabelName.Map.t =
    RuleName.Map.fold
      (fun _ rule_from
           (exception_to_label_implicit_labels : LabelName.t LabelName.Map.t) ->
        match rule_from.Ast.rule_exception with
        | Ast.ExceptionToLabel (label_to, _) -> (
          match
            LabelName.Map.find_opt label_to exception_to_label_implicit_labels
          with
          | Some _ ->
            (* we already created the label *)
            exception_to_label_implicit_labels
          | None ->
            LabelName.Map.add label_to
              (LabelName.fresh
                 ( "exception_to_" ^ Marked.unmark (LabelName.get_info label_to),
                   Pos.no_pos ))
              exception_to_label_implicit_labels)
        | _ -> exception_to_label_implicit_labels)
      def LabelName.Map.empty
  in

  (* Now we have all the labels necessary to partition our rules into sets, each
     one corresponding to a label relating to the structure of the exception
     DAG. *)
  let label_to_rule_sets =
    RuleName.Map.fold
      (fun rule_name rule rule_sets ->
        let label_of_rule =
          match rule.Ast.rule_label with
          | Ast.ExplicitlyLabeled (l, _) -> l
          | Ast.Unlabeled -> (
            match rule.Ast.rule_exception with
            | BaseCase -> base_case_implicit_label
            | ExceptionToRule (r, _) ->
              RuleName.Map.find r exception_to_rule_implicit_labels
            | ExceptionToLabel (l', _) ->
              LabelName.Map.find l' exception_to_label_implicit_labels)
        in
        LabelName.Map.update label_of_rule
          (fun rule_set ->
            match rule_set with
            | None -> Some (RuleName.Set.singleton rule_name)
            | Some rule_set -> Some (RuleName.Set.add rule_name rule_set))
          rule_sets)
      def LabelName.Map.empty
  in
  let find_label_of_rule (r : RuleName.t) : LabelName.t =
    fst
      (LabelName.Map.choose
         (LabelName.Map.filter
            (fun _ rule_set -> RuleName.Set.mem r rule_set)
            label_to_rule_sets))
  in
  (* Next, we collect the exception edges between those groups of rules referred
     by their labels. This is also at this step that we check consistency of the
     edges as they are declared at each rule but should be the same for all the
     rules of the same group. *)
  let exception_edges : exception_edge list =
    RuleName.Map.fold
      (fun rule_name rule exception_edges ->
        let label_from = find_label_of_rule rule_name in
        let label_to_and_pos =
          match rule.Ast.rule_exception with
          | Ast.BaseCase -> None
          | Ast.ExceptionToRule (r', pos) -> Some (find_label_of_rule r', pos)
          | Ast.ExceptionToLabel (l', pos) -> Some (l', pos)
        in
        match label_to_and_pos with
        | None -> exception_edges
        | Some (label_to, edge_pos) -> (
          let other_edges_originating_from_same_label =
            List.filter
              (fun edge -> LabelName.compare edge.label_from label_from = 0)
              exception_edges
          in
          (* We check the consistency*)
          if LabelName.compare label_from label_to = 0 then
            Errors.raise_spanned_error edge_pos
              "Cannot define rule as an exception to itself";
          List.iter
            (fun edge ->
              if LabelName.compare edge.label_to label_to <> 0 then
                Errors.raise_multispanned_error
                  (( Some
                       "This definition contradicts other exception \
                        definitions:",
                     edge_pos )
                  :: List.map
                       (fun pos -> Some "Other exception definition:", pos)
                       edge.edge_positions)
                  "The definition of exceptions are inconsistent for variable \
                   %a."
                  Ast.ScopeDef.format_t def_info)
            other_edges_originating_from_same_label;
          (* Now we add the edge to the list*)
          let existing_edge =
            List.find_opt
              (fun edge ->
                LabelName.compare edge.label_from label_from = 0
                && LabelName.compare edge.label_to label_to = 0)
              exception_edges
          in
          match existing_edge with
          | None ->
            { label_from; label_to; edge_positions = [edge_pos] }
            :: exception_edges
          | Some existing_edge ->
            {
              label_from;
              label_to;
              edge_positions = edge_pos :: existing_edge.edge_positions;
            }
            :: List.filter (fun edge -> edge <> existing_edge) exception_edges))
      def []
  in
  (* We've got the vertices and the edges, let's build the graph! *)
  let g =
    LabelName.Map.fold
      (fun _label rule_set g -> ExceptionsDependencies.add_vertex g rule_set)
      label_to_rule_sets ExceptionsDependencies.empty
  in
  (* then we add the edges *)
  let g =
    List.fold_left
      (fun g edge ->
        let rule_group_from =
          LabelName.Map.find edge.label_from label_to_rule_sets
        in
        let rule_group_to =
          LabelName.Map.find edge.label_to label_to_rule_sets
        in
        let edge =
          ExceptionsDependencies.E.create rule_group_from edge.edge_positions
            rule_group_to
        in
        ExceptionsDependencies.add_edge_e g edge)
      g exception_edges
  in
  g

(** Outputs an error in case of cycles. *)
let check_for_exception_cycle
    (def : Ast.rule RuleName.Map.t)
    (g : ExceptionsDependencies.t) : unit =
  (* if there is a cycle, there will be an strongly connected component of
     cardinality > 1 *)
  let sccs = ExceptionsSCC.scc_list g in
  if List.length sccs < ExceptionsDependencies.nb_vertex g then
    let scc = List.find (fun scc -> List.length scc > 1) sccs in
    let spans =
      List.rev_map
        (fun (vs : RuleName.Set.t) ->
          let v = RuleName.Set.choose vs in
          let rule = RuleName.Map.find v def in
          let pos = Marked.get_mark (RuleName.get_info rule.Ast.rule_id) in
          None, pos)
        scc
    in
    let v = RuleName.Set.choose (List.hd scc) in
    Errors.raise_multispanned_error spans
      "Exception cycle detected when defining %a: each of these %d exceptions \
       applies over the previous one, and the first applies over the last"
      RuleName.format_t v (List.length scc)
OCaml

Innovation. Community. Security.