Source file dependency.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
(** Graph representation of the dependencies between scopes in the Catala
program. Vertices are functions, x -> y if x is used in the definition of y. *)
open Catala_utils
open Shared_ast
type vertex = Scope of ScopeName.t | Topdef of TopdefName.t
module SVertex = struct
type t = vertex
let compare v1 v2 =
match v1, v2 with
| Scope s1, Scope s2 -> ScopeName.compare s1 s2
| Topdef g1, Topdef g2 -> TopdefName.compare g1 g2
| Scope _, _ -> -1
| _, Scope _ -> 1
| Topdef _, _ | _, Topdef _ -> .
let equal v1 v2 =
match v1, v2 with
| Scope s1, Scope s2 -> ScopeName.equal s1 s2
| Topdef g1, Topdef g2 -> TopdefName.equal g1 g2
| (Scope _ | Topdef _), _ -> false
let hash = function
| Scope s -> ScopeName.hash s
| Topdef g -> TopdefName.hash g
let format_t ppf = function
| Scope s -> ScopeName.format_t ppf s
| Topdef g -> TopdefName.format_t ppf g
end
module VMap = Map.Make (SVertex)
(** On the edges, the label is the expression responsible for the use of the
function *)
module SEdge = struct
type t = Pos.t
let compare = compare
let default = Pos.no_pos
end
module SDependencies =
Graph.Persistent.Digraph.ConcreteBidirectionalLabeled (SVertex) (SEdge)
module STopologicalTraversal = Graph.Topological.Make (SDependencies)
module SSCC = Graph.Components.Make (SDependencies)
(** Tarjan's stongly connected components algorithm, provided by OCamlGraph *)
let rec expr_used_defs e =
let recurse_subterms e =
Expr.shallow_fold
(fun e -> VMap.union (fun _ x _ -> Some x) (expr_used_defs e))
e VMap.empty
in
match e with
| ELocation (ToplevelVar (v, pos)), _ -> VMap.singleton (Topdef v) pos
| (EScopeCall { scope; _ }, m) as e ->
VMap.add (Scope scope) (Expr.mark_pos m) (recurse_subterms e)
| EAbs { binder; _ }, _ ->
let _, body = Bindlib.unmbind binder in
expr_used_defs body
| e -> recurse_subterms e
let rule_used_defs = function
| Ast.Assertion e | Ast.Definition (_, _, _, e) ->
expr_used_defs e
| Ast.Call (subscope, subindex, _) ->
VMap.singleton (Scope subscope)
(Marked.get_mark (SubScopeName.get_info subindex))
let build_program_dep_graph (prgm : 'm Ast.program) : SDependencies.t =
let g = SDependencies.empty in
let g =
TopdefName.Map.fold
(fun v _ g -> SDependencies.add_vertex g (Topdef v))
prgm.program_topdefs g
in
let g =
ScopeName.Map.fold
(fun v _ g -> SDependencies.add_vertex g (Scope v))
prgm.program_scopes g
in
let g =
TopdefName.Map.fold
(fun glo_name (expr, _) g ->
let used_defs = expr_used_defs expr in
if VMap.mem (Topdef glo_name) used_defs then
Errors.raise_spanned_error
(Marked.get_mark (TopdefName.get_info glo_name))
"The Topdef %a has a definition that refers to itself, which is \
forbidden since Catala does not provide recursion"
TopdefName.format_t glo_name;
VMap.fold
(fun def pos g ->
let edge = SDependencies.E.create def pos (Topdef glo_name) in
SDependencies.add_edge_e g edge)
used_defs g)
prgm.program_topdefs g
in
ScopeName.Map.fold
(fun scope_name scope g ->
List.fold_left
(fun g rule ->
let used_defs = rule_used_defs rule in
if VMap.mem (Scope scope_name) used_defs then
Errors.raise_spanned_error
(Marked.get_mark (ScopeName.get_info scope.Ast.scope_decl_name))
"The scope %a is calling into itself as a subscope, which is \
forbidden since Catala does not provide recursion"
ScopeName.format_t scope.Ast.scope_decl_name;
VMap.fold
(fun used_def pos g ->
let edge =
SDependencies.E.create used_def pos (Scope scope_name)
in
SDependencies.add_edge_e g edge)
used_defs g)
g scope.Ast.scope_decl_rules)
prgm.program_scopes g
let check_for_cycle_in_defs (g : SDependencies.t) : unit =
let sccs = SSCC.scc_list g in
match List.find_opt (function [] | [_] -> false | _ -> true) sccs with
| None -> ()
| Some [] -> assert false
| Some (v0 :: _ as scc) ->
let module VSet = Set.Make (SVertex) in
let scc = VSet.of_list scc in
let rec get_cycle cycle cycle_set v =
let cycle = v :: cycle in
let cycle_set = VSet.add v cycle_set in
let succ = SDependencies.succ g v in
if List.exists (fun v -> VSet.mem v cycle_set) succ then
let rec cut_after acc = function
| [] -> acc
| v :: vs ->
if List.mem v succ then v :: acc else cut_after (v :: acc) vs
in
cut_after [] cycle
else
get_cycle cycle cycle_set
(List.find (fun succ -> VSet.mem succ scc) succ)
in
let cycle = get_cycle [] VSet.empty v0 in
let spans =
List.map2
(fun v1 v2 ->
let msg =
Format.asprintf "%a is used here in the definition of %a:"
SVertex.format_t v1 SVertex.format_t v2
in
let _, edge_pos, _ = SDependencies.find_edge g v1 v2 in
Some msg, edge_pos)
cycle
(List.tl cycle @ [List.hd cycle])
in
Errors.raise_multispanned_error spans
"@[<hov 2>Cyclic dependency detected between the following scopes:@ \
@[<hv>%a@]@]"
(Format.pp_print_list
~pp_sep:(fun ppf () -> Format.fprintf ppf " →@ ")
SVertex.format_t)
(cycle @ [List.hd cycle])
let get_defs_ordering (g : SDependencies.t) : SVertex.t list =
List.rev (STopologicalTraversal.fold (fun sd acc -> sd :: acc) g [])
module TVertex = struct
type t = Struct of StructName.t | Enum of EnumName.t
let hash x =
match x with Struct x -> StructName.hash x | Enum x -> EnumName.hash x
let compare x y =
match x, y with
| Struct x, Struct y -> StructName.compare x y
| Enum x, Enum y -> EnumName.compare x y
| Struct _, Enum _ -> 1
| Enum _, Struct _ -> -1
let equal x y =
match x, y with
| Struct x, Struct y -> StructName.compare x y = 0
| Enum x, Enum y -> EnumName.compare x y = 0
| _ -> false
let format_t (fmt : Format.formatter) (x : t) : unit =
match x with
| Struct x -> StructName.format_t fmt x
| Enum x -> EnumName.format_t fmt x
let get_info (x : t) =
match x with
| Struct x -> StructName.get_info x
| Enum x -> EnumName.get_info x
end
module TVertexSet = Set.Make (TVertex)
(** On the edges, the label is the expression responsible for the use of the
function *)
module TEdge = struct
type t = Pos.t
let compare = compare
let default = Pos.no_pos
end
module TDependencies =
Graph.Persistent.Digraph.ConcreteBidirectionalLabeled (TVertex) (TEdge)
module TTopologicalTraversal = Graph.Topological.Make (TDependencies)
module TSCC = Graph.Components.Make (TDependencies)
(** Tarjan's stongly connected components algorithm, provided by OCamlGraph *)
let rec get_structs_or_enums_in_type (t : typ) : TVertexSet.t =
match Marked.unmark t with
| TStruct s -> TVertexSet.singleton (TVertex.Struct s)
| TEnum e -> TVertexSet.singleton (TVertex.Enum e)
| TArrow (t1, t2) ->
TVertexSet.union
(t1
|> List.map get_structs_or_enums_in_type
|> List.fold_left TVertexSet.union TVertexSet.empty)
(get_structs_or_enums_in_type t2)
| TLit _ | TAny -> TVertexSet.empty
| TOption t1 | TArray t1 -> get_structs_or_enums_in_type t1
| TTuple ts ->
List.fold_left
(fun acc t -> TVertexSet.union acc (get_structs_or_enums_in_type t))
TVertexSet.empty ts
let build_type_graph (structs : struct_ctx) (enums : enum_ctx) : TDependencies.t
=
let g = TDependencies.empty in
let g =
StructName.Map.fold
(fun s fields g ->
StructField.Map.fold
(fun _ typ g ->
let def = TVertex.Struct s in
let g = TDependencies.add_vertex g def in
let used = get_structs_or_enums_in_type typ in
TVertexSet.fold
(fun used g ->
if TVertex.equal used def then
Errors.raise_spanned_error (Marked.get_mark typ)
"The type %a is defined using itself, which is forbidden \
since Catala does not provide recursive types"
TVertex.format_t used
else
let edge =
TDependencies.E.create used (Marked.get_mark typ) def
in
TDependencies.add_edge_e g edge)
used g)
fields g)
structs g
in
let g =
EnumName.Map.fold
(fun e cases g ->
EnumConstructor.Map.fold
(fun _ typ g ->
let def = TVertex.Enum e in
let g = TDependencies.add_vertex g def in
let used = get_structs_or_enums_in_type typ in
TVertexSet.fold
(fun used g ->
if TVertex.equal used def then
Errors.raise_spanned_error (Marked.get_mark typ)
"The type %a is defined using itself, which is forbidden \
since Catala does not provide recursive types"
TVertex.format_t used
else
let edge =
TDependencies.E.create used (Marked.get_mark typ) def
in
TDependencies.add_edge_e g edge)
used g)
cases g)
enums g
in
g
let check_type_cycles (structs : struct_ctx) (enums : enum_ctx) : TVertex.t list
=
let g = build_type_graph structs enums in
let sccs = TSCC.scc_list g in
(if List.length sccs < TDependencies.nb_vertex g then
let scc = List.find (fun scc -> List.length scc > 1) sccs in
let spans =
List.flatten
(List.map
(fun v ->
let var_str, var_info =
Format.asprintf "%a" TVertex.format_t v, TVertex.get_info v
in
let succs = TDependencies.succ_e g v in
let _, edge_pos, succ =
List.find (fun (_, _, succ) -> List.mem succ scc) succs
in
let succ_str = Format.asprintf "%a" TVertex.format_t succ in
[
( Some ("Cycle type " ^ var_str ^ ", declared:"),
Marked.get_mark var_info );
( Some
("Used here in the definition of another cycle type "
^ succ_str
^ ":"),
edge_pos );
])
scc)
in
Errors.raise_multispanned_error spans
"Cyclic dependency detected between types!");
List.rev (TTopologicalTraversal.fold (fun v acc -> v :: acc) g [])