package catala

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file conditions.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
(* This file is part of the Catala compiler, a specification language for tax
   and social benefits computation rules. Copyright (C) 2022 Inria, contributor:
   Denis Merigoux <denis.merigoux@inria.fr>, Alain Delaët
   <alain.delaet--tixeuil@inria.fr>

   Licensed under the Apache License, Version 2.0 (the "License"); you may not
   use this file except in compliance with the License. You may obtain a copy of
   the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
   WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
   License for the specific language governing permissions and limitations under
   the License. *)

open Utils
open Dcalc
open Ast

(** {1 Helpers and type definitions}*)

type vc_return = typed marked_expr * typ Marked.pos VarMap.t
(** The return type of VC generators is the VC expression plus the types of any
    locally free variable inside that expression. *)

type ctx = {
  current_scope_name : ScopeName.t;
  decl : decl_ctx;
  input_vars : Var.t list;
  scope_variables_typs : typ Marked.pos VarMap.t;
}

let conjunction (args : vc_return list) (mark : typed mark) : vc_return =
  let acc, list =
    match args with
    | hd :: tl -> hd, tl
    | [] -> ((ELit (LBool true), mark), VarMap.empty), []
  in
  List.fold_left
    (fun (acc, acc_ty) (arg, arg_ty) ->
      ( (EApp ((EOp (Binop And), mark), [arg; acc]), mark),
        VarMap.union (fun _ _ _ -> failwith "should not happen") acc_ty arg_ty ))
    acc list

let negation ((arg, arg_ty) : vc_return) (mark : typed mark) : vc_return =
  (EApp ((EOp (Unop Not), mark), [arg]), mark), arg_ty

let disjunction (args : vc_return list) (mark : typed mark) : vc_return =
  let acc, list =
    match args with
    | hd :: tl -> hd, tl
    | [] -> ((ELit (LBool false), mark), VarMap.empty), []
  in
  List.fold_left
    (fun ((acc, acc_ty) : vc_return) (arg, arg_ty) ->
      ( (EApp ((EOp (Binop Or), mark), [arg; acc]), mark),
        VarMap.union (fun _ _ _ -> failwith "should not happen") acc_ty arg_ty ))
    acc list

(** [half_product \[a1,...,an\] \[b1,...,bm\] returns \[(a1,b1),...(a1,bn),...(an,b1),...(an,bm)\]] *)
let half_product (l1 : 'a list) (l2 : 'b list) : ('a * 'b) list =
  l1
  |> List.mapi (fun i ei ->
         List.filteri (fun j _ -> i < j) l2 |> List.map (fun ej -> ei, ej))
  |> List.concat

(** This code skims through the topmost layers of the terms like this:
    [log (error_on_empty < reentrant_variable () | true :- e1 >)] for scope
    variables, or [fun () -> e1] for subscope variables. But what we really want
    to analyze is only [e1], so we match this outermost structure explicitely
    and have a clean verification condition generator that only runs on [e1] *)
let match_and_ignore_outer_reentrant_default (ctx : ctx) (e : typed marked_expr)
    : typed marked_expr =
  match Marked.unmark e with
  | ErrorOnEmpty
      ( EDefault
          ( [(EApp ((EVar x, _), [(ELit LUnit, _)]), _)],
            (ELit (LBool true), _),
            cons ),
        _ )
    when List.exists (fun x' -> Var.eq (Var.t x) x') ctx.input_vars ->
    (* scope variables*)
    cons
  | EAbs (binder, [(TLit TUnit, _)]) ->
    (* context sub-scope variables *)
    let _, body = Bindlib.unmbind binder in
    body
  | ErrorOnEmpty d ->
    d (* input subscope variables and non-input scope variable *)
  | _ ->
    Errors.raise_spanned_error (pos e)
      "Internal error: this expression does not have the structure expected by \
       the VC generator:\n\
       %a"
      (Print.format_expr ~debug:true ctx.decl)
      e

(** {1 Verification conditions generator}*)

(** [generate_vc_must_not_return_empty e] returns the dcalc boolean expression
    [b] such that if [b] is true, then [e] will never return an empty error. It
    also returns a map of all the types of locally free variables inside the
    expression. *)
let rec generate_vc_must_not_return_empty (ctx : ctx) (e : typed marked_expr) :
    vc_return =
  let out =
    match Marked.unmark e with
    | ETuple (args, _) | EArray args ->
      conjunction
        (List.map (generate_vc_must_not_return_empty ctx) args)
        (Marked.get_mark e)
    | EMatch (arg, arms, _) ->
      conjunction
        (List.map (generate_vc_must_not_return_empty ctx) (arg :: arms))
        (Marked.get_mark e)
    | ETupleAccess (e1, _, _, _)
    | EInj (e1, _, _, _)
    | EAssert e1
    | ErrorOnEmpty e1 ->
      (generate_vc_must_not_return_empty ctx) e1
    | EAbs (binder, typs) ->
      (* Hot take: for a function never to return an empty error when called, it has to do
         so whatever its input. So we universally quantify over the variable of the function
         when inspecting the body, resulting in simply traversing through in the code here. *)
      let vars, body = Bindlib.unmbind binder in
      let vc_body_expr, vc_body_ty =
        (generate_vc_must_not_return_empty ctx) body
      in
      ( vc_body_expr,
        List.fold_left
          (fun acc (var, ty) -> VarMap.add (Var.t var) ty acc)
          vc_body_ty
          (List.map2 (fun x y -> x, y) (Array.to_list vars) typs) )
    | EApp (f, args) ->
      (* We assume here that function calls never return empty error, which implies
         all functions have been checked never to return empty errors. *)
      conjunction
        (List.map (generate_vc_must_not_return_empty ctx) (f :: args))
        (Marked.get_mark e)
    | EIfThenElse (e1, e2, e3) ->
      let e1_vc, vc_typ1 = generate_vc_must_not_return_empty ctx e1 in
      let e2_vc, vc_typ2 = generate_vc_must_not_return_empty ctx e2 in
      let e3_vc, vc_typ3 = generate_vc_must_not_return_empty ctx e3 in
      conjunction
        [
          e1_vc, vc_typ1;
          ( (EIfThenElse (e1, e2_vc, e3_vc), Marked.get_mark e),
            VarMap.union
              (fun _ _ _ -> failwith "should not happen")
              vc_typ2 vc_typ3 );
        ]
        (Marked.get_mark e)
    | ELit LEmptyError ->
      Marked.same_mark_as (ELit (LBool false)) e, VarMap.empty
    | EVar _
    (* Per default calculus semantics, you cannot call a function with an argument
       that evaluates to the empty error. Thus, all variable evaluate to non-empty-error terms. *)
    | ELit _ | EOp _ ->
      Marked.same_mark_as (ELit (LBool true)) e, VarMap.empty
    | EDefault (exceptions, just, cons) ->
      (* <e1 ... en | ejust :- econs > never returns empty if and only if:
         - first we look if e1 .. en ejust can return empty;
         - if no, we check that if ejust is true, whether econs can return empty.
      *)
      disjunction
        (List.map (generate_vc_must_not_return_empty ctx) exceptions
        @ [
            conjunction
              [
                generate_vc_must_not_return_empty ctx just;
                (let vc_just_expr, vc_just_ty =
                   generate_vc_must_not_return_empty ctx cons
                 in
                 ( ( EIfThenElse
                       ( just,
                         (* Comment from Alain: the justification is not checked for holding an default term.
                            In such cases, we need to encode the logic of the default terms within
                            the generation of the verification condition (Z3encoding.translate_expr).
                            Answer from Denis: Normally, there is a structural invariant from the
                            surface language to intermediate representation translation preventing
                            any default terms to appear in justifications.*)
                         vc_just_expr,
                         (ELit (LBool false), Marked.get_mark e) ),
                     Marked.get_mark e ),
                   vc_just_ty ));
              ]
              (Marked.get_mark e);
          ])
        (Marked.get_mark e)
  in
  out
  [@@ocamlformat "wrap-comments=false"]

(** [generate_vs_must_not_return_confict e] returns the dcalc boolean expression
    [b] such that if [b] is true, then [e] will never return a conflict error.
    It also returns a map of all the types of locally free variables inside the
    expression. *)
let rec generate_vs_must_not_return_confict (ctx : ctx) (e : typed marked_expr)
    : vc_return =
  let out =
    (* See the code of [generate_vc_must_not_return_empty] for a list of invariants on which this
       function relies on. *)
    match Marked.unmark e with
    | ETuple (args, _) | EArray args ->
      conjunction
        (List.map (generate_vs_must_not_return_confict ctx) args)
        (Marked.get_mark e)
    | EMatch (arg, arms, _) ->
      conjunction
        (List.map (generate_vs_must_not_return_confict ctx) (arg :: arms))
        (Marked.get_mark e)
    | ETupleAccess (e1, _, _, _)
    | EInj (e1, _, _, _)
    | EAssert e1
    | ErrorOnEmpty e1 ->
      generate_vs_must_not_return_confict ctx e1
    | EAbs (binder, typs) ->
      let vars, body = Bindlib.unmbind binder in
      let vc_body_expr, vc_body_ty =
        (generate_vs_must_not_return_confict ctx) body
      in
      ( vc_body_expr,
        List.fold_left
          (fun acc (var, ty) -> VarMap.add (Var.t var) ty acc)
          vc_body_ty
          (List.map2 (fun x y -> x, y) (Array.to_list vars) typs) )
    | EApp (f, args) ->
      conjunction
        (List.map (generate_vs_must_not_return_confict ctx) (f :: args))
        (Marked.get_mark e)
    | EIfThenElse (e1, e2, e3) ->
      let e1_vc, vc_typ1 = generate_vs_must_not_return_confict ctx e1 in
      let e2_vc, vc_typ2 = generate_vs_must_not_return_confict ctx e2 in
      let e3_vc, vc_typ3 = generate_vs_must_not_return_confict ctx e3 in
      conjunction
        [
          e1_vc, vc_typ1;
          ( (EIfThenElse (e1, e2_vc, e3_vc), Marked.get_mark e),
            VarMap.union
              (fun _ _ _ -> failwith "should not happen")
              vc_typ2 vc_typ3 );
        ]
        (Marked.get_mark e)
    | EVar _ | ELit _ | EOp _ ->
      Marked.same_mark_as (ELit (LBool true)) e, VarMap.empty
    | EDefault (exceptions, just, cons) ->
      (* <e1 ... en | ejust :- econs > never returns conflict if and only if:
         - neither e1 nor ... nor en nor ejust nor econs return conflict
         - there is no two differents ei ej that are not empty. *)
      let quadratic =
        negation
          (disjunction
             (List.map
                (fun (e1, e2) ->
                  conjunction
                    [
                      generate_vc_must_not_return_empty ctx e1;
                      generate_vc_must_not_return_empty ctx e2;
                    ]
                    (Marked.get_mark e))
                (half_product exceptions exceptions))
             (Marked.get_mark e))
          (Marked.get_mark e)
      in
      let others =
        List.map
          (generate_vs_must_not_return_confict ctx)
          (just :: cons :: exceptions)
      in
      let out = conjunction (quadratic :: others) (Marked.get_mark e) in
      out
  in
  out
  [@@ocamlformat "wrap-comments=false"]

(** {1 Interface}*)

type verification_condition_kind = NoEmptyError | NoOverlappingExceptions

type verification_condition = {
  vc_guard : typed marked_expr;
  (* should have type bool *)
  vc_kind : verification_condition_kind;
  vc_scope : ScopeName.t;
  vc_variable : Var.t Marked.pos;
  vc_free_vars_typ : typ Marked.pos VarMap.t;
}

let rec generate_verification_conditions_scope_body_expr
    (ctx : ctx)
    (scope_body_expr : ('m expr, 'm) scope_body_expr) :
    ctx * verification_condition list =
  match scope_body_expr with
  | Result _ -> ctx, []
  | ScopeLet scope_let ->
    let scope_let_var, scope_let_next =
      Bindlib.unbind scope_let.scope_let_next
    in
    let new_ctx, vc_list =
      match scope_let.scope_let_kind with
      | DestructuringInputStruct ->
        { ctx with input_vars = Var.t scope_let_var :: ctx.input_vars }, []
      | ScopeVarDefinition | SubScopeVarDefinition ->
        (* For scope variables, we should check both that they never evaluate to
           emptyError nor conflictError. But for subscope variable definitions,
           what we're really doing is adding exceptions to something defined in
           the subscope so we just ought to verify only that the exceptions
           overlap. *)
        let e = Bindlib.unbox (remove_logging_calls scope_let.scope_let_expr) in
        let e = match_and_ignore_outer_reentrant_default ctx e in
        let vc_confl, vc_confl_typs =
          generate_vs_must_not_return_confict ctx e
        in
        let vc_confl =
          if !Cli.optimize_flag then
            Bindlib.unbox (Optimizations.optimize_expr ctx.decl vc_confl)
          else vc_confl
        in
        let vc_list =
          [
            {
              vc_guard = Marked.same_mark_as (Marked.unmark vc_confl) e;
              vc_kind = NoOverlappingExceptions;
              vc_free_vars_typ =
                VarMap.union
                  (fun _ _ -> failwith "should not happen")
                  ctx.scope_variables_typs vc_confl_typs;
              vc_scope = ctx.current_scope_name;
              vc_variable = Var.t scope_let_var, scope_let.scope_let_pos;
            };
          ]
        in
        let vc_list =
          match scope_let.scope_let_kind with
          | ScopeVarDefinition ->
            let vc_empty, vc_empty_typs =
              generate_vc_must_not_return_empty ctx e
            in
            let vc_empty =
              if !Cli.optimize_flag then
                Bindlib.unbox (Optimizations.optimize_expr ctx.decl vc_empty)
              else vc_empty
            in
            {
              vc_guard = Marked.same_mark_as (Marked.unmark vc_empty) e;
              vc_kind = NoEmptyError;
              vc_free_vars_typ =
                VarMap.union
                  (fun _ _ -> failwith "should not happen")
                  ctx.scope_variables_typs vc_empty_typs;
              vc_scope = ctx.current_scope_name;
              vc_variable = Var.t scope_let_var, scope_let.scope_let_pos;
            }
            :: vc_list
          | _ -> vc_list
        in
        ctx, vc_list
      | _ -> ctx, []
    in
    let new_ctx, new_vcs =
      generate_verification_conditions_scope_body_expr
        {
          new_ctx with
          scope_variables_typs =
            VarMap.add (Var.t scope_let_var) scope_let.scope_let_typ
              new_ctx.scope_variables_typs;
        }
        scope_let_next
    in
    new_ctx, vc_list @ new_vcs

let rec generate_verification_conditions_scopes
    (decl_ctx : decl_ctx)
    (scopes : ('m expr, 'm) scopes)
    (s : ScopeName.t option) : verification_condition list =
  match scopes with
  | Nil -> []
  | ScopeDef scope_def ->
    let is_selected_scope =
      match s with
      | Some s when Dcalc.Ast.ScopeName.compare s scope_def.scope_name = 0 ->
        true
      | None -> true
      | _ -> false
    in
    let vcs =
      if is_selected_scope then
        let _scope_input_var, scope_body_expr =
          Bindlib.unbind scope_def.scope_body.scope_body_expr
        in
        let ctx =
          {
            current_scope_name = scope_def.scope_name;
            decl = decl_ctx;
            input_vars = [];
            scope_variables_typs =
              VarMap.empty
              (* We don't need to add the typ of the scope input var here
                 because it will never appear in an expression for which we
                 generate a verification conditions (the big struct is
                 destructured with a series of let bindings just after. )*);
          }
        in
        let _, vcs =
          generate_verification_conditions_scope_body_expr ctx scope_body_expr
        in
        vcs
      else []
    in
    let _scope_var, next = Bindlib.unbind scope_def.scope_next in
    generate_verification_conditions_scopes decl_ctx next s @ vcs

let generate_verification_conditions
    (p : 'm program)
    (s : Dcalc.Ast.ScopeName.t option) : verification_condition list =
  let vcs = generate_verification_conditions_scopes p.decl_ctx p.scopes s in
  (* We sort this list by scope name and then variable name to ensure consistent
     output for testing*)
  List.sort
    (fun vc1 vc2 ->
      let to_str vc =
        Format.asprintf "%s.%s"
          (Format.asprintf "%a" ScopeName.format_t vc.vc_scope)
          (Bindlib.name_of (Var.get (Marked.unmark vc.vc_variable)))
      in
      String.compare (to_str vc1) (to_str vc2))
    vcs
OCaml

Innovation. Community. Security.